Tuesday, May 06, 1997

Writing OS2 Warp Device Driversin C
Third Edition

Disclaimer

This book and software are provided -asis.' Theimplied warranties of merchantability and fitness for a particular purpose
are expressy disclaimed. This book and software may contain programs that are furnished as examples. These examples
have not been thoroughly tested under all conditions. Therefore, the reliability, serviceahility, or function of any program
or program code herein is not guaranteed.

Theinformation presented in this book was valid at the time it was written and was conveyed as accurately as possible by
the author. However, some information may beincorrect or may have changed prior to publication. The author makes no
claimsthat the material contained in this book is entirely correct, and assumes no liahility for use of the material contained
herein.

Trademarks and Caopyrights

IBM, AT, OS/2, Personal System/2, PS/2, and Micro Channd areregistered trademarks of the International Business
Machines Corporation.

C/2, XT, and Presentation Manager are trademarks of International Business Machines Corporation.

Intel isaregistered trademark of the Intel Corporation.

Lotus 1-2-3 isaregistered trademark of Lotus Development Corporation.

MS-DOS, CodeView and Microsoft are registered trademarks of Microsoft Corporation.

Microsoft and Microsoft Windows are registered trademarks of Microsoft Corporation.

UNIX isaregistered trademark of AT& T Bell Laboratories.

Copyright 1993 by Van Nostrand Reinhold
Library of Congress Catalog Card Number 93-2264
ISBN 0-442-01729-4

All rightsreserved. No part of thiswork covered by the copyright hereon may be reproduced or used in any form or by any
means-graphic, eectronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval
systems-without written permission of the publisher.

Van Nostrand Reinhold isan International Thomson Publishing company. ITPlogo isatrademark under license.
Printed in the United States of America

Van Nostrand Reinhold International Thomson Publishing GmbH
115 Fifth Avenue KUnigswinteror Str. 518

New York, NY 10003 5300 Bonn 3

International Thomson Publishing International Thomson Publishing Asia
Berkshire House, 168-=173 38 Kim Tian Road, #0105

High Holborn, London WC1V 7AA Kim Tian Plaza

England Singapore 0316

Thomas Nelson Australia International Thomson Publishing Japan 102 Dodds Street
South Melbourne 3205 2-2-1 Hirakawacho

Victoria, Australia Chiyada-Ku, Tokyo 102

Nelson Canada

1120 Birchmount Road
Scarborough, Ontario
M1K 5G4, Canada

16151413121110987654321
Library of Congress Catal oging-in-Publication Data

Mastrianni, Steven J., 1951-
Writing OS/2 2.x Device Driversin C/ Steven J. Mastrianni. - 3rd ed.
p. cm. -- (VNR'sOS/2 series)
Includesindex.
ISBN 0-442-01229-4
1. OS2 device drivers (Computer programs) 2. OS/2 (Computer file) 3. C (Computer program language) 1.
Title. 1. Series. QA76.76.D49M 371993
005.4'3--dc20 93-2264 CIP

Dedication

This book is dedicated to Bernard Engel son, who passed away on June 8, 1994,
His knowledge, compassion and understanding were an inspiration to everyone.
He will be sorely missed.

Acknowledgments

| would like to thank

Foreword

Table of Contents

Writing OS/2 Warp DeviCe DIiVEISIN C.....ooeeiieiieeceee et 1
BT 0 8 = 1o o PP RPR 1
Chapter 1 - The Evolution of PC DeviCe DIIVEIS.......ccocuiiiiieeiiee e 33
SEOrAgE DBVICES.ce ettt sttt e b e e e nst e e e nnbee e enneeean 34
INterface Adapter Cards.........oocuee i 35
The First Operating System For Personal Computers...........ooovcvvveeevciieeeecennen. 36
TRE RIS BUS....co ittt et e e nee e 38
Chapter 2 - Understanding DeVICE DIVEIS........ueeiiiiieiiiieeee e 41
DeViCE DIIVEIS TOUAYcceiueeeiiieeeiiee ettt a e eneeas 44
Device DIVErS - A SUMMEIYooiiiiieiiiieeiieeeetiee e siteeeseeeesitee s e sse e sneeesneeas 46
Chapter 3 - The PC Hardware ArchiteCture............ccveieeeiiiee e 49
THE SYSLEM BUS......ooiiiiieciiee ettt e e e 49
The IBM PC - BEGINNINGS.....ccviieiiiieaiieeaitieeesiieeesitee st e s sieeeesaeessseessseessseeeas 50
IBM PC X T .ttt ettt ettt ssa et e snteesseeeteeanseesseeenseeanaeenseeas 51
IBIM PC AT ettt ettt ettt et et ssa e et e enteesseeeteeanteesseeeneeanaeensee s 52
TRE AT BUS....ceeiiie ettt sttt e et e e snte e e snneee s 53
The IBM PS/2 and Micro Channgl ..o 54
Enhanced Industry Standard Architecture (EISA)cooveeiiiieinieeeeeeeee e 56
BUS WIS, ... e e e e e as 57
REBI MOUE. ...ttt et re e e te e nae e neeanns 57
ProteCt MOUE ...ttt 58
Using Addresses and POINTENS.uuiiiiiieiiiie et 61
The RING ArChIteCIUreoooieiee e 61
Chapter 4 - An Overview of the OS2 Operating SyStemcocveeevieeenieeeniieee e 65
ROOES ... 66
Processes and THIEaOS.eei i 69
OS2 1.0 - OS2 ATTIVES ...oeeeiieee ettt st st e e snae e e ennee s 71

10

OS2 1.2- A Better FIle SYStemM......cooeieieee e 71
OS2 1.3 - IBM'SFirst SOl0 EffOrt.......ccooueeiiiiieiiiececeeee e 73
0S2 2.0- What OS2 Was Really Meant toBe..........cccceeiiiiiiiieiieiieeie 73
The OS/2 Application Programming Interface..........coooeveveniiie e 75
Chapter 5 - The Anatomy of an OS2 DeVIiCe DIVEScoovueeiiiieiiiie e 77
Application-to-Driver INtErface..........oovuieiiiiieiie e 77
DOS Device Driversand OS/2 DeviCe DIIVENS......ccoueeeiiieenieeeniee e 78
Designing an OS/2 DeVICE DIIVEScoocueieiiiieeiee et 79
Tools Necessary For Driver DevelOpment..........coovueeiiieeiiiie e 79
The BasiCS Of Driver DESIONcoiieiiiiieeeiiee ettt seee e 80
REQUESE PACKELSeeeiiiie ettt 81
OS2 Device Driver ArChItECIUNE..........evieie et 82
DeViCe DIiVEr MOES.......cooueieiiiie et 83
THE DEVICE HEAUENeeeieeeeee et 85
CapabilITIES Bit ST ..eeeeeveeeeiiieeeiieestie ettt 87
Providing aLow-Level Interface...........coooiiieiiiiiiiie e 88
The Strategy SECHIONcocviieiiiie et sre e 94
TN 117 1o g PSPPSR 96
A COMMON SITAEEQYeeeeeeeiiieee ettt e et e et e e e e e e e ser e e e e e snee e e e e snneeeeeaanees 98
INEEITUPE SECLTON......eiiiiie et eneeas 99
The Timer HaNAIEroo e 105
CONEEXE HOOKS ...ttt e e e e e 106
Chapter 6 - Device Driver Strategy COmMMAaNGS.........oooveeeiiiieiiiie e eseee e siee e 109
Summary of Device Driver COmMMAaNdS..........cceeerueeeiiieeeeiiieeesieeesieeeseeeesaeee s 112
0] 0 1 ST 115
TH/ Media CRECK......cooeiieee e 120
2H I BUITA BPB ...ttt 122
AH, 8H, OH / REAA OF WIIT......eiiieiieeeee et 125
5H / Nondestructive Read NO Walt..........cceeiiiiiiiiiieiiieeiiee e 127
6H, AH / INput Or OULPUL SEBLUS.........ooiieeieiiieeeiiee e 128
7H, BH / Input Flush or Output FlUSN........ccociiiieee e 129
DH,EH / OPen OF ClIOSE.......coiiiiiieiiiie ettt e e sneeas 130
FH / Removable Medi@..........coouiiiiiiieeieee e 131

TOH / GENEITC IO ..ot 132

11

LIH / RESEL MEAIA.coieiiiiieciieeiie ettt nnee s 134
12H, 13H / Get/Set LOgiCal DIIVE......ccoceieiiiieeiee e 134
TAH I DOINSEIL ..ot 136
16H / Partitionable FIXed DISKS.......c.coiiiiieiiiieeiie e 137
17H / Get Fixed Disk/Logical Unit Map.........coooueeiiieeiiiieeniee e 138
LCH / SNULAOWN ... 139
1DH/ Get Driver Capalilities.......ccocueiiiiiieiiiie e 140
1FH / CMDINITCOMPIELE.......eeeiiieeeieie et 141
Chapter 7 - A Simple OS2 Physical DeviCe DIiVENcooivieeiiiieeiie e 143
Device Driver SPECIfiCaliONS.........cocuvieiiiieeiiie e 143
Application Program DESIgNcooiiiiiiiieeciee et 144
DeViCe DIiVEr OPEIaliON.......ccoiueieiiiieaiieeaiiieesieeeesieeeeseeeessseesseeeesseeesseeesneeas 144
N S USRURSRUSO 145
(@ R TRRR 146
CLOSE ..ottt ettt et et e e r et e e ne e naeenreeeaeeanae e 147
@ 1 U SRURRRRSP 148
(@ NS N 00 SRS 149
(O N = 00 /2SRRI 150
(@S 00X SRR 152
READ aNd WRITE......ccii ettt 153
TIMEN HANAIEN ... enee e 154
Chapter 8 - The Micro Channel BUS...........cueiiiiiiiiiieeiee e 157
Micro Channel Adapter Cards...........coeoieeeiiiieiiiie e 157
Micro Channel AdapLer 1Doooiiiiiiiie e 158
Accessing the POS Register During Debug.........coovveeiiieeeiiieee e 164
MicCro Channel INTEITUPES.cooiiiie e 164
Chapter 9 - OS/2 Warp Virtual DeviCe DIVESS..........ooiiieiiiie e 167
The Virtual DOS MaChiNe.........coiuiiiiiiieeiee e 168
VDD ATCHITECIUMN ...ttt et et e e ennee s 170
VDD INITTAIZEHON ..o e e snneee s 171
DOS SEINGS. ... eeeeeeeeeiie ettt ettt e et e e snse e e s neee e snseeesnneeeanneas 173
DOS SettingS REGISIIAIIONcouviieiiiie ettt 174
The Virtual COM DeViCe DIIVENcccuiiiiiieiiiie e 175

TheVirtual Timer DeVICE DIIVES ...t a s 177

12

TheVirtual DIk DeVICEDIIVENccooiiiiiieciiee e 179
The Virtual Keyboard DeVICE DIVESc.ueiiiiieiiee e 181
The Virtual MOUSE DEVICE DIIVEYoeiiiiiiiiiie e 182
The Virtua Line Printer DeVICE DIIVENcoocuiiiiiiieiiie e 183
The Virtual Video DeVICE DIVESc.eviiiiiiiiie e 183
Virtual DevHIP ServiceS By Cal@gOoryc.ceeiiueeiiuieeeiieeesiieesieeesieessseessneeens 185
DOS SESSION INLEITUPLS ...ttt e e e 198
Sample Virtual DeVICE DIIVESoiiiieiiie et 203
Establishing @ VDD-PDD LiNKc.cooiiiiiiiieeiieeiee e 212
Chapter 10 - Memory-Mapped Adapters and TOPLcoooeeiiieeiniie e 215
High and LOW MemOry MapS.......cccuuieiiiieeiiie et 215
Application Program Access To Adapter Memoryccceevveeeieeeenieeenieeesneens 216
Access to Adapter Memory In the Interrupt Handler.........ooooeeeieeiiiniiiieeee, 218
Input/Output Privilege LeVE (IOPL).......ooiiiiieieeeceeeee e 219
THE TOPL SEgMENL......ooiiiiiie et e e snee e 220
IOPL From 32-bit APPlICALIONS.........eeiiiieeiiieeeiie et 223
Chapter 11 - Direct Memory ACCESS (DMA)eeeiiiiieeee e 225
ThE DMA CONIOHES ...eeeeiieiee e e 225
USING DIMA ettt ettt ettt e et e e st e e e snteeeenneas 230
DMA and Micro ChannEl............coooiiiii oo 234
Chapter 12 - Extended Device Driver INterfateoooveeiiieeiiiie e 237
Device Driver CapalilitieScoooiiiiiei i 237
Request Lists and Request Controloooeeeiiieiiieeeee e 241
REQUESE FOIMIAL ... 243
Read/Write/Write Verify REQUESEoooceiieee e 248
Read PrefetCh REQUESL.........c.cvieee et 249
Request Control FUNCLIONS...........ooiiiieiiiieeiie et 250
SEFSDINTO ... 251
(@t gTo | T 1 | RS RPPS 252
SELRESIPOS ...t eaea s 252
GEIBOUNTAIY ...ttt et e e et e e e e e enes 252
Chapter 13 - Debugging OS2 DeViCe DIVESS.....cccceieiiieeiee e 255

KDB KEYWOITS.......eeieiiiiieiiiee ettt sttt e et e s e e snne e snneeesnneas 257

13

KDB OPEIALOISceeieiiieieeeeittie e e e e e e et e e et e e e esse e e e s snse e e e e snneeeeaannneeeeeannes 259
KDB Command REFEFENCE.........coooeeeeieee e 261
INterNal COMMANGS.........uuuuiiiiiiiiiiiiiii bbb aasabebabaaaassssssaassssssssanes 264
External CoMMaNdS.........ccooeeiiiieieeee e 283
Chapter 14 - OS2 Digplay DIVEIS.....cc.eeiiiiieeaieee et 295
DS (o= 00] (= A 297
DA TIPSttt e e e e e e e e e e e e e e e e aeas 2908
FaIS e (oY DT = PR 299
Program SEACK..........eeiiie s 299
[I I 0 T 1 0 1 299
Presentation Driver Design ConSiderationscoovveeeiveeenieeenieeesieeesiee e 300
Presentation DIIVEr EITOIS......cooo oot 301
Presentation Driver Error COUES.......ooooeeieeiieee 302
Additional Presentation Driver FUNCHIONS...........iiiiisasssanannens 303
Chapter 15 - OS2 PriNter DIVEIScocuiieiiiee ittt e s e 305
Chapter 16 - Working With POINTENScoouiiiiiiieeecee e 307
C Sa/2aNA €SBt ..ottt e e ee e e et e e e e ebreeeeans 307
VAT LU Y0 (0 1= SRR 310
POINErS TN A VDM ..o 311
Chapter 17 - PCMCIA DeViCE DIIVEISccoiieeeieee ettt 313
The PCMCIA SOftWare Trilogyccoceeeiiiieeiiee et 314
OS2 Warp PCMCIA INItT@liZaHON.eeieieeiiieeeiiee e 315
Client Device Driver ArchiteCture............ccccooovieiii 317
OS2 Warp RESIIICHIONS.cceiiiieiieieesieie ettt e e snee e 319
Card SEVICES FUNCLIONS ..o, 319
CalliNg Card SENVICES........coiiiiiiiiieeeeie et e e e e 322
CaAlbaCKS......coooeeeee 323
Chapter 18 - OS2 File System DeviCe DIIVEIScccveie e 327
File SYyStem OVEIVIEWcoeeeeiiee ettt 327
Eas, SEAS, FEAS, aNd GEAS.......ccoo oo 329
S D 141 1= 1= = 331

FSD EXPOrted FUNCHIONScooiiiieiiiie e 331

14

The BoOtabI@ IFSo 331
TheMini FIlE SYStEM ..o 331
Mini File System Exported FUNCLIONS..........cooiiiiiiiieeee e 331
[S T PRSPPI 331
A Sample File SyStemM DIiVESooviiieeeeee e 332
Chapter 19 - The OS2 SCSI Device Driver Architecture..........cccooveeevieeencieeescieeeee. 333
TNRE OS2 DMD ...ttt et e e e e e ennee e 334
S RS TRR 335
ADD DIIVEN DESIGN ..ciiiiiiiiieeiieeeeieeestee et e st eeastee e sseee s ssaeesssseeesnreeesnseeesnneas 340
TORBS ...ttt ettt et et e et e et e e e bt e e e ne e e e nre e e nnreeeenreas 341
1= £ PRSP 342
Chapter 20 - CDROMS and OptiCal DISKS.......ccueeeiiieieiiiieeniieeesiiee e siiee e sseesssee e 343
The CDROM DeVICE MANAGETccoiiiiieiiieeeiiieeesiiee e seee e sieee e saee e sre e sse e sneee s 343
THE CDROM ADD ...ttt e e ase e e snnee s 343
NON-SCSI CDROIMS......ooiiiiiiiie ettt e e e e e s s e e e e e s snneeeeaannes 343
CDROM FEEIS....coiiieiee ettt e e 344
Chapter 21 - Keyboard ANd MOUSE DIVESS.........ooiiieiiiieeiee et 345
Keyboard Device Driver ArchiteCture..........cooeveeeiiieeeiiie e 345
Mouse Device Driver ArChiteCtUre...........oooueieiiiie e 345
Chapter 22 - OS2 Warp SMP DIIVES ..ot 347
OS2 SMP ATChItECLUIE. ... e 347
The OS2 SMP SCNEAUIEN ... 350
IEEITUPDLS. ... e e e e e e e n e e e e e e e e e aaa 351
Platform SPECIfiC DITVENS.......cooviiiiiiie e 352
Platform Specific Driver ArchiteCtUre.........ceeeiieieiiieeeiee e 352
PSD CONEXLS (MOUES)ceveeeeiiiie et 354
LIS (015 T PSP T PP PPPPPPPPPPPP 357
PSD FUNCLION GIOSSANYcoiuveieiiiieaiiie sttt e e s e sne e sneeas 357
PSD HEPEIS. ..ottt et et e b e e sn e e enneas 369
PSD APIS. ..ttt b e ae e anees 374
Device DriverS FOr OS/2 SMP......oviiiiieeee e 376
OS2 SMP DEVHIPS. ...ttt enee e 377

OS2 SMP APPIICALTONS.ccoiiiieiiiie et 377

15

Avoiding Device Driver DeadlOCKS.........couiviieiiiieiiiie e 399
The Single Processor Utility Program ... iiiee e 402
Chapter 23 - PIUg @nd Playcooiiieecie et 403
[SA PP HArAWar..... oottt 405
PP BIOS......c. ettt ettt ettt e et e et e e s nne e e nnneas 412
[SA PP ISOIEHION ... 412
RESOUICE DaLA.....ccceiiiiiiiieeiiee et e e e e eeeeas 417
PP CONfIQUIELTON ...ttt 422
1S 7 L 1Y ST 423
Chapter 24 - TipSand TECNNIQUESc.veiiiiiee ettt e e e e 425
Appendix A - Device HElper REFErENCE........oocueiiiiieieeeee e 431
Device HEPEr FUNCLIONS........coiiiieiiiie et 431
DevHIp Services and Device CONLEXLS........c.ueeeieieirieeeiiee e 435
Device HElPer CalEgOrieS......ccocuuiiiiiieiiiie ettt e e 439
DEVHIP ROULINES......coiiiiieeiiie ettt e e e et e eneeas 444
Appendix B - Reference PUDIICALIONS...........ooiiiiiiiiieiee e 561
APPENAIX C = LISHNGS. .. ivteieieieeeiiieesiee et e siee e sttt e e sae e e s stae e e ssseessaseessnseeesnseeesnsenens 563
Device Header, ONE DEVICE.coiuiiiiiiieeiiie et 563
Device Header, TWO DEVICES.......ccocuiiiiiiieiiiie et 563
C Startup RoULING, ONE DEVICE.cccueiieiiie et 564
C Startup RoULiNg, FOUr DEVICEScooiiiieiiiee et 566
Standard OS/2 Device Driver Include File..........oooeiiiiiiiiiiiiieeeeee e 567
Skeleton Strategy SECHIONeeiiiiie e 579
Sample IOCH Call, 16-Bil.........oooiiieiiieieiie e 580
Sample OCH Call, 32-Bil........cooiiiieiiie e 580
Sample Interrupt HaNAIEr ..o 581
Sample TIMer HaNAIErcooiie e 583
Simple OS2 Parallel Physical DeviCe DIVESccceeeiiiiiiiieeiee e 584
C Startup Routine for Parallel Device DIVESccocoveiiieeiiiieeee e 590
Parallel Device Driver Include File........c.oooiiieiiiii e 591
Parallel Device Driver Make File.........cocueiiiiiiiieeee e 591

Parallel Device Driver DEF Fl@...... et 591

16

Sample OS2 Serial DEVICE DIIVEYooiiiiiiiiiieeiee e 592
Serial Device Driver Make File........oouiiiiiiiieeeee e 604
Serial Device Driver DEF Fle.........oooiiiiiieee e 604
Sample C Callable DevHIp INterface........cceviiieeeiiieeeeeeee e 605
C Callable Debugger Breakpoint...........cocueeeiieeeiieieeiiee e seee s 606
Data Transfer ROULINEeiiiiiieiiiie et 607
SaMPIE DMA ROULINES......coeiiiieiiiie et eiee ettt e s snse e e snnee s 609
Obtaining POS ReQIStEr CONtENESuviiiiieeiiie et 617
ABIOS Specific INCIUdE Fle.......cooiiiieee e 618
|OPL Routine For 16-Bit and 32-Bit Applications...........ccooveveiieeiiciieenieeeee, 619
[OPL ROULINE MEKE FIlE......oooiiiieiie e 620
[OPL ROULINE DEF Fl@......eiiiiiiiieie et 620
[OPL Test Program, 16-Bitccoouiiiiiiiiiiiiecieee et 620
IOPL Test Program Make File, 16-Bitcccooviuiiiiiiieiiieeiie e 621
|OPL Test Program DEF File, 16-Bit.........ccccoeiiiiiiiiieiiee e 621
[OPL Test Program, 32-Bitccoouiiiiiiiiiiieeciee e 621
IOPL Test Program Make File, 32-Bitcccoviiiiiiieiiieeee e 622
|OPL Test Program DEF File, 32-Bit........cccccoiiiiiiiiieeieeeiee e 622
Device Driver For Memory-Mapped Adapters..........eoeveeenieeeniieeniee e 622
Memory-Mapped Device Driver DEF File ..o 631
Memory-Mapped Device Driver Make File..........coooueeiiiiiiiiiiiieeee e 631
Memory-Mapped Device Driver Header File...........ccooiiiiiiiiiiiiieeeee, 631
Memory-Mapped Device Driver Test Program - 16-Bitccoccoeeviieeiiieennnen. 633
Memory-Mapped Test Program Header File- 16-Bit..........ccccovcieiicieeniiieeen, 634
Memory-Mapped Test Program Def File - 16-Bit..........cccccovceviiiieincieenieeee, 634
Memory-Mapped Test Program Make File - 16-Bitcccoceeevieiniieenieeeen, 634
Memory-Mapped Test Program - 32-Bit, 16-Bit Pointers..........cccceeceeevieeenen. 635
Memory-Mapped Test Program DEF File - 32-Bit.........ccccoooieiiiieinieenieeee, 636
Memory-Mapped Test Program Make File - 32-Bitccoocceeviieiniieenieeee, 636
Memory-Mapped Test Program - 32-Bit, 32-Bit Pointers..........cccevceeeviieeennen. 636
Memory-Mapped Test Program DEF File - 32-Bit.........ccccoooeiiiieinieeeieeee, 638
Memory-Mapped Test Program Make File - 32-Bitccoccceeviiiiniieenieee, 638
IVLBETOS ...ttt e e e e e e e e e e e e e e e n e e e e e e e e e e nnnnneeeaaeas 638
Appendix D - OEMHLP AND TESTCRG........ccoiiiiiiiieeiiee et saee e 657

TESTCRG ...t 689

17

Appendix E - The OS/2 ReSOUICE ManaQESccocueeeiiuieeaiieeeiieeesieeesieeeseeeeseeeesseeens 695
Making Your Device Driver Resource Manager AWArecooecveeeeveeesveeesnen 720
TRE RMVIEW ULIHITY ..ot 722
RESERVE.SY' S ... ettt et e 725
g0 = USRI 727

19

Tables

Table4-1. OS/2 Priority SIUCLUIE.......ccocueieiiiieeciee et 70
Table5-1. Device AttrBULE WOIdcccueeeiiiieeeee e 87
Table 5-2. CapabilitIES Bit SIIP....ccoiiiieiiie e 88
Table 5-3. Device Driver Strategy CallS........cevoiiieiiiieie e 96
Table 6-1 Device Driver Strategy COMMEANS.........cooveeirieeeiieeenieeesieeeseeeeseeeeseeee e 113
Table 6-2. API Routines Available DUring INit...........cccoooeeiiiininie e 119
Table 6-3. Media DesCriptor BYLES.........c.eueiiiieiiieeiiee et 121
Table 6-4. BOOt SECIOr FOIMAL..........eeiiiiiie e 123
TaDIEO-1. DOS SEIINGS ... uveeeeteie et eitee ettt ettt et e e sns e e snreeesnreeesnneeeenes 173
Table 9-2. DOS SettingS INfOrMationcceeeiiiieiiiieiiie e 174
Table 9-3. Virtualized 8250/16450 REQISLEN'S........veeiiiiieiiiee et 176
Table 9-4. Virtualized Timer REJISIEIS......coiiiiiiiie et 178
Table 9-5. Supported Virtualized Timer REQISLENS.......ooiiiiiiiiieeriee e 179
Table 9-6. Virtualized INT 13 FUNCHONScooiiiiiiiiie ettt 180
Table 9-7. Virtualized FIOppy DiSK POITS.........cooiiiiiiiieiiie e 181
Table 9-8. Virtualized DOS INTEITUPES.oeiiiieiiie et 198
Table 9-9. Virtualized BIOS INTEITUPLS......cooiueieiiee ittt 199
Table 9-10. Virtualized DOS Software INterrupPLtS.ccovveeerieeeiiie e 202
Table 11-1. DMA Channel ASSIgNMENES........uiiiiiieiiie et 226
Table 11-2. DMA Controller Port ASSIGNMENES.cveeiiiiriiiieeriee e 228
Table 11-3. DMA Channel AddreSSiNgccoceeeiiieeiiiie i siee e 229
Table 11-4. DMA MasK REJISEN.....ccuuiiiieiiie ettt snae s 231
Table 11-5 DMA MOUE REJISIEcoiiiiiieiiiee ettt 232
Table 11-6. DMA Command REISIENcooiiiiiiiieiiieeeiee e 233
Table 12-1. CapabilitIES BItS.........eeiiiiieiiiie et 238
Table 12-2. Volume DesCriptor WOrdceeoiiiiiiie e 240
Table 12-3. LstRequestControl Word BitS..........cceeiiieriiiieeiie e 242
Table 12-4. LstStatus Byte, Lower Nibble..........ccooiiiiiiieeee e 243
Table 12-5. LstStatus Byte, Upper Nibble........oooiiiiiiie e 243
Table 12-6. REQUESICEE BYLEeeeeiieeee e 245
Table 12-7. REQUESE PriOMTY....coieeieiiiie ettt 245
Table 12-8. Request Status, Lower Nibble (Completion Status).........ccceevveveiieeeiiennnne. 246
Table 12-9. Request Status, Upper Nibble (Error Status).........ceeeeviveeeeeviieee i, 246

Table 12-10. Request Unrecoverable Error Codes..........ocuevivieeiiiieiniieeniee e 247

20

Table 12-11. Request Recoverable Error COUESoviveeiiieeiiiie i 247
Table 12-12. Request Control FUNCLIONS..........cooiiiriiieiiie e 251
Table 13-1. KDB KEYWOITS........cceiiiiieiiiie et esieee ettt nntee s e e snne e 258
Table 13-2. KDB Binary OPEIaLOrS.cuuueiiieeiiieeeiiieeesiieeesieeesseessseeessessssseessseessnes 259
Table 13-3. KDB UNary OPEratorsS.cuueirieeeirieeesiieeasiieeesiieeessseesssseesssesssseessseessnes 260
Table 13-4. KDB Parameter DefiNitioNScooiiiieiiiieiiiieeniie e siee s 262
Table 13-5. Page Bit Definitions (bit SEt/Clar)........cooveeiiieeiiiiee e 269
Table 13-6. KDB Register DefiNitiONS.......cccouieiiiieiiie et 277
Table 13-7. KDB Flag Register DefiNitioNs...........c.cooiiieiiiieiniie e 278
Table 13-8. KDB Maching StatuUS WOrdcooiiiiiiiieiiie e 278
Table 13-9. KDB RecogniZed SETUCIUIES.........ooiiiieiiiie et 285
Table 14-1. Presentation driver flag DItS........cccoooiiiiiiiii e 296
Table 14-2. DeVice CONEXE TYPES .. .veieiiieeeieeeesieeeesitee e siiee e sitee et sneee e sre e snse e snneeeenes 298
Table 14-3. Data Types for QUeued DaLe...........ccueeiiiieiiiie e 299
Table 14-4. GraphicS ENGINE EXPOITS.......eveiiiieiiiie et 300
Table 14-5. Presentation DIiVEr EITOIS.......coouiiiiieiiiieeiee e 302
Table 14-6. Presentation Driver Error COUES.........uviiiiiiiieiiie et 303
Table 14-7. JOD Error REIUMS.......ooiiiieiiiie ettt 304
Table 16-1. OS2 PCMCIA Card SEIVICES.......coiiuieiiieeeiiieesieeesieeesieeesseeesseeessee e 320
Table 16-2. Card Services Register Interface (INPUL)..........eeviieeiiiiriniieeseeesee e 322
Table 16-3. Card Services Register Interface (OUELPUL)eeevveeeiriieiiiie e 322
Table 16-4. OS/2 Warp Callbackscooueieiiieeee e 323
Table 16-5. Callback Register Interface (INPUL).........oveeirieeiiiieeree e 324
Table 16-6. Callback Register Interface (QULPUL)ooeveeeiiieeiiiie et 324
Table 19-1. ASPI Command COUES..........uueiiiieiiiie et 336
Table 19-2. ASPI Status Byte REIUINEdcooiiieiiiiiiiie e 337
Table22-1. SMP Device HEper FUNCLIONS.........c.coviiiieiiie e 377
Table22-1. SPINIOCK APIS......ooo e 379
Table 23-1. Plug and Play [/O Port ASSINMENTS..........coiiiiriiiieeiiie e 407
Table 23-2. Plug and Play Control REQISLEN'S........ueeiiiieiiie e 408
Table 23-2. Plug and Play Control Registers (Cont’d)coovveeiiieeiiiieeniee e 409
Table 23-2. Plug and Play Control Registers (Cont’d)cooveeveiieeiiiieeniie e 410
Table 23-2. Plug and Play Control Registers (Cont’d)coovveeiiiiriiiineniee e 411
Table 23-3. PnP Small Item NamMEScccueiiiiieiee e 420
Table A-1. Device HElPer FUNCLIONS..........ooiiiieiiieciiie e 431

Table A-2. Device HElPer CONLEXES.cocuiieiiiieiiiie ettt 436

21

Table A-4. Read Only System Variall€S.........cooiiieiiiieiiie e 475
Table A-5. DEVICE DIIVEr EVENES........coooviiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e 531
Table D-1. OEMHLP$ Supported IOCH Calls........ccccveiieiiiiiiieiieeie e 659
Table D-2. Video Chip Set INfOrmationcoooueeiiiiiiiiie e 669
Table D-3. PCl SUBfUNCLIONS.........cooiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 674
Table D-3. Error REIUNN COUES.........oooviiiiieeeeeeeeeeeeeeeeeeeeeeeet ettt e e e e eees 674
Table D-3. TESTCFG IOCtls, Category OX80.cccoviuuiieeiiiiiieeeiiiieeeesiree e e snneee e 689

Table E-1. RMVIEW Par@meters.........ccccooiieiiiiiieiieese e 724

23

Figures

Figure 1-1. The Altair 8800.cccuieiiiieiiiie et e e ae e sneee s 33
Figure 1-2. FlOPPY DiSK. ...ueeiiiiieiiiee ettt ettt e sne e snnee e 35
Figure 1-3. ROI€ Of the BIOS.ooiiiieee e 37
Figure 2-1. Polled printer OULPUL.ccooeieiiiieiiie ettt 42
Figure 2-2. Interrupt Printer OUEPUL.ceeeiieieiiieeesieeesiee e siee e seee e e e e sneee s 44
Figure 2-3. Therole of the deviCe driVEr ... 45
FIgure 3-1. The IBM PC. ...ttt snne e 50
Figure 3-2. The IBM PC AT . ..ottt et e e snne e 51
Figure 3-3. Micro Channel adapter.c.ooiiiiiiiie et 55
Figure 3-4. IBM PS/2 MOUE 80........ccuiiiieiiieeiie e snee s 56
Figure 3-5. Real mode address CalCUlation.c.eeieieiiiie i 58
Figure 3-6. 80286 protect Mode addreSSiNg.ccocveeiiiieeriie e 59
Figure 3-7. 80386-486 flat mode addreSSiNg.cc.eeeveieiiieeiiiie e 60
Figure 3-8. The 80x86 ring arChiteCtUre.............ooiieiiiiieiciie e 63
Figure4-1. Process and threads.eee i 69
FIQUrE@ 4-2. OS2 1.3 EE......o ittt sne e 73
Figure 4-3. OS/2 Warp tULOral.ccoueieiiiie it 75
Figure 5-1. Application-to-device driver INtErface.ccoovveeeieeinii e 80
Figure 5-2. ReQUESE PaCKEL.ccueiiiiiieeie et 82
Figure 5-3. OS/2 device driver Neaderocueeiiiiiiiiie e 83
Figure 5-4. OS/2 device driver MEMOIY MaP.......cccveeeriiirariieesieeesieeeseeeeseeeeseeeesseeens 85
Figure 5-5. Device driver header, multiple deviCeS..........cooueeiiieeiiiii e 86
Figure 5-6. Start-up routing, ONE dEVICE.c.eeeiiiiieiiiie e 89
Figure 5-7. Start-up routing, fOUr dEVICES.ooiiiiiiiiieeciee e 92
Figure 5-8. Start-up routine with timer and interrupt handler. ..., 94
Figure 5-9. SKeleton Strategy SECHION.ccvviiiiiie ettt 95
Figure 5-10. Interrupt NaNIEr.ooiiiie e 102
Figure 5-11. TickCount timer handler...........coouiiiiiiiiie e 105
Figure 5-12. TickCount timer handler...........cocvei i 106
Figure 6-1. Request Packet defiNition.coouiiiiiiiiiin e 109
Figure 6-2. Standard OS/2 deViCe driVEr ETOIS........coiivieiiiieesiee e 110
Figure 6-3. MachineConfigurationInNfo SITUCEUNE.eeeiiiieiiiieeee e 117
Figure 7-1. Application call to open the driver. ... 144

FIQUrE 7-2. INTT SECLION.eiiiieie ettt e e ne e e snnee e 146

24

Figure 7-3. OPEN SECHION.viiiiiiie ettt e e sne e snne e 147
FIgure 7-4. CLOSE SECHON.eiiiiiieiiieeeiieeeieee ettt setee et et e st e e e sne e snne e e snneeens 148
Figure 7-5. TOCH OXOL, WITE POIT.......ueieiiiieeiiiieesieeeesitie e siteeeseee e seee e seee e ae e sneeesnneeens 150
FIQUIrE 7-6. TOCH OX02.ceiiieieiiiie et ettt e st e e e sns e e snse e e snneeesnneeens 152
FIQUre 7-7. TOCH OX03.......oeiiieieeiiee ettt ettt e e e st e e e snae e e snneeeanneeens 152
Figure 7-8. READ and WRITE SECHON.coiiiiiiiiieeiiie ettt 154
Figure 7-9. TImer NANIEN...........oooiiie e 155
Figure 8-1. ISA and Micro Channel INIT SECLION.cceeviiiiiiiiiieiee e 164
Figure 8-2. Micro Channd vs. ISA businterrupt handler. ..., 166
Figure 9-1. OS/2 WarP VDIMS.coiiiiiieiiiie ettt ettt e sne e snnea e 167
Figure 9-2. VDD initialization SBCHION.eeiiuiiiiiiieeiiie ettt 205
Figure 9-3. VDD data SEJMENT.cooiiiieiiiie et e e ne e e snnee e 206
Figure 9-4. VDD iNpuUt NaNAIEroooiiieieie e 207
Figure 9-5. VDD data port output handler.............coooeiiiiiieiiiee e 208
FIQUre 9-6. VDD USES FOULINES.eeeiiieeiiieeeiieieestieeesiteeesiteeessteessssesesnseeesnseessnneeesnseeens 210
Figure 9-7. VDD iNCIUAETIlE.coieeie e 211
Figure 9-8. VDD Make ANd DEF FIES.ooiiiiiiiie et 212
Figure 9-9. Registering PDD for VDD-PDD COMMUNICALIONS.cveivererieeeiieeesieenns 213
Figure 9-10. VDD-PDD communiCationS SIIUCLUIE.ceeeeiieeeiiieenieeesieeesiee e e 214
Figure 10-1. PhySTOVIIt Call.cooieiiiiieeeee et 218
Figure 10-2. Mapping a GDT salector during INIT.ooiiiiiiiie e 219
Figure 10-3. TOPL SEGMENL.oooiiiieiiee ettt e e e sne e e anneeens 221
Figure 10-4. IOPL DEF ileiiiiiie et 222
Figure 11-1. DMA SELUD FOULINE.cccveiiiiiieeiieieesieeeesiteeesitee e sitee e s snse e e snneeesnneeesnneeens 234
Figure 12-1. Driver CapabilitieS SITUCIUIE.oeiiiiiiiiie e 238
Figure 12-2. Volume CharaCteristiCS SITUCIUIE.coovuveiiiiiieeiiie e 239
Figure 12-3. Request List Header SIIUCLUIE.oovveiiiiiieiie e 241
Figure 12-4. Request Header SITUCIUIE.cooiueiiiiiie e 244
Figure 12-5. Scatter Gather DesCriptor StTUCIUNE.o..eeeeieieeeiiieesieeesiee e 248
Figure 12-6. Read/Write REQUESE SIIUCLUNE.cooveiieiiie e 248
Figure 12-7. Read Prefetch Request SLTUCKUNE.oooeveiiiiieeieeeeee e 249
Figure 12-8. SEtFSDINO SLIUCLUNE.coiiiiieiiiie ettt 251
Figure 15-1. VMGl oba ToProcess and VMProcessToGlobalcccveveeiiiienieciieennee. 309
Figure 15-2. USING VMAIIOC.coiiiieiiie ettt 310
Figure 15-3. CalliNg VIMLOCKcoiiiiiieiiiie ettt 311

Figure 16-1. PCMCIA software architeCture.oocceeiiiieiiiie e 315

25

Figure 16-2. ClIeNtData SLEIUCLUIE.oeiiiieiiiieeiiee ettt e e snnee e 325
Figure 18-1. File 1/O BIOCK Diagramcooiuiieiieeiriie et 328
Figure 18-2. FSD-supplied Utility Entry POINES.........coooiiiiiiiiiieeee e 329
FIgQUre 18-3. FEA SITUCIUIE.......coieiee ettt et e e e snnee e 330
Figure 18-4. FEALISE SITUCKUNE........coiieieiiiie ettt e e e snne e 330
FIgUre 18-5. GEA SITUCIUIE.......coieeieiiiee ettt et e e sne e e snneee s 330
FIgUre 18-6. GEA SITUCIUIE.......coieeie ettt e e snne e e snneee s 331
FIQure 18-7. EAOP SITUCIUIE.........eiiiieie ittt ettt et e sne e e snnee e 331
Figure 19-1. LADDR DlOCK diagram.cooieieiiiieiiiie e 333
Figure 19-2. The OS/2 ADD ATChITECIUNE........eei et 334
Figure 19-3. SCSl REQUESE BIOCK.........ciiiiiieiiiie et 336
Figure 19-4. Caling The ASPl MaNAJEScoouiiiiiieeiie et 337
Figure 19-5. Calling ASPl DUNNG NIcouiiiiiieie et 338
Figure 19-6. OS2 ASPlI Command SITUCIUIES.........cooiviriiiieeiiieesieeesieeesiee e 340
Figure 19-7. ADD Init PaCket SITUCIUIE........ccouviiiiiieeiiie et 341
FIQUre 19-8. SCSI TORB........cuiiiiiiie ittt e et e e enae e e snne e e snneeens 342

Each processor maintains a processor-specific data area called the
Processor Control Block or PCB. A PCB is allocated during system

initialization for each processor that ISONINE.ccoeiiiiiiiie e 349
Figure 22-1. Spinlocks Taken Out Of Orderc.eeiieiriiiieiiieeeriee e 400
Figure 22-2. Correct SPINlOCK USAgE.eeiiiiiiiiiie et 400
Figure 22-3. Another Spinlock USAge ErTOrcocveiiiiiiiiiie i 401
Figure 23-1. PNP REQISIE M@eeiiiiiieiieie ettt 406
Figure 23-2. PNP 72-Bit IAentifircoooiiiiiie e 406
Figure 23-3. Issuing A Reset To The Config Control REgISterovvvveeeiiieiiiieeiieens 412
Figure 23-4. PNP State DIagramccccueieiiieeiiiieesiieeesiee e sitee e siee e stee st e e snne e snnee e 413
Figure 23-5. INItIaliZatioN KEYooiiiieiiiieeie e 413
Figure 23-6. ISA PnP Isolation Sequence Block Diagram...........cocceeevieeeniiieeniienesieennns 414
Figure 23-7. PnP Isolation Code EXaMPIE.........cooiiiiiiiiiiiieeiie e 417
Figure A-1. ADD Device Class TADI.ueeiiiiiiiie e 515
Figure A-2. Retreiving an ADD's entry point using GEtDOSVar.cccceveeeeiiieeennennns 515

Figure D-1. Locating An EISA Bus Adapter Using OEMHLP..........cccccceiiiiiniineiiennns 658

27

| ntroduction

0S/2 is dead!

Just kidding! How many times have | heard that? So many, | can’t remember.
Y et while OS/2 was declared dead by computer magazines, programmers, and
industry visionaries, IBM was quietly building support for it’s premier x86 PC
operating system. Thiswas not an easy task. Many inside IBM still wanted to
do business the traditional IBM way, but a new generation of IBM employees
was emerging from within. Using the phrase “thisis not your Father’s IBM”,
this group set about making some of the most sweeping changesin the way
IBM develops, markets, and supports PC software. They openly criticized
IBM’s OS2 marketing efforts, and began to “educate” the marketing staff on
how to market and sdll OS/2. They began showing OS2 to friends, neighbors,
business associates, and computer user groups. They sported OS/2 shirts,
bumper stickers, and hats, and traveled to trade shows to promote OS2, many
on their own time. They formed Team OS/2, a group of dedicated OS2
enthusiasts, both IBMers and non-1BMers, who helped promote OS2 at flea
markets, schools, churches, and retail stores. Working long hours without any
compensation whatsoever, Team OS2 became instrumental to the success of
0OS2. They spread the OS/2 word on all of the major bulletin boards, most at
their own expense. But by far the most important thing they did was to get IBM
toredly listen toit’s customers.

Of course, OS2 is not dead, unless you call nearly eight million copies sold
dead! OS/2 Warp builds upon the success of OS2 2.0 and OS/2 2.1, adding
new state-of-the-art features such as Plug and Play, support for the Intel PCI
bus, dynamically loadable device drivers, built-in tape support, enhanced
CDROM support, enhanced video and audio support, support for the Win32
APIs, symmetric multiprocessing, and the exciting new Taligent frameworks.

Thisisthethird edition to Writing OS2 2.x Device Driversin C. Over 20,000
copies of thefirst two editions have been sold in over 30 countries. Thisisnot a
testament of the book's popularity; rather, it is a statement of the tremendous

28

popularity of OS/2. With the help of this book, OS/2 driver writers have written
over 1,500 OS2 device drivers!

Using the examples | give you in this book, you should be able to have asmple
0OS/2 physical or virtual device driver up and running in less than one hour. Of
course, some types of device drivers are more difficult. If you follow the
guiddines| give you, however, you'll find that writing an OS2 device driver
can be an easy and rewarding experience.

As an independent software devel oper and consultant, | don't have time to read
volumes of reference materials to get up to speed quickly at a new assignment.
Reference materials have never been good about telling you how to do
something anyway, since they're only references. Sometimes, a few source code
examplesare al that | really need to get sarted, and I've kept that in mind when
writing this book. To help you get going quickly, I've included enough code so
that you can begin writing OS2 Warp device driversimmediately. By thetime
you finish this book, you will have enough background and sample source code
to easily develop your own OS/2 device drivers. You are free to use the code
described in the listings section or on the companion disk for your device
drivers. The codein this book relies upon alibrary of C-callable functions for
the Device Helper, or DevHIp routines. The DevHIp routines are the driver
writer's API, and perform such functions as hooking interrupts, timers and
converting addresses. Thislibrary is not supplied with the book. At the back of
the book, you'll find an order form for the C-callable library, or you can write
your own providing you have a good knowledge of assembler programming and
the parameter passing mechanisms. The cost of thelibrary is $149, and it
includes the library source code. Thisis not inexpensive, but its cheaper than
writing more than 100 assembly language routines yourself from scratch. If
your timeisworth more, or you need to get going immediately, | recommend
you buy thelibrary. | provide free support via Compuserve, and offer free
updates to the library for one year.

This text does not contain a complete discussion or reference for OS/2 Warp,
nor isit a complete reference for device driver function calls or prototypes;
readers should have a general understanding of OS2 Warp and the OS/2
religion, along with some OS/2 Warp programming experience. Seethe

29

Reference Section for alist of recommended reading. A complete reference for
0S/2 1.3 device drivers can be found in 1/O Subsystems and Device Support,
Volume 1 and Volume 2 from IBM, which is part of the OS2 1.3 Programming
Tools and Information package. Complete documentation for OS2 Warp
Physical Device Drivers and Virtual Device Drivers can be found in the IBM
Operating System/2 Version 3.0 Physical Device Driver Reference, the IBM
Operating System/2 Version 3.0 Virtual Device Driver Reference and the IBM
Operating System/2 Version 3.0 Presentation Driver Reference which are part
of the IBM OS2 Warp Technical Library. In thisbook, | will discuss the issues,
both hardware and software, that will directly affect your OS/2 device driver
development. Some type of hardware background is helpful, but not necessary.

Generally, you can write al of your OS2 device drivers, including interrupt
handlers, in C. A device driver written in C can be completed in approximately
half the timeit would take to write the same device driver in assembly language.
Most device drivers will work fine when written in C. Programmers who have
written device drivers for other multitasking operating systems, such as UNIX
or VMS, should find OS2 device driver design concepts similar. Programmers
not familiar with multitasking device driver design will find OS/2 device driver
development somewhat more difficult. Your first OS2 device driver could take
about two to four months to complete, and subsequent device drivers should
take dightly less time. Block and Presentation Manager device drivers are
significantly more complex, and may take upwards of six months or more to
compl ete.

To use the examples in the text or on the companion disk, you will need a
compiler, assembler, and compatible linker. For OS2 character mode and block
device drivers, the Microsoft C 5.1 or 6.0 compiler, the Microsoft 5.1 or 6.0
Assembler, and the Microsoft 5.13 or later linker will be sufficient. For OS2
Virtual Device Drivers, you will need a 32-bit C compiler, such asthe|BM C
Set++ compiler version 2.01 or greater, along with the corresponding 32-bit
linker and symbol file generator.

Debugging OS2 device drivers requires the use of akernel-level debugger. |
recommend the kernel debugger supplied with the IBM OS2 Warp Toolkit.
Other third-party debuggers are available, but the IBM kernel debugger isthe

30

only debugger which has knowledge of the internal kernel symbols. Y ou may
also wish tolook at ASDT32, a 32-bit kernel debugger supplied with the IBM
DDK. ASDT32 provides debugging output on the main display, eiminating the
need for a debugging terminal. ASDT32 is also available to members of the
IBM Developer Assistance Program via DAPTOOLS on Compuserve and
IBMLINK.

If you are developing or plan to develop an OS2 product, | recommend that
you join the IBM Developer Assistance Program. This program, offered to
gualified software devel opers, provides up-to-date information on OS2 Warp,
updates to the operating system and tools, and substantial discounts on IBM
hardware and software. Call the IBM Developer Assistance Program at area
code (407) 982-6408 and ask how to become a member. Y ou may also join the
IBM Worldwide DAP program by entering GO OS2DAP from your
Compuserve account. Online support for developersis provide through the
OS2 BBS, 919-513-0001 and in the OS2DF1 and OS2DF2 forums on
Compuserve. Additonal, non-official support can be obtained from various
other online services including America Online, Delphi, Bix, Prodigy, FIDO,
and Prodigy.

For the developer, IBM offers the Developer Connection, a subscription
CDROM service that is used to introduce exciting new tools, betas, DDKs and
developer toolkits. Call 1-800-6DEV CON for information and ordering.

In Chapter 1, | describe how device drivers for personal computers evolved
from ssimple polling loops to the complex interrupt-driven device drivers found
in today's real-time PC operating systems. In Chapter 2, | describe what device
drivers are and how they fit into the total system picture. In Chapter 3, |
describe the relevant parts of the PC hardware architecture necessary for device
driver writersto be aware of. If you are already an experienced device driver
writer, you may wish to skip these three chapters and proceed directly to
Chapter 4. Chapter 4 begins with a historical ook at OS2 and provides a brief
outline of the OS/2 operating system. Programmers already familiar with O

S2 will probably wish to skip this chapter and proceed directly to Chapter 5. In
Chapter 5, | discuss the anatomy of the OS/2 device driver by presenting
sample code fragments, listings, and various tables. Taopics include the strategy

31

section, interrupt handlers, timer handlers, request packets and device headers.
Chapter 6 continues the architecture topic by describing, in detail, the strategy
commands that the device driver receives from OS2 and how the device driver
should respond to them. In Chapter 7, | use actual code to show you how to
build an OS/2 8-hit paralld port device driver. | aso describe, in detail, the
operation of the device driver for each request it receives from the OS2 kerndl.
Chapter 8 describes the special considerations necessary for writing OS2
device drivers for Micro Channd bus machines, such asthe IBM PS2. Chapter
9 describes Virtual Device Drivers, or VDDs, and contains code for an actual
VDD. In Chapter 10, | show you how to handle memory-mapped adapters, and
how to perform direct port I/0O without a device driver. Chapter 11 explains
how to use Direct Memory Access, or DMA, and includes several code listings
to illustrate how DMA is handled under OS/2. In Chapter 12, | describe the
Extended Disk Driver Interface, also known as the Strategy 2 or scatter/gather
entry point. Chapter 13 provides a handy reference for the OS2 Warp Kernel
Debugger commands. Chapter 14 describes how to write a video device driver
for OS2, and Chapter 15 describes who to write a printer driver. In Chapter
16, | describe various types of pointers and addressing modes you will need to
understand when writing your device drivers. Chapter 17 describes the
PCMCIA architecture and how OS2 Warp supports PCMCIA device drivers.
Chapter 18 introduces a topic which appears for thefirst time, OS2 File
System drivers, referred to as IFS drivers. Chapter 19 describes the OS2 SCSI
device driver architecture. Chapter 20 discusses drivers for CDROMs and
optical disks.Chapter 21 describes keyboard and mouse drivers, and other
pointer device drivers. Chapter 22 outlines the changes necessary to for drivers
to be supported on the SMP verson OS2 Warp. Chapter 23 explains Plug and
Play and how it isimplmented under OS2, and finally, Chapter 24 contains
some helpful hints and suggestions, as well as a compendium of tips and
techniques I've used when writing my OS2 device drivers.

In Appendix A, you'll find a detailed description of the OS/2 Device Helper
routines with their C calling sequence as provided by the C Callable DevHIp
library described in the diskette order form in this book. Appendix B includes a
recommended list of further reading. Appendix C contains source code listings
for the device drivers and support routines discussed in the book. All of this
code, without the library, isincluded on the free companion disk attached to the

32

back cover of this book. You are free to use the code for your own use but you
may not sdll it or distribute it for profit without written permission of the
publisher. Finally, Appendix D contains documentation for the IBM OEMHLP
and TESTCFG Device Drivers

33

Chapter 1 - The Evolution of PC Device Drivers

In 1976, a small company in Albuquerque, New Mexico, called MITS, founded
by Ed Roberts, introduced a computer in kit form that could be assembled by a
novice eectronic tinkerer. The computer, called the Altair 8800, delivered
technol ogy into the home which had previoudy been confined to laboratories of
large companies and universities. Based on the Intel 8080 microprocessor, the
Altair provided much of the functionality of larger machines, but at a much
lower price. The user could enter a program through the front pand switches
and execute it. Later, a high-level language program called Beginner’s All-
purpose Symbolic Instruction Code, or BASIC asit’s more widely known, was
introduced for the Altair to make writing programs easier. BASIC was written
for MITS by Bill Gates and Paul Allen.

Figure 1-1. The Altair 8800.

Thefirst personal computers were quite expensive by today’ s standards. A kit
containing the computer, case and power supply, less any memory or storage,
sold for $2000.00, not atrivial sum in 1976. Four thousand characters of
memory was priced at over $1000.00. In addition, many circuits were based on
an eectronic technology that was prone to interference from certain types of
radio frequencies and small variations in the AC input voltage. The collection of
electronic circuits and other equipment that comprise a computer system are

referred to as the computer hardware. The programs that run on the computer
arereferred to as software.

A short time after the Altair was introduced, MITS introduced an audio
cassette interface, which allowed the use of a standard audio cassette
player/recorder for the storage of information. Using the audio cassette proved
cumbersome. Since the computer had no direct control over the cassette player,
it could not determine, for example, that the play and record buttons were
pressed whilerecording, or if the player was even attached to the computer.
Recording information on audio tape was also unreliable. In order to store a
program or data onto the tape, the data had to be converted into audio signals
before writing it to the tape. In order to read the data from the tape, the audio
signals from the tape had to be converted back into machine code. Since the
computer had to be programmed to read and write using the cassette tape unit,
the user had to manually enter a program to perform those operations using the
front panel switches.

A special integrated circuit, called an Erasable Programmable Read Only
Memory, or EPROM, was added to solve the problem of having to manually
enter theinitial boot program. The EPROM was programmed to contain the
cassette loader, and retained its contents even if power was lost. The EPROM
contained only 256 characters or bytes of storage, so the loader program could
not be very complex. The user could select this EPROM using the computer’s
front panel switches and start the tape program by executing the code located in
the EPROM.

Storage Devices

Shortly thereafter, afloppy disk drive storage system was introduced, which
provided for the storage of 250,000 bytes on an 8 inch floppy disk, using the
same format that had been used by IBM on their larger computer systems (see
Figure 1-2). Again, the boot program, this time for floppy disk, was
programmed into an EPROM, so the user did not have to enter it manually. The
disk boot program turned out to be much more complicated, and would not fit
into the 256-character storage of the EPROM. This problem was solved by

35

placing a more complex loader onto the floppy disk. The small boot program in
the EPROM |oaded the more complex disk loader, which in turn loaded the
selected program or data from the disk.

Figure 1-2. Floppy Disk.

Software for this new computer was poor to nonexistent. Programs had to be
written by hand on paper and entered manually. The person writing the program
had to be somewhat of a computer expert since the programs had to be entered
in alanguage of numbers called machine code. Machine code is the only type of
instruction that a Central Processing Unit, or CPU, can understand. Machine
code is arepresentation in the computer’s memory of an instruction or piece of
data, and is expressed in a pattern of ones and zeroes, called binary notation.
The CPU is capable of recognizing certain patterns of these ones and zeroes,
which are called hits, as instructions. Programming in machine code proved to
be time consuming and proneto error, and the dightest programming error
could be disastrous.

Interface Adapter Cards

Each device was connected to the CPU through an eectronic circuit board
called an dectrical interface card, commonly known today as an adapter. The
interface card plugged into the computer bus, which was connected to the CPU.
A program that had to access a device would instruct the CPU to read from or
write to the interface card, which would in turn issue the correct electrical

36

signalsto the device to perform the requested operation. The interface acted as
a converter of sorts, converting CPU instructions into electrical sgnalsto
control the particular device. A motor, for instance, could be turned on and off
using a program that commanded an interface to turn the motor on and off. The
motor was not aware of the computer’s presence or programming, but merely
acted upon the éectrical signals generated by the interface card.

Because a very limited number of these adapters were available, programs
would control them by directing the CPU to directly access the adapter
hardware. Programs that used particular adapters were written specifically to
access those adapters. If the adapter was changed, the program would have to
be rewritten to accommodate the new adapter’s requirements. Thiswas
unacceptable, since a software supplier could not afford to support multiple
versions of a program for each different type of adapter configuration.

The First Operating System For Personal Computers

With the introduction of the floppy disk for microcomputers, the first disk-
based personal computer operating system was born. Called the Control
Program for Microcomputers, or CP/M, it resided on afloppy disk. When
directed to, it would load itself into the computer’s memory to manage the
attached devices, including storage devices, keyboards, and terminals. Once
loaded into the computer’s memory, CP/M took responsibility for reading and
writing to floppy disks, tape drives, printers, terminals, and any other devices
attached to the computer. The CP/M operating system was a generic piece of
software, i.e., it could be used on any configuration of computer with the same
type of microprocessor. To alow this generic operating system to manage
different configurations of devices, CP/M accessed all devices through a
hardware-specific set of programs called the Basic Input/Output System, or
BIOS. By changing a small section of the BIOS program, users could add
different types of devices while the operating system program remained
unchanged (see Figure 1-3).

37

/’1_|\
BIOS o BuUsy TODEVICES

DPERBATING
SYSTEM

Figure 1-3. Role of the BIOS.

The CP/M BIOS code was an example of an early personal computer device
driver. The BIOS code isolated the CP/M operating system from the device
electronics and provided a consistent interface to the devices. Programs that
wished to read from or write to a particular device did so by calling CP/M
routines, which in turn called the BIOS. When reading afile from the disk, the
programmer did not have to keep track of where the file resided on the disk, or
command the disk unit to position itself where the file was located on the disk.
The disk geometry parameters, which defined the size of the disk, number of
tracks, number of heads, and the number of sectors per track, were handled by
the BIOS code. The devel opers of the CP/M operating system were free to
change the operating system without worrying about the many types of
hardware configurations that existed. Today, the BIOS code is ill responsible
for defining the disk geometry.

Since that time, computer speed and storage have increased exponentially. The
amount of computer processing power previoudy requiring the space of a
normal living room can now fit on a small notebook-size computer. This
increased performance has allowed the computer to perform more and more
tasks for the user. In addition, the user’s needs have become more
sophisticated, and with them the software needed to provide a comparable level
of functionality has become increasingly complex.

The functionality of the operating system and its environment have changed
dramatically, yet the necessity for the device driver has only increased. The

38

basic job of the device driver remains the same, that is, it isolates an application
program from having to deal with the specific hardware constraints of a
particular device, and removes such responsibility from the programmer. Device
drivers alow for the expansion and addition of hardware adapters, while
allowing the operating system to remain intact. Thus device driversremain the
vital link between the computer system’s electronics and the programs that
execute on it.

For CP/M, the BIOS software solved the device independence issues, but did
not solve al of the problems. The BIOS code resided on a floppy disk and was
loaded along with the operating system at boot time. Users could change the
BIOS code to reflect a new device configuration, but the BIOS code wasin
assembly language which was difficult for novice programmersto learn. If the
BIOS code contained an error, the operating system might not load, or if it did
load, it would sometimes not work or work erratically. The BIOS was difficult
to debug, because the debugger used the BIOS code to perform itsinput and
output! A few years later, the BIOS code was relocated into Read Only
Memory, or ROM, and subsequently to Electrically Erasable Programmable
Read Only Memory, or EEPROM.

Using a special technique, the contents of EEPROM can be modified by a
special setup program. The contents of memory in EEPROM isretained even if
power islost, so the device-specific contents of the BIOS is always retained.

TheFirst Bus

The Altair introduced the idea of a common set of circuits that allowed al of
the devices in the system to communicate with the CPU. This common set of
circuits was called the bus, and the Altair computer introduced the first open-
architecture bus, called the S-100 bus. It was called the S-100 bus because it
contained 100 different eectronic paths. Connectors were attached to the bus,
which allowed adapter cards to be plugged into them and connect to the bus.
The S-100 bus was the forerunner of today’s bus architectures.

39

Although proneto radio-frequency interference, the S-100 bus established itself
as the standard bus configuration for 8080 and Z-80-based personal computers,
and was the firgt attempt at standardizing personal computer hardware. The
|EEE actually drafted and published a standard for the S-100 bus, called | EEE-
696. Many S-100-bus computers are till in operation today.

It should be noted that several other computer systems appeared on the market
about the same time, including the IMSAI 8080, the Timex Sinclair, the
SWTPC 6800, The RCA Cosmac Elf, and various other microprocessor-based
systems. The 8080-bus systems, however, quickly became the industry
standard.

41

Chapter 2 - Understanding Device Drivers

The use of the BIOS code in CP/M to isolate the operating system from the
specifics of devices was not a new idea. Large computer systems and mid-range
computers, called minicomputers, had been using this technique for some time.
But, thiswas thefirst time they were applied to personal computers.

Thefirst operating systems were single tasking, i.e., they were capabl e of
executing only one program at atime. Even though these early computers were
comparatively dow in their operation, they were faster than the devices they
needed to access. Most output information was printed on aline printer or
written to a magnetic tape, and most input information was read from a
punched card reader or keyboard. This meant that if a program was waiting for
input data, the computer system would be idle while waiting for the data to be
entered. This operation, called polling, was very inefficient. The computer was
capable of executing thousands of instructions in between each keystroke. Even
the fastest typist could not keep up with the computer’sinput ability to process
each key.

If a program needed to print something on a printer, it would do so one
character at atime, waiting for the device to acknowledge that the character
was printed before sending the next character (see Figure 2-1). Since the
computer processed the data faster than it could be printed, it would sit idle for
much of the time waiting for the electromechanical printing deviceto doitsjob.
As technology progressed, faster input and output devices became available, all
well as faster computers. Still, the computer was at the mercy of the input and
output devices it needed. The configuration of these input and output (1/0)
devices was also different. Some line printers printed on 8 1/2 by 11-inch paper
and some on 8 1/2 by 14-inch paper. Magnetic tape storage devices used
different size tapes and formats, and disk storage devices differed in the amount
and method of storage.

42

o PR
. CHARAGTERe > f POLLNGLDCP

e,

Figure 2-1. Polled printer output.

The device driver solved the problems associated with the different types of
devices and with the computer remaining idle while performing input and
output operations. The device driver program was inserted between the
program doing the 1/0 and the actual hardware device, such as a printer or
magnetic tape drive. The device driver was programmed with the physical
characteristics of the device. In the case of aline printer, the device driver was
programmed with the number of characters per line it accepted or the size of
the paper that the device could handle. For a magnetic tape device driver, the
device driver was programmed with the physical characteristics of the tape
mechanism, such as the format used to read from and write to the drive, and its
storage capacity. The program performing the 1/0 did not require detailed
knowledge of the hardware device. The device driver also allowed the
programmer to direct a print operation with no knowledge of the type of printer
that was attached. Thus, a new printer could be added, with its corresponding

43

device driver, and the application program could run unmodified with the new
printer.

The palling issue was also addressed. Since the device driver had intimate
knowledge of how to talk to the 1/O device, there was no reason why the
application program had to wait around for each character to be printed (see
Figure 2-2). It could send the device driver ablock of, say, 256 characters and
return to processing the application program. The device driver would take the
characters one at atime and send them out to the printer. When the device
driver had exhausted all of itswork, it would notify the application program of
that fact. The application program would then send the device driver more data
to print, if necessary. The application program was now free to utilize the CPU
to perform tasks that demanded more processing, thus reducing the idle time of
the computer.

The device driver became even more important when operating systems
appeared that could run more than one program at atime. It was now possible
for more than one program to use the same 1/O device, and often at the same
time. The device driver was used to serialize access to the device, and protect
the device from errant programs that might try to perform an incorrect
operation or even cause a device failure.

FRINTERCRIVER
PR e e
GET Sk
FIFET a8
CHARACTER e WO B RAORE ™,

{_ENIT = CHARACTERS ™

— . T0 PRINT?
., 5
i

| oureur |/ I i
J CHARACTER | YES
§ TOPRINTER | ——
L ! [oUTPUT
f HENT /
[CHARACTER |
00 OTHER | TOPRINTER |
THINGS L
DO OTHEA
THINGS
*

Figure 2-2. Interrupt printer outpuit.

Device Drivers Today

Today, device driversremain an irreplaceable and critical link between the
operating system and the I/O device (see Figure 2-3). Many new I/O devices
have appeared, including color graphics printers, cameras, plotters, scanners,
music interfaces, and CDROM drives. The device driver remains a necessary
component to compl ete the interface from the operating system to the physical
device. Today's computers can run dozens and even hundreds of programs at
onetime. It ismore important than ever for the device driver to free up the
CPU to do more important work, while handling the relatively mundane tasks
of reading and writing to the device.

Today, device drivers are more complex, as are the operating systems and
devices they interface with. Device drivers can interact more with the CPU and
operating system, and in some cases they can allow or block the execution of
programs. They can usually turn the interrupt system on and off, which isan
integral part of the performance of the system. Device drivers usually operate at
the most trusted level of system integrity, so the device driver writer must test

45

them thoroughly to assure bug-free operation. Failures at a device driver level
can be fatal, and cause the system to crash or experience a complete loss of
data.

FPROGRARM
OPERATING SYSTEM
DEVICE | |DEVICE | |DEVICE | [DEVICE
DRIVER| |DRIVER| |DRIVER| [DRIVER
CiSPLAY PRINTER CD ROM KEYBOARD

Figure 2-3. Therole of the device driver.

The use of computers for graphics processing has become widespread. It
would be impossible to support the many types of graphics devices without
device drivers. Today' s hardware offers dozens of different resolutions and
sizes. For instance, color graphics terminals can be had in CGA, EGA, VGA,
MCGA, SVGA, and XGA formats, each offering a different resolution and
number of supported simultaneous displayable colors. Printers vary in dots per
inch (DPI), Font selection, and interface type. Since all of these formats and
configurations are ill in use, the supplier of a graphics design package needsto
support all of them to offer a marketabl e software package. The solution is for
the graphical design program to read and write to these graphics devicesusing a
standard set of programs, called APIs (Application Programming Interfaces),
which in turn call the device driver specific to the hardware installed.

The device driver has an in-depth knowledge of the device, such asthe physical

size of the output area, the resolution (number of dots or pixels per screen), and
the special control characters necessary for formatting. For instance, a graphics

application program might direct the output device to print aline of text in

46

Helvetica bold italic beginning at column 3, line 2. Each graphics output device,
however, might use a different command to print thelineat column 3, line 2.
The device driver resolves these types of differences.

A user might wish to print a 256-color picture on a black and white printer in a
lower or higher resolution. The device driver would resolve the differences and
perform the proper trandation, clipping and color-to-gray-scale mapping as
required. While this method allows the graphics program to remain generic for
any hardware configuration, it does require the software vendor to supply
device driversfor the many types of input and output devices. Some word
processors, for example, come with over 200 printer device drivers to support
all makes and models of printers, from daisy whed to high-speed laser and
color printers.

Device Drivers- A Summary
In summary, the device driver:

» Contains the specific device characteristics and removes any
responsibility of the application program for having knowledge of the
particular device.

In the case of a disk device driver, the device driver might contain the
specific disk geometry, which is transparent to the program that calls
the device driver. The device driver maps logical disk sectorsto their
physical equivalents. The application program need not be aware of the
size of the disk, the number of cylinders, the number of heads, or the
number of sectors per track. The device driver also controls the disk
seek, which isthe motion necessary to position the read/write head over
the proper area of the disk. This smplifies the application code, by
allowing it to issue only reads and writes, and leaving the details of how
it isdoneto the device driver.

In the case of a video device driver, the driver might contain the size of
the screen, the number of pixes per screen, and the number of

47

simultaneous colors that can be displayed. Programs that need access to
the display call the display device driver, which performs several
functions. Firgt, it maps the number of colorsin the picture to those
supported by the video adapter. Thisis especially trueif a color picture
isdisplayed on a black and white (monochrome) display. Second, if the
resolution of the target display is smaller than the original, the device
driver must adjust the size proportionally. Third, it might adjust the
aspect ratio, theratio of vertical pixelsto horizontal pixels. A circle, for
example, would appear egg-shaped without the correct aspect ratio.

In the case of a seria device, such as a modem, the device driver
handles the specifics of the e ectronics that perform the actual sending
and receiving of data, such as the transfer speed and data type.

Allows for device independence by providing for a common program
interface, allowing the application program to read from or write to
generic devices. It also handles the necessary trandation or conversion
which may be required by the specific device.

Serializes access to the device, preventing other programs from
corrupting input or output data by attempting to access the device at
the sametime.

Protects the operating system and the devices owned by the operating
system from errant programs which may try to write to them, causing
the system to crash.

49

Chapter 3- The PC Hardware Architecture

Writing device drivers requires you to have at least a limited understanding of
the personal computer hardware architecture. Device drivers are special pieces
of software because they “talk” directly to eectronic circuits. Application
programs, or those programs that use device drivers to access devices, can be
written without a knowledge of the electronics. While you don’t have to be an
electrical engineer, you will need at least a basic knowledge of the hardware
you will be interacting with.

The System Bus

The CPU is connected to the rest of the computer through eectrical circuits
called the bus. The bus contains the e ectrical paths common to different
devices, allowing them to access each other using a very specialized protocol.
The CPU is allowed read and write access to the computer’s memory (and
some devices) by means of the address bus. Data is moved to and from devices
(and memory) viathe data bus. The computer busisthe center of
communications in the computer. To allow hardware interfaces or adapters to
gain access to the CPU, the computer system isfitted with connectorsto allow
adaptersto be plugged into the bus. The adapters must adhere to the el ectrical
standards of the bus. Certain restrictions, such as bus timing and switching must
be adhered to by the adapter manufacturers, or the entire system may
experience erratic behavior or possibly not function at all.

The width of the bus, or the number of bitsthat can be transferred to or from
memory or devicesin paralld, directly affects system performance. Systems
with “wider” busseswill, in general, offer greater performance because of their
ability to move more datain lesstime.

Today there are three primary bus architectures in the IBM-compatible
marketplace. They are called Industry Standard Architecture (1SA), Enhanced
Industry Standard Architecture (EISA) and Micro Channd Architecture

50

(MCA). Of course, there are other types of busses used for non-1BM
compatible computers, but they will not be covered in this book.

Figure 3-1. The IBM PC.

The IBM PC - Beginnings

In 1981, IBM released the IBM PC (see Figure 3-1), a personal computer based
on the Intel 8088 microprocessor. The 8088 was a 16-bit microprocessor, and
was |IBM’sfirst entry into the personal computer market. IBM was known
worldwide as a supplier of large data processing systems, but this was their first
product for personal use. The IBM PC contained a new bus design called the
PC bus. The PC bus was fitted with adapter card dots for expansion, and to
make the bus popular, IBM released the specifications of the PC bus. This
encouraged third-party suppliersto release many different types of adaptersto
be used in the IBM PC. Thiswas a strategic move by IBM which led to the
standardization of the PC bus architecture for al personal computers.

Storage was limited to a single floppy disk, capable of storing approximately
180,000 bytes of information.

The IBM PC was not areatively fast machine, but users could, for the first
time, have an IBM computer on their desks. Original sales projections for the
IBM PC were a few hundred thousand units, but demand quickly exceeded
availability. The personal computer revolution had begun.

51

Figure 3-2. TheIBM PC AT.

IBM PC XT

In 1982, IBM introduced the IBM XT computer. The IBM XT contained a
built-in ten million byte (10MB) hard disk storage device, and the floppy disk
storage was doubled to 360,000 bytes (360KB). The IBM XT was based on the
IBM PC and retained the same basic design, except that users could now store
ten million characters of data on the hard disk.

Computer hardware can process instructions relatively fast. The execution of a
simpleinstruction may take less than one microsecond (.000001 seconds). The
computer input and output devices, however, are relatively ow. For example,
if the computer was receiving bytes of data from another computer over a
phone line, the time to receive just one byte of data would be approximately 4
milliseconds (.004 seconds). If the computer was just waiting for more bytes to
appear, it would be spending most of its time doing nothing but waiting. This
would be extremely inefficient, as the computer could have executed thousands
of instructions while waiting for another byte. This problem is solved by a
hardware mechanism called the interrupt system. The interrupt system allows an
external event, such as the reception of a character, to interrupt the program
currently being executed. A special program, called an interrupt handler,
interrupts the currently executing program, receives the character, processesit,
and returns to the program that was executing when the interrupt was received.

52

The program that was executing at the time of the interrupt resumes processing
at the exact point at which it was interrupted.

The IBM PC and PC XT had an eight-level Programmable Interrupt Controller
(PIC), which permitted up to eight interrupts on the PC bus. This represented
somewhat of a problem, as several interrupt levels were aready dedicated to the
system. The system timer reserved an interrupt, aswell as the hard disk, floppy
drive, printer port and serial port. Thisleft only two unused interrupts, which
were reserved for a second printer and second serial communications port. If
you happened to have these devices ingtalled, you could not install any other
adapter cards that utilized interrupts.

IBM PC AT

In 1984, IBM introduced the IBM PC AT personal computer. The IBM PC AT
computer utilized the Intel 80286, a more powerful 16-bit microprocessor. The
IBM PC AT utilized anewly designed bus, called the AT bus. The AT bus
added eight additional address and data lines, to enable the CPU to transfer
twice as much datain the same amount of time asthe IBM PC. In another
brilliant engineering innovation, IBM made the AT bus downward compatible
with existing IBM PC adapter cards. The user did not haveto give up alarge
investment in adapter hardware to upgrade to the IBM PC AT. The AT could
use newly introduced 16-bit adapters as well as the existing eight bit adapters.
The newer bus could still accommodate the older PC and XT bus adapter cards.
Today, the AT bus remains the most popular IBM PC-compatible busin
existence, with over 100 million installed, and is commonly called the |SA bus.

The processor speed of the PC AT was increased 25 percent, and the
combination of processor speed and greater bus width led to dramatic
performance increases over PC XT. The PC AT was equipped with a 20MB
hard disk, a 1.2MB floppy disk, and was fitted with alarger power supply to
handle the increased speed and capacity. The color display was becoming more
popular, but was limited in colors and resolution. 1BM quickly introduced an
upgraded model of the IBM PC AT, called the modd 339. The newer version
came with a 30MB hard disk and a 1.2MB floppy disk. To retain compatibility,

53

the AT’ sfloppy disk could also read and write to the smaller capacity 360K
byte floppies for the IBM PC XT. Processor speed was again bumped up 33
percent.

The AT bus, however, had limitations. The dectrical design of the bus was
limited by the speed that data could be transferred on the bus. Thiswas not a
problem for the IBM PC AT, but as processors became faster and users
demanded more power, the performance of the AT bus became a limiting
factor.

The AT Bus

When the IBM PC AT was introduced in 1984, the bus requirements changed
significantly. The IBM PC AT used the Intel 80286, which was also a 16-bit
processor. The processor speed was increased by thirty percent. Since the
memory address could be 16 bits wide, the processor could now issue only one
address command to the memory circuits, cutting the time necessary to address
memory in half. The data bus width was aso increased to 16 hits, and 8 more
interrupts were added.

The AT bus has 24 address lines, which limits the amount of directly
addressable memory to 16MB, but recent IBM-compatibles have provided a
separate CPU-to-memory bus, which is 32 bitswide. The peripheral address
bus that the adapter cards plug into remains a 24 bit address bus.

TheIBM PC AT was upgraded to run another thirty percent faster by raising
the processor clock speed to 8 megahertz (Mhz). Performance increased
dramatically, but a problem for future expansion now became apparent. The
electrical design characteristics of the AT bus prohibited it from reiably running
at speeds faster than 8 Mhz, with a maximum bus throughput of about 8MB per
second. Users were demanding more power, and CPU makers such as Intel
were producing faster and more powerful processors.

Adapter cards for the AT bus required the manual installation and/or removal of
small dectrical jJumpersto define the characteristics of the card. There were

jumper settings for the card address, interrupt level, adapter card port address,
timing, and a host of other options. This sometimes made installation
troublesome. An incorrectly placed jumper could cause the adapter not to work
or the system to hang. Novice computer users had a tough time understanding
all of the options and how to set them for various configurations. Boards were
often returned to manufacturers for repair when al that was wrong was an
incorrectly installed jumper.

The AT busdesign allows for 15 interrupts, but adapters cannot share the same
interrupt, or IRQ level. Once a device driver claims an interrupt level, the
interrupt level cannot be used for another adapter.

ThelBM PS/2 and Micro Channd

IBM’s answer to the limitations of the AT bus was to create, from scratch, an
entirely new bus architecture. This new architecture, called Micro Channdl, was
(and is) vastly superior to the AT bus architecture. Since IBM decided that the
bus did not have to support existing adapter cards and memory, they were free
to design the new bus without restrictions. The Micro Channel buswas a
proprietary bus (which has since been made public) that was designed to solve
al of the existing problems with the AT bus, and to provide for an architecture
that would support multiple processors and bus-masters on the same bus using
a bus arbitration scheme. In addition, the Micro Channe bus provided greater
noise immunity from Radio Frequency Interference (RFl), 32 address lines, 24
DMA address lines, and 16 data lines with increased speed (bandwidth). The
first Micro Channe bus computer was twice as fast asthe IBM PC AT, and had
amaximum bus transfer rate of 20MB per second. Some Micro Channel
adapters can manage as much as 160MB per second.

The Micro Channd bus supports multiple bus masters. Bus mastering allows an
adapter to obtain control of the system busto perform /O at higher rates than if
the CPU was used. The Micro Channel design supports up to 15 bus masters.

The Micro Channe bus also has better grounding and more interrupt capability.

55

IBM introduced a brand new line of computers, called the Personal System/2,
or PS/2 (see Figure 3-4), which utilized the Micro Channel technology. The
new computers offered several new features, such as built-in support for VGA
color and larger-capacity Enhanced Small Disk Interface, or ESDI, hard disk
drives. In the area of hardware, IBM made three major design changes. Firs,
they designed the Micro Channel bus to be dot dependent. That is, each dot
was addressable by the CPU. This differed from the IBM PC and PC AT bus
machines, where adapter boards could be placed in any dot.

Figure 3-3. Micro Channel adapter.

Second, they specified that each adapter (see Figure 3-3) that was plugged into
the Micro Channel bus would need its own unique identifier assigned by IBM.
The ID was stored in EEPROM s located on each adapter card. In addition, the
EEPROMs would hold card configuration data, such as the memory-mapped
address, interrupt level, and port address of the adapter. These special registers
were called Programmable Option Select registers, or POS registers. These
registers, addressable only in a special mode, eliminated the need for
configuration jumpersrequired for AT bus adapters. The user would load a
gpecia configuration program, which would set the adapter configuration and
program the EEPROMs and each adapter.

Third, they included 64 bytes of Non-volatile Random Access Memory, or
NVRAM, which would hold the current configuration information for each dot.
The contents of the NVRAM isretained by alow-voltage battery. When the

56

computer was powered on, a Read Only Memory, or ROM, resident program
would compare, dot by dot, the configuration of each adapter to the current
configuration stored in NVRAM. If it found a difference, it would stop and
force the user to run the setup program to reconfigure the system. This Power
On Sdf Test or POST, aso checks the size of memory and comparesit to the
amount configured in NVRAM.

Figure 3-4. IBM PS/2 Mode 80.

Enhanced Industry Standard Architecture (EI SA)

The third major innovation in bus technology was the introduction of the
Enhanced Industry Standard Architecture bus, or EISA bus. The EISA buswas
introduced in September of 1988 in response to IBM’ sintroduction of the
Micro Channel bus. Some of the motivation for the EISA bus was the same as
for the Micro Channd. EISA was designed for high throughput and bus
mastering, and is capable of 33MB per second throughput. The devel opers of
the EISA bus maintained compatibility with existing I SA bus adapters by
designing a connector that would accept either type of adapter card. It should
be noted, however, that using an |SA bus adapter in an EISA bus system
provides no increased performance.

The EISA bus, like the Micro Channel bus, supports multiple bus masters, but
only six compared to Micro Channd’s 15. Thisis still better than the ISA bus,
which supports only one bus master. Throughput of the ISA bus machineis

57

limited by the processor speed, as more work hasto be done by the CPU. In a
multiple bus master architecture like EISA or Micro Channel, the adapter card
relieves the CPU of the responsibility of handling the high-speed data transfers,
and thusis more efficient.

BusWars

Many benchmarks have been performed pitting the three buses against each
other. With afew exceptions, the casual user will not notice much difference
between them. However, increasing demands for higher transfer rates and
increased CPU performance will soon make the traditional AT bus obsolete.
The AT busis handicapped by its 24-bit address bus and 16-bit data bus, which
[imits performance by permitting the system to transfer data only half asfast as
EISA and Micro Channe bus systems. It isalso limited by its interrupt support
and bus-mastering capabilities. Without another alternative, thisleaves EISA
and Micro Channd asthe natural successorsto the ISA bus. IBM is gearing up
for the challenge, and has recently specified a new mode of Micro Channel
operation that will run on al IBM Micro Channel machines. The new
specification, called Micro Channd |1, allows for transfer rates of 40, 80, and
160MB per second, leaving the EISA machinesin the dust. IBM isaso
beginning to price their Micro Channd systems at equal to or less than their
|SA equivalentsin an attempt to make the Micro Channe bus more popular.
The EISA bus, however, maintains compatibility with the wide variety of
inexpensive |SA adapters, and isnot likely to be upstaged in the near future by
the Micro Channel bus.

EISA promisesto remain popular because of the large investment in ISA bus
adapters and the reluctance of many users to embrace the Micro Channel bus.

Real Mode

The Intel processors are capable of operating in one of two modes. These are
called real mode and protect mode. The maost popular computer operating
system, DOS, runsin real mode. In real mode, the processor is capabl e of

58

addressing up to one megabyte of physical memory. Thisis dueto the
addressing structure, which allows for a 20-bit addressin the form of a segment
and offset (see Figure 3-5).

Figure 3-5. Real mode address cal culation.

Real mode allows a program to access any location within the one megabyte
address space. There are no protection mechanismsto prevent programs from
accidentally (or purposely) writing into another program’s memory area. There
isalso no protection from a program writing directly to a device, say the disk,
and causing data loss or corruption. DOS applications that fail generally hang
the system and call for a <ctrl-alt-del> reboot, or in some cases, a power-off
and a power-on reboot (POR). The real mode environment is also ripe for
viruses or other types of sabotage programs to run freely. Since no protection
mechanisms are in place, these types of “Trojan horses’ are free to infect
programs and data with ease.

Protect Mode
The protect mode of the Intel 80286 processor permits direct addressing of

memory up to 16MB, while the Intel 80386 and 80486 processors support the
direct addressing of up to four gigabytes (4,000,000,000 bytes). The 80286

59

processor uses a 16-hit selector and 16-bit offset to address memory (see Figure
3-6). A sdlector isan index into atable that holds the actual address of the
memory location. The offset portion isthe same as the offset in real mode
addressing. This mode of addressing is commonly referred to asthe 16:16
addressing. Under OS2 Warp, the 80386 and 80486 processors address
memory using a selector:offset, but the value of the selector is aways 0, and the
offset is always 32 bits long (see Figure 3-7). This mode of addressing is
referred to asthe 0:32 or flat addressing. The protect mode provides hardware
memory protection, prohibiting a program from accessing memory owned by
another program. While a defective program in real mode can bring down the
entire system (a problem frequently encountered by systems running DOS). A
protect mode program that failsin a multitasking operating system merely
reports the error and isterminated. Other programs running at the time continue
to run uninterrupted.

Figure 3-6. 80286 protect mode addressing.

To accomplish this memory protection, the processor keeps a list of memory
bel onging to a program in the program’s Local Descriptor Table, or LDT.
When a program attempts to access a memory address, the processor hardware
verifies that the address of the memory is within the memory bounds defined by

60

the program’sLDT. If it is not, the processor generates an exception and the
program is terminated.

™
A [) O
o ¢ # &

[|0L| ox\ol\ok|on|o‘\ok|ok o]ofofojojo]o]o

o[L
)
o
-
i
B
L
)
"",m

Figure 3-7. 80386-486 flat mode addressing.

The processor also keeps a second list of memory called the Global Descriptor
Table, or GDT. The GDT usually contains a list of the memory owned by the
operating system, and is only accessible by the operating system and device
drivers. Application programs have no direct accessto the GDT except through
adevicedriver.

0S/2 1.x uses the protect mode of the Intel processor to run native OS2
programs, and provides a single DOS “compatibility box” for running DOS
applications. If a DOS session is selected while the system isrunning an OS2
application, the processor stops running in protect mode and switches to the
real mode to accommodate the DOS application. A poorly programmed DOS
application can bring down the entire system.

OS2 Warp runs DOS programs in the protect mode, using the virtual 8086
mode of the 80386 and 80486 processors. This special mode allows each DOS
application to run in its own protected one megabyte of memory space, without
being aware of any other applications running on the system. Each Virtual DOS

61

Machine, or VDM, thinks that it’'s the only application running. Errant DOS
programs are free to destroy their own one megabyte environment, but cannot
crash the rest of the system. If a DOS application failsin aVVDM, a new copy of
DOS can be booted into the VDM and restarted. For a more complete
description of the Intel processors and their architecture, please refer to
Appendix B for alist of recommended reading.

Using Addresses and Pointers

Writing an OS/2 Warp device driver requires a thorough understanding of
addresses, pointers, and the OS/2 Warp memory management DevHIp routines.
Since OS2 Warp is a hybrid operating system composed of 16-bit and 32-bit
code, many of your device driver functions will involve pointer conversion and
manipulation. Specifically, pointers might have to be converted from 16-hit to
32-bit, and from 32-bit back to 16-bit. Addresses might be expressed as virtual,
physical or linear address. Several DevHIp functions require flat pointersto
itemsin the driver’ s data segment, which is normally a 16:16 pointer. If you
don’t have a good understanding of 16-bit and 32-bit addresses or pointers,
please go back and reread the previous sections. Refer to Chapter 15 for more
information.

The Ring Architecture

In the protect mode, the processor operates in a Ring architecture. Thering
architecture protects the operating system by allowing minimum access to the
system and hardware.

Normal application programsrun at Ring 3, which isthe least trusted ring (see
Figure 3-8). Programs that run in Ring 3 have no direct access to the operating
system or hardware, and must adhere to very strict guidelines for accessing
OS2 or its supported devices.

Ring 2 isreserved for Input/Output Privilege Level (I0PL) programs (see
Chapter 10) and 16-bit Dynamic Link Libraries, or DLLs. With OS2 Warp, 32-

62

bit DLLsrun in Ring 3. Refer to Chapter 4 for a more detailed discussion of
DLLs.

Ring 1iscurrently reserved.

Ring 0 isthe most trusted level of the processor, and is where physical and
virtual device drivers run. Device drivers need, and are granted, full accessto
the processor and system hardware as well as the interrupt system and OS2
internals.

Most application programswill run in Ring 3. Occasionally, for performance
reasons, an application may need to write directly to adapter hardware and will
do so through an IOPL routine at Ring 2, but will quickly return to Ring 3 to
continue running. An example of such a program is the CodeView debugger.

As an additional protection method, OS2 can refuse input and output by a Ring
2 program if the user modifies the CONFIG.SY Sfile to contain the line
IOPL=NO. Programs attempting to perform Ring 2 I/O will generate a Generd
Protection, or GP fault if IOPL=NO appearsin the CONFIG.SY Sfile. Users
may also permit only selected programs to perform IOPL by entering the
program names in CONFIG.SY S. See Chapter 10 for a discussion of 10OPL.

LE AST
TRUSTED

B B T
w 1O

"TRUSTED

Figure 3-8. The 80x86 ring architecture.

63

65

Chapter 4 - An Overview of the OS2 Operating
System

OS2, introduced in late 1987, was billed as the successor to DOS. In fact, it
was going to be called DOS before IBM got into the act. Over 500
programmers at IBM and Microsoft worked night and day to get OS/2 out the
door on schedule. Both IBM and Microsoft trumpeted OS/2 as the replacement
for DOS, and Bill Gates himsdf predicted that OS/2 would replace DOS on the
desktop by 1989. This, of course, never happened. The reasons why OS2 never
caught on can be debated forever, but probably can be summarized in afew key
statements.

First, when IBM announced OS2, there were only a handful of applications
ready to run on it. The few that were ready were just warmed-over DOS
versions, which were recompiled and relinked under OS/2. They also ran
considerably slower than their DOS counterparts.

Second, the graphical user interface for OS2, called Presentation Manager, was
missing. As aresult, most application programs were written with dull,
character-based user interfaces.

Third, the DOS compatibility box, or penalty box as it was sometimes referred
to as, crashed frequently when DOS applications were run under it. It Ssmply
wasn’t compatible with DOS. Some DOS applications would run, but most
wouldn’t. Thiswas largely a result of the small amount of memory available to
a DOS application, which was only approximately 500K bytes. Users were
reluctant to replace DOS with an operating system that wouldn’t run all of their
favorite DOS applications.

Fourth, IBM made a big mistake by attempting to tie the OS2 name to their
recently introduced family of PS/2 computers. Users believed that OS/2 would
run only on PS/2 machines. IBM also bungled the marketing of OS/2. IBM
authorized dealers didn’t know what OS/2 was, how to sell it or how to order
it. No advertisements appeared for OS2, and it wasn’t actively shown at trade

66

shows or in technical publications. OS2 was virtually ignored until sometimein
1990, just following the introduction and huge success of Microsoft Windows
3.0.

Lastly, the timing was bad. OS2 needed four megabytes or more of memory,
and memory was sdlling for approximatey $400 per megabyte. The high
memory prices were due in part to high tariffs placed on the Japanese for
dumping memory chips and to increased demand. Most systems had one
megabyte of memory or less, so upgrading was very expensive. OS/2 was not
cheap, about $350 for the Standard Edition, which, combined with the cost of
extra memory, represented a substantial upgrade cost.

Spurred on by the huge success of Windows 3.0, Microsoft decided that it
would abandon OS2 and concentrate on the Windows platform, which is
based on DOS. IBM, left without a multitasking solution for its PC-to-
mainframe connection, had been counting on OS/2 to replace DOS. IBM finally
woke up and realized that without some major changes in the way OS/2 was
designed and marketed, that OS/2 would die an untimely death. The result of
IBM’ s rude awakening was the introduction of OS2 Warp early in 1992.

Roots

OS2 was originally called MS-DOS version 4.0. MS-DOS 4.0 was designed
for preemptive multitasking, but was still crippled by the 640KB memory space
restriction of real mode operation. A new product, called MS-DOS 5.0 was
conceived, and IBM and Microsoft signed a Joint Devel opment Agreement to
develop it. MS-DOS 5.0 was later renamed OS/2. OS2 was designed to break
the 640KB memory barrier by utilizing the protect mode of the 80286
processor. The protect mode provided direct addressing of up to 16 megabytes
of memory and a protected environment where badly written programs could
not affect the integrity of other programs or the operating system.

When Gordon Letwin, Ed laccobuci, and the developers at IBM and Microsoft
first designed OS2 1.0, they had several goalsin mind. First, OS/2 had to
provide a graphical device interface that was hardware independent. The

67

concept was that each device would be supplied with a device driver containing
the specific characteristics of the device. Graphics applications could be written
without regard to the type of graphicsinput or output device. This concept is
referred to as virtualization. However, virtualization comes at a cost. When an
application sends arequest to the OS2 kernel for access to a device, the kerndl
has to build a request and send it to the device driver. The device driver hasto
break it down, perform the operation, format the data, and transfer it back to
the application.

Second, OS2 had to allow direct hardware access to some peripherals for
performance reasons. Peripherals such as video adapters require high-speed
access to devices, and the normal device driver mechanism was just not fast
enough. To solve this problem, OS/2 allows applications or Dynamic Link
Libraries (DLLS) to perform direct 1/0O to adapter hardware. The video device
driver, which residesin a DLL, can access the device directly without calling a
device driver to perform the I/O. Dynamic linking aso allows programs to be
linked with undefined external references, which are resolved at run time by the
0S/2 system loader. The unresolved entry points exist in DLLs on the OS/2
system disk, and are loaded into memory and linked with the executable
program at run time. The use of DLLs allows system services that exist in the
DLLsto be modified by changing aDLL and not the entire system. A display
adapter, for example, could be added smply by aadding anew DLL.
Additional system functions and processes can be implemented as DLLs.

Third, OS2 had to provide an efficient, preemptive multitasking kerndl. The
kernd had to run several programs at once, yet provide an environment where
critical programs could get access to the CPU when necessary. OS/2 uses a
priority-based preemptive scheduler. The preemptive nature of the OS/2
scheduler allowsiit to “take away” the CPU from a currently running application
and assign it to another application. If two programs of equal priority are
competing for the CPU, the scheduler will run each program in turn for a short
period of time, called atime dice. This ensures that every program will have
access to the CPU, and that no one program can monopolize the CPU.

Fourth, OS/2 had to provide a robust, protected environment. OS/2 uses the
protect mode of the 80286 and above processors, which has a built-in memory

68

protection scheme. Applications that attempt to read or to write from memory
that isnot in their specific address space are terminated without compromising
the operating system integrity. OS/2 had to run applications that were larger
than the physical installed memory. OS2 accomplishes this with swapping. If a
program asks for more memory than exists, a special fault is generated, which
causes the existing contents of memory to be swapped out to a disk file, thereby
freeing up the required memory. When the program accesses a function that has
been swapped out to disk, a special fault is generated to cause the required
functions to be swapped back into physical memory. Swapping allows large
programs to be run with less memory than the application requires, but
swapping can cause a consderable degradation in speed.

Fifth, OS2 had to run on the 80286 processor. At the time that OS2 was
designed, the 80286 was the only CPU that could run a multitasking protect
mode operating system. The 80386 machines were not available, so IBM and
Microsoft committed to a version of OS/2 which would run on the 80286
platform. Thiswas purdy a marketing decision, based on the number of 80286
machines ingtalled at the time. The implementation of OS2 on the 80286
proved to be clumsy and ow. The operating system had to be designed for the
16-bit architecture of the 80286, but really required a 32-bit architecture to
perform well. The 80286 could operate in the protect mode and real mode, but
could not switch back and forth gracefully. It could switch from the real mode
to the protect mode easily, but not back. The processor was designed to run in
only one mode, not both. Because OS/2 had to support OS/2 applications and
DOS applications all at onetime, away had to be found to change the
processor mode on the fly. Gordon Letwin came up with the patented idea of
how to do this with what has been referred to as “turning the car off and on at
60 MPH.”

Lastly, OS2 had to run existing “well-behaved” DOS applications. Well-
behaved DOS programs were those programs that did not directly access the
hardware or use shortcuts to improve performance. Unfortunately, most DOS
programs used some type of shortcut to improve performance and make up for
the relatively ow 8088 processor they were originally written for.

69

Processes and Threads

OS2 introduced the notion of threads. A thread is defined as an instance of
execution or path of execution through a piece of code. OS/2’'s multitasking is
thread-based. A program always has at least one thread, called the main thread,
and may have many more threads, each executing at the same time (see Figure
4-1). The additional threads are created by the main thread, and act as smaller
“children” of the main thread. Threads inherit the environment of their creator,
usually a process, and can be started or suspended by the main thread. A thread
can only be destroyed by committing suicide.

To aid in multitasking, OS/2 offers four classes of priorities (see Table 4-1).
They are Real-Time-Ciritical, Normal, Fixed-High, and Idle-Time. Real-Time-
Critical isthe highest priority, while Idle-Time is the lowest. Within each
priority class, there are 32 separate and distinct priorities, numbered from O to
31. Mogt applicationswill run in the Normal mode, while time critical
applications (such as a cardiac monitor) might run in the Real-Time-Critical
class. The Fixed-High mode operates between Real-Time-Critical and Normal
modes, and offersreal time response but at priorities that can be dynamically
modified by OS2. The ldle-Time priority is reserved for ower background
programs such as spool ers.

FROCESS

THHREAD 1

Figure 4-1. Process and threads.

One of OS/2's major advantagesisitstime-diced, priority-based preemptive
scheduler. This feature allows a critical or higher priority thread to preempt a
currently running thread. This preemptive feature is what sets OS2 apart from

70

other multitasking systems such as UNIX. OS/2 runs the highest priority thread
until it completes or gives up the CPU by blocking on an 1/0 request or system
service. If athread is currently executing and a higher priority thread needsto
run, the lower priority thread will be preempted and the higher priority thread
allowed to run. When the higher priority thread finishes or blocks waiting on a
system service, the lower priority thread will get a chanceto run again. If two
threads with the same priority are competing for the CPU, each thread will
aternate for one time dice worth of time.

Table4-1. OS2 Priority Structure

Priority Use Modified by OS2
Idle Spoolers, batch Yes

processors
Regular Normal applications | Yes
Fixed-High Special applications | Yes
(Foreground
Server)
Redl-Time-Critical | Red time No

applications

Most UNIX systems do not use threads, so prioritiesin a UNIX system are per
process-based, rather than thread-based. Since most UNIX kernels are not
preemptive, a UNIX application will run until it blocks on 1/0O or system
resource, or exhausts its time dice. Currently running processes cannot be
preempted, thus a critical program needing CPU time has to wait until the CPU
isfree. The UNIX scheduler is around-robin scheduler, that is, the system
allocates equal time to every processin around-robin fashion. If three
processes are running, process A gets atime dice, process B getsatime dice,
then process C gets atime dice, and then the whole operation begins again with
process A.

71

0S521.0-0S2Arrives

0S/2 1.0 was introduced in the fourth quarter of 1987. Thefirst release did not
contain agraphical user interface, but instead contained two side-by-side list
boxes with names of programs to execute. The Application Programming
Interface, or API, was incomplete and unstable. Device support was virtually
nonexistent, and OS2 1.0 was only guaranteed to run on the IBM PC AT and
IBM PS/2 line of computers. Many DOS applications did not run in the DOS
compatibility box, and only a few thousand copies of OS/2 1.0 were sold.

0S/2 1.1 - Presentation Manager Arrives

The next major release of OS/2 contained the graphical user interface, dubbed
Presentation Manager. OS/2 was beginning to take shape. It contained a better
DOS compatibility box, which caused fewer DOS programs to crash, and had a
consistent, more bug-free set of API routines. Documentation, in the form of
manuals and books, was beginning to appear, and a few more DOS applications
were recompiled and relinked under OS/2. None of these programs used the
Presentation Manager, as they were not redesigned for OS/2. As aresult, the
applications were dull, character-based programs that didn’t take advantage of
any of OS/2's multitasking abilities or Presentation Manager. The lack of
applications, together with the cost of a hardware upgrade, kept most users
away from OS/2.

0S/2 1.2 - A Better File System

OS2 had been using thefile system known as FAT, named after the DOS File
Allocation Table. The FAT was where DOS (and OS/2) kept a running
“picture’ of the hard disk, including the utilization and amount of free space.
The DOS FAT file system was limited by design to filenames with a maximum
length of 11 characters, and wasinefficient in storing and retrieving files. The
High Performance File System, or HPFS, was introduced in OS/2 1.2 to
provide more efficient handling of large files and volumes, and to remove the
11-character filename restriction. HPFS can handle filenames with up to 254

72

characters, files aslarge as two gigabytes, and provides a very fast searching
algorithm for storing and locating files. Unlike the FAT file system, HPFSis an
installable file system, and a specia device driver must be loaded before using it.

The DOS compatibility box was improved, but OS/2 till could not run many
DOS applications. Thiswas due, in part, to the fact that the compatibility box
did not offer the full amount of memory usually available to DOS applications.
The size of the DOS compatibility box memory was reduced when device
drivers were loaded, and often would only offer 500K bytes or less for running
DOS programs. OS2 was used primarily by companies that had real-time
multitasking requirements for their systems, but not for running DOS
applications. For DOS applications which would not run in the OS2 1.2
compatibility box, OS/2 had a built-in dual-boot facility which alowed the user
to selectively boot up DOS or OS/2. While OS2 was running, however, the
compatibility box was virtually useless.

Printers did not work correctly. OS/2 did not work with the most popular laser
printers, such asthe Hewlett Packard Laserjets. The future of OS2 was bleak.

When Microsoft announced that they would be abandoning OS2 in favor of
Windows 3.0, OS/2 faced an uncertain future. Microsoft had been stating that
0S/2 was the PC operating system platform of the future, and now had
reversed that statement. Many large companies had previoudy begun
conversion of their flagship programs, such as Lotus 1-2-3, to run under OS/2,
and were taken by surprise by Microsoft’s changein direction. IBM was forced
to take over the development of OS2, and Microsoft could free up its
programming resources to concentrate on Windows software. Microsoft and
IBM did agree to cross-license each other’s products, and together they agreed
that IBM would assume compl ete responsibility for OS/2.

73

0S21.3-1BM’'sFirst Solo Effort

Figure4-2. OS2 1.3 EE.

Although OS/2 1.0, 1.1, and 1.2 were developed jointly by IBM and Microsoft,
OS2 Version 1.3 (dubbed OS/2 Lite) was the first version of OS2 to be done
entirely by IBM (see Figure 4-2). It took IBM awhile to get up to speed with
052, but when OS/2 1.3 was released, many features that had never worked
correctly had been fixed. Version 1.3 had better networking, communications,
and graphics support and could finally print correctly. The OS/2 kernd was
dimmed down and ran considerably faster than its predecessors. IBM produced
detailed documentation and began to actively support devel opers through the
IBM Developer’s Assistance Program. However, OS2 was used primarily by
IBM ingtallations for their PC-to-mainframe connection, and by OEMs for
specialized applications.

IBM was till not actively marketing OS/2. Information was difficult to come
by, and it was ailmost impossible to buy OS2. Most IBM dealersdidn’t even
know what OS2 was, or how to order it. IBM failed to inform their resellers
how to demonstrate and sell OS/2. OS2 was going nowhere fast.

0S/2 2.0- What OS2 Was Really Meant to Be

74

Before deciding to scrap its OS/2 devel opment, Microsoft had been working on
anew verson of 0S/2, called OS2 2.0. Microsoft first displayed early running
versons of OS2 2.0 in the middle of 1990, and had rel eased the infamous
System Developer’ s Kit, or SDK, with a whopping $2600 price tag. The OS/2
2.0 SDK included early releases of the OS2 kerndl, 32-bit compiler, assembler,
and linker. Many developers, however, balked at the price. The software
contained several serious bugs, and for most devel opers, proved to be unusable.

IBM realized that, unlessit made aradical change in the way OS2 was
designed and marketed, OS/2 would eventually become a proprietary internal
operating system used only by IBM. IBM formed a team to assume the
development responsibilities of OS2 2.0. They mounted an enormous effort,
and the commercial release of OS2 2.0 was the culmination of that effort.

OS2 Warp represents a new direction for personal computer operating
environments. Instead of having to deal with the 16-bit architecture of the
80286 processors, OS2 Warp was devel oped around the 32-bit architecture of
the 80386 microprocessor. OS2 Warp will not run on an 80286 processor-
based machine. This decison comes at a time when the 16-bit 80286 machines
are obsolete, and the standard choice for personal computersis an 80486
machine with 8MB of RAM as a minimum configuration. With memory prices
at $35 per megabyte of RAM, memory configurations of 8 and 16MB are
becoming commonplace. Hard disk storage has decreased significantly in price,
and most systems are sold with 100MB or more of disk storage as minimum.

OS2 Warp allows DOS programs to run in their own one megabyte of memory
space without knowledge of other programsin the system. Even the most ill-
behaved DOS applications, such as games, run flawlesdy in their own protected
area. In addition, users can boot any version of DOS they choose into a DOS
session. The number of DOS sessions that can be started is unlimited in OS2
Warp. DOS programs have access to 48MB of extended memory. OS2 Warp
also supports DOS programs designed to use the DOS Protect Mode Interface,
or DPMI Version 0.9. OS2 Warp runs Windows 3.0 and 3.1 applicationsin the
real or standard mode. OS2 Warp allows Dynamic Data Exchange, or DDE,
between DOS/Windows and OS2 applications, providing up to 512MB of
DPMI memory per DOS session.

75

OS2 Warp uses a desktop metaphor called the Workplace Shdll for its user
interface. The Workplace Shell represents an actual desktop using icons
representing the actual items the user might find on his or her desk. It contains
such items as afile folder, printer, network connection, and other icons that
reflect the current configuration of the system. Printing a document, for
example, is as smple as opening a folder, clicking on the document and
dragging it over to the printer icon.

Figure 4-3. OS/2 Warp tutorial.

OS2 Warp represents a common platform for supporting many different types
of applications. It runs DOS applications, Windows 3.0 and 3.1 applications
and, of course, native OS/2 applications, all seamlessly. Thereisno longer a
need to dual-boot DOS or to load three different operating environments;, OS2
Warp runsthem all.

The OS2 Application Programming I nterface

OS2 Warp offersarich set of Application Program Interfaces (APIs) to allow
programs to access system services. The OS2 APIs are classified into eight
major categories. They are:

1. File System

File Systems (FAT, Super FAT, HPFS)
Network Access (LAN Server, NetBIOS)
Permissions

DASD Media Management

. GraphicsInterface
Graphics Programming Interface
Video Input and Output

. Inter Process Communications
Shared Memory

Semaphores

Named Pipes

Queues

Dynamic Data Exchange (DDE)

. System Services
Device Monitors
Timer Services

. Process Management

Threads

Processes

Child Processes
Scheduler/Priorities

. Memory Management
. Signals

. Dynamic Linking

77

Chapter 5 - The Anatomy of an OS2 Device
Driver

OS2 device drivers, like other multitasking device drivers, shield the
application code that performs I/O from device-specific hardware requirements.
The application program need not concern itsalf with the physical constraints of
aparticular 1/0O device, such astiming or I/O port addressing, asthese are
handled entirdly by the device driver. If an 1/O card addressis moved or a
different interrupt seected, the device driver can be recompiled (notice | did not
say reassembled) without modifying or recompiling the application code.

It should be noted that OS/2 device drivers can be configured during boot-up
operation by placing adapter-specific parametersin the DEVICE= entry in
CONFIG.SYS. Thedriver can retrieve the parameters and configure itself
during the INIT section.

Conceptually, OS2 device drivers are similar to device driversin other
multitasking systems, but they have the added responsibility of handling
processor-specific anomalies such as the segmented architecture and operating
modes of the Intel processors.

Application-to-Driver Interface

OS2 device drivers are called by the kernel on behalf of the application needing
I/O service. The application program makes an 1/0 request call to the kerndl,
specifying the type of operation needed. The kerndl verifies the request,
trandates the request into a valid device driver Request Packet and calls the
device driver for service. The device driver handles all of the hardware details,
such as register setup, interrupt handling, and error checking. When the request
is complete, the device driver massages the data into a format recognizable by
the application. It sends the data or status to the application and naotifies the
kernel that the request is complete. If the request cannot be handled

78

immediately, the device driver may either block the requesting thread or return
a ‘request not don€e' to the kernd. Either method causes the device driver to
relinquish the CPU, alowing other threadsto run. If an error is detected, the
device driver returns thisinformation to the kernel with a‘request complete
status. The OS2 device driver may also “queue up” requests to be handled | ater
in awork queue. The OS/2 Device Helper (DevHIp) library contains severad
DevHIps for manipulating the device driver’s work queue.

DOS Device Driversand OS2 Device Drivers

DOS device drivers have no direct OS/2 counterpart. DOS device drivers are
smple, single-task, polling device drivers. Even interrupt device drivers under
DOS pall until interrupt processing is complete. DOS device drivers support
only onerequest at atime, and simultaneous multiple requests from DOS will
cause the system to crash.

While the DOS device driver is a single-threaded polled routine, the OS2
device driver must handle overlapping requests from different processes and
threads. Because of this, the OS/2 device driver must be reentrant. The OS2
device driver must also handle interrupts from the device and optionally from a
timer handler. It must handle these operations in an efficient manner, allowing
other threads to gain access to the CPU. Most importantly, it must do all of
theserdiably. The OS/2 device driver, because it operates at Ring O, isthe only
program that has direct accessto critical system functions, such as the interrupt
system and system timer. The device driver, therefore, must be absolutely bug-
free, asany error in the device driver will cause afatal system crash.

OS2 Warp device drivers no longer have to deal with the real-protect mode
switching of OS2 1.x, as all programs run in protect mode. OS/2 device drivers
must have the capability to deinstall when requested, releasing any memory
used by the device driver to the OS/2 kernel. OS/2 device drivers may also
support device monitors, programs that wish to monitor data asit is passed to
and from the device driver. OS2 offers a wide range of device driver services
to provide this functionality.

79

Designing an OS/2 Device Driver

Designing an OS2 device driver requires a thorough understanding of therole
of adevicedriver, aswell as a solid working knowledge of the OS/2 operating
system and design philosophy. Debugging OS2 device drivers can be difficult,
even with the proper tools. The OS/2 device driver operates at Ring O with full
access to the system hardware. However, it has almost no access to OS2
support services, except for a handful of DevHIp routines. Many device driver
faillures occur in areal time context, such asin the midst of interrupt handling.
It may be difficult or impossible to find a device driver problem using normal
debugging techniques. In such cases, it is necessary to visualize the operation of
the device driver and OS2 at the time of the error to help locate the problem.

Tools Necessary For Driver Development

One of the most important tools for device driver development is the device
driver debugger. Generadly, the best choiceisthe OS/2 Warp kernel debugger
or KDB. KDB uses a standard ASCII terminal attached to one of the serial
COM ports via a hull-modem cable. When OS/2 is started, KDB |ooks for a
COM port to perform its /O to the debugging terminal. For systemswith only
one COM port, KDB will use COM1. For systems with two COM ports, KDB
will use COM2.

The KDB is not smply a debugger, but is a replacement kernel that replaces the
OS2 standard system kernd called OS2KRNL. KDB has knowledge of internal
OS2 data structures and provides a powerful command set for debugging OS/2
device drivers. Ingtalling the debugging kernel is easy. The attributes of the
hidden file OS2KRNL are changed to non-hidden and non-system, and thefile
is copied to OS2ZKRNL.OLD. The debug kernd isthen copied to OS2KRNL,
and OS/2 isrebooted. KDB will issue a sign-on message to the debugging
terminal indicating that it is active. KDB can be entered by typing <cntl-c> on
the debug terminal, or if KDB encounters an INT 3 instruction. These
procedures are described in more detail in Chapter 13. The kernel debugger

80

comes with the IBM OS/2 Warp Toolkit, and isinstalled easily with the
ingtallation program supplied with the Toolkit.

APPLICATIORN REQUEST

Cos Fead, Doswite, Dos O
DosCiose, Does D wlOnC

!

OS2 KEAMEL

WERIFY PARANMETERS
FORMAT REQUEST IMNTO REQUEST
FACKET-SEMD TO DEIVER

!

REQUEST PACKET
h,

DEVICE DRIYER

FERFORM RECQUEST
AMD FETLEN DATALSTATLS

Figure 5-1. Application-to-device driver interface.

The Basics of Driver Design

The device driver receives two basic types of requests. requests that can be
completed immediately and those that cannot (see Figure 5-1). It receives these
requests via a standard data structure called a Request Packet (see Figure 5-2).

Reguests that can be completed immediately are handled as they comein, and
sent back to the requestor. Requests that cannot be handled immediately (such
as disk seeks) are queued up for later dispatch by the device driver. The device
driver manipulates Request Packets using the DevHIp routines. To minimize
head movement, disk device drivers usually sort pending requests for disk seeks
in sector order.

81

The OS/2 device driver plays an additional rolein system performance and
operation. When a device driver is called to perform areguest that cannot be
completed immediately, the device driver Blocks the requesting thread. This
relinquishes the CPU and allows other threads to run. When the request is
complete, usually asthe result of an interrupt or error occurring, thethread is
immediately UnBlocked and Run. The device driver then queries the request
gueue for any pending requests that may have come in while the thread was
blocked. It isimportant to note that when an application calls a device driver,
the application program’s LDT is directly accessible by the device driver.

Request Packets

Thefirst entry in the Request Packet Header (see Figure 5-2) isthe Request
Packet length, filled in by the kerndl. The second parameter is the unit code.
Applicable for block devices only, thisfield should be set by the device driver
writer to zero for the first unit, one for the second, etc. Thethird fied isthe
command code. The command code isfilled in by the kernd. Thisisthe code
used by the switch routine in the Strategy section to decode the type of request
from the kernd. The next fidd is the status word returned to the kerndl. This
field will contain the result of the device driver operation, along with the
‘DONE’ hit to notify the kernd that the request is complete (thisis not always
the case; the device driver may return without the ‘done’ bit set). To make
things easier, a C language union should be used to access specific types of
requests. The Request Packet structures are placed in an includefile, which is
included by the device driver mainline. Refer to the Standard OS2 Device
Driver Include Filein Appendix C.

82

typedef struct ReqgPacket {

UCHAR RPI engt h; /'l Request Packet |ength

UCHAR RPuni t; /1 unit code for block DD only
UCHAR RPcommand, /1 command code

USHORT RPst at us; [/ status word

UCHAR RPreserved[4]; /'l reserved bytes

ULONG RPqli nk; /1 queue |inkage

UCHAR avail[19]; /1 command specific data

} REQPACKET;

Figure 5-2. Request Packet.

OS2 Device Driver Architecture

OS2 device drivers comein two flavors, block and character. Block device
drivers are used for mass storage devices such as disk and tape. Character
device drivers are used for devices that handle data one character at atime,
such as amodem. OS/2 device drivers are capable of supporting multiple
devices, such as a serial communications adapter with four channels or a disk
device driver which supports multiple drives.

OS2 device driversreceive requests from the OS2 kernel on behalf of an
application program thread. When the device driver is originally opened with a
DosOpen API call, the kernd returns a handle to the thread that requested
access to the device driver. This handleis used for subsequent accessto the
devicedriver.

When an application makes a call to a device driver, the kernd intercepts the
call and formats the device driver request into a standard Request Packet. The
Request Packet contains data and pointers for use by the device driver to
complete the request. In the case of a DosRead or DosWrite, for example, the
Request Packet contains the verified and locked physical address of the caller’s
buffer. In the case of an 10Ctl, the Request Packet contains the virtual address
of a Data and Parameter Buffer. Depending on the type of request, the datain
the Request Packet will change, but the Request Packet header length and
format remain fixed. The kerndl sends the Request Packet to the driver by
passing it a 16:16 pointer to the Request Packet.

83

Device drivers are loaded by the OS2 loader at boot time, and the kernel keeps
alinked list of the installed device drivers by name, using the link pointer in the
Device Header. Before a device driver isused, it must be “DosOpen” ed from
the application. The DosOpen specifiesan ASCII-Z string with the device name
as a parameter, which isthe eight character ASCII name located in the Device
Header (see Figure 5-3). The kernel compares this name with itslist of installed
device drivers, and if it finds a match, it calls the OPEN section of the device
driver Strategy routine to open the device. If the open was successful, the
kernd returns to the application a handle to use for future device driver access.
The device handles are usually assigned sequentially, starting with 3 (0, 1, and 2
are claimed by OS/2). However, the handle value should never be assumed.

typedef struct DeviceHdr {

struct DeviceHdr far *DHnext; /1 ptr to next header, or FFFF
USHORT DHattri bute; /1 device attribute word

OFF DHst r at egy; /1 offset of strategy routine

OFF DHi dc; /1 offset of IDC routine

UCHAR DHnane[8] ; /1 dev nane (char) or #units (blk)
char reserved[8] ;

} DEVI CEHDR;

DEVI CEHDR devhdr = {

(void far *) OxFFFFFFFF, /1 1ink
(DAWCHR | DAWOCPN | DAWLEVEL1), // attribute
(OFF) STRAT, /] &strategy
(OFF) o, /1 & DCroutine

"DEVI CE1 ", /1 device nane
};

Figure 5-3. OS/2 device driver header.

Device Driver Modes

OS2 Warp device drivers operate in three different modes. The first, INIT
mode, is a special mode entered at system boot time and executed at Ring 3.
When the OS/2 system |loader encounters a“DEVICE=" statement in the
CONFIG.SY Sfile on boot-up, it loads the device driver .SY Sfile and callsthe
INIT function of the device driver. What makes this mode specia isthat the
boot procedure is running in Ring 3 which normally has no I/O privileges, yet
0S/2 allows Ring O-type operations. The device driver isfree to do port I/0

and even turn interrupts off, but must ensure they are back on before exiting the
INIT routine. The INIT routine can be used to initialize a Universal
Asynchronous Receiver Tranamitter (UART) or anything el se necessary to
ready a device.

Ring 3 operation during INIT is necessary to protect the integrity of code that
has already been loaded up to that point, and to make sure that the device
driver itsalf does not corrupt the operating system during initialization. Ring 3
operation also allows the device driver initialization routine to call alimited
number of system API routinesto aid in the initialization process. For example,
adevice driver might use the API routines to read a disk file that contains data
toinitialize an adapter. The device driver also usesthe API routines to display
driver error and sign-on messages. The INIT codeisonly called once, during
system boot. For thisreason, the INIT code is usually located at the end of the
code segment so it can be discarded after initialization.

Base devicedriversand ADD driversareintialized at Ring O, not at Ring 3.

The second mode, called Kernd mode, isin effect when the device driver is
called by the kernel asaresult of an I/O request.

The third mode, called Interrupt mode, isin effect when the device driver’s
interrupt handler is executing in response to an external interrupt, such asa
character being received from a serial port.

In general, the OS2 device driver consists of a Strategy section, an INIT
section, and optional interrupt and timer sections. The Strategy section receives
requests from the kernel, in the form of Request Packet. The Strategy section
verifiesthe request, and if it can be completed immediately, completes the
request and sends the result back to the kerndl. If the request cannot be
completed immediately, the device driver optionally queues up the request to be
completed at a later time and starts the I/O operation, if necessary. The kernel
callsthe Strategy routine directly by finding its offset address in the Device
Header.

85

The Device Header

A simple OS/2 device driver consists of at least one code segment and one data
segment, although more memory can be allocated if necessary. The first item of
data that appearsin the data segment must be the device driver header (see
Figure 5-4). The device driver header is afixed length, linked list structure that
contains information for use by the kernel during INIT and normal operation.

DEVICE HEADER

DATA

Figure 5-4. OS/2 device driver memory map.

Thefirst entry in the header isalink pointer to the next device that the device
driver supports. If no other devices are supported, the pointer issetto- 1L. A -
1L terminates the list of devices supported by this device driver. If the device
driver supports multiple devices, such as afour-port serial board or multiple
disk controller, thelink isafar pointer to the next device header. When OS2
loads device driversat INIT time, it formsalinked list of all device driver
device headers. The last device driver header will have alink address of -1L.
When a DEVICE= statement is found in CONFIG.SY S, the last |oaded device
driver’slink pointer is set to point to the new device driver’s device header, and
the new device driver’slink pointer now terminates the list.

The next entry in the device header is the Device Attribute Word (see Table 5-
1). The Device Attribute Word is used to define the operational characteristics
of the device driver.

86

The next entry is a one word offset to the device driver Strategy routine. Only
the offset is necessary, because the device driver iswritten in the small model
with a 64K code segment and a 64K data segment (thisis not always true—in
gpecial cases, the device driver can allocate more code and data space if needed,
and can even be written in the large modd!).

DEVI CEHDR devhdr[2] = {

{ (void far *) &devhdr[1], /1 link to next dev
(DAWCHR | DAWCPN | DAW LEVEL1), /] attribute

(OFF) STRAT1, Il &strategy

(OFF) o, /1 & DCroutine
"DEVI CE1 "

b

{(void far *) OxXFFFFFFFF, /1 link(no nore devs)
(DAWCHR | DAWCPN | DAW LEVEL1), /] attribute

(OFF) STRAT2, /] &strategy

(OFF) o, /1 & DCroutine
"DEVI CE2 "

}
};

Figure 5-5. Device driver header, multiple devices.

The next entry is an offset addressto an IDC routine, if the device driver
supports inter-device driver communications. (The DAW_IDC bit in the device
attribute word must also be set, otherwise the AttachDD call from the other
device driver will fail.) Thelast field is the device name, which must be eight
charactersin length. Names with less than eight characters must be space-
padded. Remember, any mistake in coding the device driver header will cause
an immediate crash and burn when booting.

87

Table 5-1. Device Attribute Word

Bit(s) Description

15 set if character driver, O if block driver

14 st if driver supports inter-device communications
(IDC)

13 for block drivers, set if non-IBM format, for
character drivers, set if driver supports output-
until-busy.

12 if set, device supports sharing

11 st if block device, supports removable media, if
character device, supports device open/close

10 reserved, must be 0

9-7 driver function level

001 = OS2 device driver

010 = supports DosDevIOCtl2 and Shutdown
011 = capahilities bit strip in Device header
reserved, must be 0

reserved, must be 0

reserved, must be 0

st if thisisthe CLOCK device

st if thisisanull device (character driver only)
st if thisisthe new stdout device

st if thisisthe new stdin device

OR[N W|~[fO1|O

Capabilities Bit Strip

The Capahilities Bit Strip word defines additional features supported on level 3
drivers only (see Table 5-2).

Notethat if the device driver isan ADD device driver, and setshit 7 and 8 in
the device attribute word as well as bit 3 in the capabilities bit strip, the Init
request packet sent by the kernel will be formatted differently than the standard

88

PDD Init request packet. Refer to the appropriate ADD documentation for a
description of the ADD Init request packet format.

Table 5-2. Capabilities Bit Strip

Bit(s) Description

0 set if driver supports DosDevl OCtl2 packets and
has Shutdown support.

1 for character drivers, set if driver supports 32-bit
memory addressing, for block drivers, this bit
must be 0

2 if set, the device driver supports paralld ports

3 if s&t, the device driver isan ADD device driver

4 if set, the kernd will issue the InitCompl ete
strategy command

5-31 reserved, must be 0

Providing a Low-L evel I nterface

The data segment, which contains the Device Header, must appear as the very
first dataitem. No data items or code can be placed before the Device Header.
An OS2 device driver which does not adhere to thisrule will not load. Since
our OS2 device drivers are written in C, a mechanism must be provided for
putting the code and data segmentsin the proper order, aswell as providing a
low-leved interface to handle device and timer interrupts. Since the Device
Header must be thefirst item that appearsin the data segment, the C compiler
must be prevented from inserting the normal C start-up code before the Device
Header. Additionally, a method of detecting which device is being requested
needs to be provided for device drivers that support multiple devices.

These requirements are handled with a small assembly language stub that is
linked in with the device driver (refer to Figure 5-6). The _ acrtused entry point
prevents the C start-up code from being inserted before the device driver data

segment. The segment-ordering directives ensure that the data segment
precedes the code segment.

89

C start-up routine, one device

DATA
“DATA

CONST
CONST

BSS
“BSS

DGROUP

_TEXT

' STRAT

__acrtused

push
Jmp
start:

push
push
cal
pop
pop
add
nov
ret

| STRAT

TEXT

EXTRN _mai n: near
PUBLI C _STRAT
PUBLIC __acrtused

segnment word public ' DATA
ends

segnment word public ' CONST
ends

segnment word public 'BSS
ends

group CONST, _BSS, _DATA
segnment word public ' CODE
assume cs: _TEXT, ds: DGROUP, es: NOTHI NG, ss: NOTHI NG
. 286P

proc far
;no start-up code

start ;signal device 0

es ; send Request Packet address
bx

_main ;call driver mainline

bx ;restore es: bx

es

sp, 2 ;clean up stack

word ptr es:[bx+3],ax ;send conpletion status

endp

ends
end

Figure 5-6. Start-up routine, one device.

Notethe STRAT entry point. Remember that thisisthe address placed in the
device driver’s Device Header. The kernel, when making a request to the device

driver, looks up this addressin the Device Header and makes afar cal toit.

90

The assembly language routine then, in turn, calls the C mainline. Thus, the
linkage from the kernd to the device driver is established.

Note the “push 0" in the beginning of the _STRAT routine. Thisisto notify the
device driver which device is being requested. Each device supported by the
device driver requires its own separate Device Header. Note also that each
Device Header contains an offset address to its own Strategy routine. Using the
assembly language interface, the device number is pushed on the stack and
passed to the device driver Strategy section for service. The device driver
retrieves the parameter and determines which device was requested. One of the
parametersto main istheint dev (see Figure 5-9), the device number that was
passed from the assembly language start-up routine. The assembly language
start-up routine is modified to support multiple devices by adding entry points
for each device' s Strategy section. The modified source for thisroutineis
shown in Figure 5-7.

The assembly language routine in Figure 5-8 provides the interrupt handler and
timer handler entry points. The interrupt handler entry point provides a
convenient place to put a breakpoint before entering the C code of the main
interrupt handler. The timer handler entry point provides a place to save and
restore the CPU registers. Note that the interrupt handler does not need to save
the register contents, as thisis done by the OS2 kernd. The timer handler,
however, must save and restore register contents.

91

; C start-up routine, 4 devices

_DATA
“DATA

CONST
CONST

_BSS
“BSS

DGROUP
_TEXT

assune

| STRAT1

__acrtused

push
L
| STRAT1

_STRAT2

push
L
| STRAT?

_STRAT3
’ push
L
| STRAT3

_STRAT4
’ push
_ Jmp
:start:
push
push
cal
pop
pop

EXTRN

PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C

mai n: near

_STRAT1
_STRAT2
_STRAT3
_STRAT4
__acrtused

segnment word public ' DATA

ends

segment word public ' CONST

ends

segnment word public 'BSS

ends

group CONST

segnment word public ' CODE

_BSS, _DATA

cs: _TEXT, ds: DGROUP, es: NOTHI NG, ss: NOTHI NG

. 286P

proc far

0
start

endp

proc far

1 ; sigha
start

endp

proc far

2 ; sigha
start

endp

proc far

3 ; sigha
start

es

bx

_main ; cal
bx
es

; satisfy EXTRN nodul es

;send address

;signal device 0O

driver

second devi ce

third device

fourth device

mai nl i ne

;restore es: bx

92

add sp, 2 ;clean up stack
nov word ptr es:[bx+3],ax ;send conpletion status
ret
| STRAT4 endp
TEXT ends
end

Figure 5-7. Start-up routine, four devices.

93

; C start-up routine, one device, winterrupt and tiner

_DATA
“DATA

CONST
CONST

_BSS
“BSS

DGROUP

_TEXT

_STRAT

__acrtused
push
Jmp

start:
push
push
cal
pop
pop
add
nov
ret

| STRAT
I NT_HNDLR

cal
ret

I NT_HNDLR

" TI M_HNDLR

’ pusha
push
push
cal

PUBLI C _STRAT

PUBLIC __acrtused
PUBLI C _I NT_HNDLR
PUBLIC _TI M HNDLR

EXTRN _interrupt_handl er: near
EXTRN _tinmer_handl er: near
EXTRN _nmi n: near

segnent word public ' DATA
ends

segnent word public ' CONST
ends

segment word public 'BSS
ends

group CONST, _BSS, _DATA
segnent word public ' CODE

assunme cs: _TEXT, ds: DGROUP, es: NOTHI NG, ss: NOTHI NG
. 286P

proc far
; no start-up code

0

start ; signal device 0O

es ; send Request Packet address
bx

_main ;call driver mainline

bx ;restore es: bx

es

sp, 2 ;clean up stack

word ptr es:[bx+3],ax ;send conpletion status

endp
proc far
_interrupt_handl er ;handle interrupts
; bail out
endp
proc far
es
ds

_tinmer_handl er

94

pop ds
pop es
popa
ret
" TI M_HNDLR endp
;TEXT ends
end

Figure 5-8. Start-up routine with timer and interrupt handler.

The Strategy Section

The Strategy section is nothing more than a big switch statement (see Figure 5-
8). Common device driver requests, such as DosWrite and DosRead, have
predefined function codes assigned to them. The device driver may elect to
ignore any or all of these requests by returning a DONE statusto the kerndl.
Thistdlsthe kernd that the request has been completed. The status returned to
the kernel may optionally include error information that the kernd returnsto the
calling program.

int mai n(PREQPACKET rp, int dev)
{ swi t ch(r p->RPcommand)
iase RPI NI T: /1 0x00
/1 init called by kernel in protected node
return Init(rp);
case RPREAD: /1 0x04
return (RPDONE) ;
case RPWRI TE: /1 0x08
return (RPDONE);
case RPI NPUT_FLUSH: /1 0x07
return (RPDONE);
case RPOUTPUT_FLUSH. // 0xO0b

return (RPDONE) ;

95

case RPOPEN: /1 0x0d
return (RPDONE) ;
case RPCLCSE: /1 0x0e

return (RPDONE) ;
case RPI OCTL: /1 0x10

switch (rp->s.10CtI.function)

case 0x00: /1 our function def #1
return (RPDONE) ;

case 0x01: /1 our function def #2

return (RPDONE);
}

/'l deinstall request
case RPDEI NSTALL: /1 0x14

return(RPDONE | RPERR | ERROR_BAD_ COMVAND) ;
/1 all other commands are flagged

defaul t:
return(RPDONE | RPERR | ERROR_BAD_COMMAND) ;

Figure 5-9. Skeleton strategy section.

Note, however, that in the case of one of the standard device driver functions,
the kernel will reemap the error value returned from the device driver to one of
the standard device driver return codes.

If the device driver must return special error codes, it should use an 10Ctl
request. IOCtls are used for special types of operations, device driver-specific,
which do not fit into the architecture of the standard device driver functions. An
example might be such as port 1/0 or initialization of aUART. The IOCitl
section of the device driver is called when the application issues a DosDevI OCitl
call with the device driver’s handle. Using IOCitls, the device driver can return
specialized codes that might contain, for example, the contents of an /O port

96

or the status of the device. Thisflexibility allows the device driver writer to
customize the device driver to fit any device.

Examine the skeleton Strategy section in Figure 5-8. Note the switch on the
Reguest Packet command. A number of standard device driver functions have
command codes predefined in OS/2 (see Table 5-3). It is up to the device driver
writer to act upon or ignore any of the requests to the device driver.

The Strategy section is entered when the kernel calls the device driver to
perform a particular operation. Refer to Table 5-3.

Table 5-3. Device Driver Strategy Calls

Event Strategy section called

DosOpen call RPOPEN

DosClose RPCLOSE

boot RPINIT

|OCtl RPIOCTL

<cntl-c> RPCLOSE

<cntl-break> RPCLOSE

DosRead RPREAD

DosWrite RPWRITE
Initialization

Thefirst thing that must be done in the initialization section isto save the
DevHIp entry point address, passed in the Request Packet. Thisisthe only time
that the addressis made available to the device driver, and it must be saved in
the device driver’s data segment. The INIT code generally performs two other
functions. Firg, it issues the sign-on message to the screen that the device
driver is attempting to load. Second, it finds the address of the last data and last
code item, and sends them back to OS/2. OS2 uses the code and data offset

97

values to size memory. Only thefirst code and data segment of the device
driver isre-sized by OS/2, so it may be desirable to place the INIT code and
datainto another segment which is discarded after the device driver isloaded. If
adevice driver failsingtallation, it must send back zero offsets for its code and
data segments so OS/2 can use the memory space that the device driver had
occupied during installation. Depending on the type of driver, you may wish to
use this section to initialize your device, hook an interrupt or start atimer.

It should be noted that for Micro Channd and EISA bus systems which share
interrupts, it is desirable to hook the interrupt in the OPEN section and release
it in the CLOSE section. This alows other adapters which use the same
interrupt to register for the interrupt without being refused. 1SA bus interrupts
should be hooked during INIT, since the driver should fail initiaization if the
interrupt cannot be given to the device driver.

If the device driver supports multiple devices, it will contain a Device Header
with an entry for each device, with the previous Device Header pointing to the
next Device Header. The last Device Header will contain a-1L, which
terminates the list. For each device, the OS2 kernd will call the Strategy entry
point to initialize the device. If the driver supports, for example, four serial
portsthat use asingle interrupt level, only the last valid initialized device should
hook the interrupt. Thiswill prevent previoudy installed devices from
generating interrupts before the initialization has been completed. The code and
data segment values returned to OS/2 to size memory should be exactly the
same each time the INIT section is called.

During INIT, alimited number of API functions may be called by the device
driver. Thisis possible because INIT runs as a single Ring 3 thread. Some of
the APIs, especially those that perform file 1/O, are especially helpful for
initializing adapters using data that isresdent in disk files. Refer to the INIT
Strategy Command in Chapter 6 for a more detailed description of device driver
initialization.

The driver should allocate necessary resources during initialization, such as
memory and GDT selectors. If the driver supports a memory mapped adapter,
the physical adapter address may be mapped to a GDT selector. However,

98

because INIT is performed as a Ring 3 thread, the GDT selector cannot be
accessed during initialization. Any function which createsor usesa GDT
selector during INIT, such as AttachDD, will not allow you to that GDT
selector during INIT. Thisisbecause INIT isrun at Ring 3, and does not have
access to the GDT.

With IBM PS/2s, the device driver should search the system for an adapter card
with the correct ID and verify that it is configured correctly. The device driver
may call special PS/2 Advance BIOS (ABIOS) routines (see Chapter 8) to
verify the correct configuration of the adapter.

There is an important exception to drivers being initialized at Ring 3, base
devicedriversand ADDs areinitialized at Ring 0.

A Common Strategy

One of the most common techniques in OS2 device driver design isfor the
Strategy section to request service from the device and wait for a device or
timer interrupt to signal completion of the request. In this case, the Strategy
section starts the 1/0 and issues a Block DevHIp call, which blocks the calling
thread. When the device interrupt signals that the operation is done, the
interrupt section Runs the blocked thread, completing the request. To protect
againg the request never being completed, such as with a down device, the
Block call can contain atime-out parameter. If the timeout expires before the
completion interrupt occurs, the Blocked thread is Run, allowing the Strategy
section to send the proper error message back to the kerndl.

Another method of timing-out a device isthe use of the SetTimer DevHIp
routine. A timer handler can be hooked into the OS2 system clock, and ticks
counted down until atime-out occurs. The Blocked thread can then be Run by
the timer handler.

The number and type of commands supported by the Strategy section are up to
the device driver writer. The device driver can process only the commands it
needs to, and let the others ssimply pass through by sending a DONE status back

99

tothe kernd. Illegal function calls may optionally be trapped, and
ERROR_BAD_COMMAND returned to the kernel.

Note that the OS2 kernel periodically issues special requests to the device
driver which are not generated by the application which opened the driver. An
example of this would be the 5-48 Code Page |OCtl which the kerndl sendsto
every OS/2 device driver immediately following the open.

If the application that opened the device driver fails or is aborted with a <cntl-
c> or <cntl-break>, the device driver is UnBlocked by the kerndl with an
unusual wake-up return code. The driver must return
ERROR_CHAR_CALL_INTERRUPTED to the kernel, which will in turn call
the CLOSE section of the driver.

In generd, it'sagood practice to trap all unsupported requests by returning the
DONE and ERROR_BAD_COMMAND status to the kernel, but be aware you
may have to make some exceptions for the unsolicited calls.

In the simplest of device drivers, the Strategy section may only contain an
OPEN, CLOSE, and READ or WRITE section. In a complicated device driver,
such as adisk device driver, the Strategy section may contain over two dozen
standard device driver functions and dozens of additional 10Ctl calls. IOCitl
calls are actually Strategy functions, but are broken down one step further to
provide more detailed or device-specific operations (see Chapter 6). For
instance, a device driver might send alist of parametersto be used in initializing
an |/O port, and return the status of that initialization operation. This type of
function would not be able to be done with one of the standard set of device
driver function calls because it is so device-specific. The IOCtl, however, iswell
suited to this type of functionality.

I nterrupt Section
The interrupt section handles interrupts from the device. Interrupts may be

caused by a character having been received, a character finished transmitting, or
any number of external events. Interrupt processing should be quick and

100

straightforward. The routine that handles the interrupt is appropriately called
the interrupt handler. Theinterrupt handler is a subroutine that is entered upon
thereceipt of an interrupt for the IRQ level registered with the SetlRQ DevHIp
cal. All interrupts in OS/2 are handled by the kerndl. With DOS, all a program
had to do was to hook the interrupt vector that it wanted. OS/2, however, does
not allow interrupt vectors to be changed, and if an attempt is made to change
one, the application will immediately be kicked off the system.

To register for an OS/2 interrupt, the device driver must send the address of its
interrupt handler and the requested interrupt (IRQ) level to OS2 via a SetlRQ
DevHIp call. If the SetlRQ is successful, OS2 will call the interrupt handler
upon receipt of an interrupt on that IRQ.

OS2 will cal the interrupt handlers that registered for a particular IRQ until the
interrupt handler claims the interrupt by clearing the carry flag (CLC).

The interrupt handler must be located in the first code segment of the device
driver. A sampleinterrupt handler is shown in Figure 5-10.

voi d interrupt_handler ()
{
int rupt_dev;
int source;
int cmd_b;
int st_b;
int port;
int tenp;
int rxlevel;

por t =UART_PORT_ADDRESS;

out p((port+2), 0x20); /1l switch to bank 1
source = getsrc (); /] get vector
switch (source)

{

/1 optional tinmer service routine
case tiner :

st _b=inp (port+3); // dec transmt cnt
if (ThisReadRP == 0) // nobody waiting
br eak;
Thi sReadRP- >RPst at us=(RPDONE | RPERR | ERROR_NOT_READY) ;
Run ((ULONG ThisWiteRP);// run thread
Thi sW it eRP=0;

101

br eak;

case txm
case txf

/] spurious wite interrupt
if (ThisWiteRP == 0)
t enp=i np(port +2);
br eak;
}
/] keep transmitting until no data left
if (!(QueueRead(&t x_queue, &utchar)))
outp((port), outchar);

ti ckcount =M N_TI MECUT;
br eak;

}

/1 done writing, run bl ocked thread
ti ckcount =M N_TI MECUT;
di sable_write();
Thi sWiteRP->RPstatus = (RPDONE) ;
Run ((ULONG ThisWiteRP);
Thi sWiteRP=0;
br eak;
case ccr
/1l control character, treat as nornal
i nchar =i np(port+5);
case rxf
/Il rx fifo service routine
if (Thi sReadRP ==

inchar=inp (port); // get character
el se

{
t enp=i np(port +4);
rxl evel =(temp & 0x70) / 0x10;

/1 enpty out chip FIFO

while (rxlevel !=0)

{
inchar=inp (port); // get character
rxlevel --;
tickcount =M N_TI MECUT;

/!l wite input data to queue

102

i f(QueueWite(& x_queue,inchar))

/1 error, queue nust be full

{

Thi sReadRP- >RPst at us = (RPDONE| RPERR| ERROR_GEN_FAI LURE) ;
Run ((ULONG) Thi sReadRP);

Thi sReadRP=0;

br eak;

comerror_word | = inp(port+5);

} /1 while rxlevel
} /1 else
} /1 switch (source)
EQ (I RQwum; // send EA

Figure 5-10. Interrupt handler.

If the device driver isrunning on an I1SA bus machine, OS2 calls the device
driver’ sinterrupt handler with interrupts disabled, since interrupts cannot be
shared. On an EISA or Micro Channel machine, interrupts remain enabled when
the interrupt handler is entered. Shared interrupts are one of the features of the
IBM Micro Channel and EISA bus architectures, which allow more than one
deviceto shareasingleinterrupt level.

Device drivers which share interrupts must claim interrupts that belong to them
by clearing the carry flag. Interrupt handlers on EISA and Micro Channel
machines can refuse the interrupt by setting the carry flag before exiting the
interrupt handler. The OS/2 kernel will continue to call al of the interrupt
handlersregistered for the particular IRQ until one of the handlers claimsthe
interrupt. Only the interrupt handler that claims the interrupt should issue an
EOQI, which resets the interrupt so the interrupt handler can be entered again. If
you don’t issue the EOI, you'll never get another interrupt. Only the interrupt
handler that owns the interrupt should issue the EOI.

Any extended time spent in the interrupt handler can cause performance
problems. Theinterrupt handler must quickly perform its functions and exit. In
the case of character devices, the OS2 DevHIp library supports fast reads and
writesto circular character queues.

103

For block devices, interrupt handling is fast because the interrupt is usually
caused by a DMA completion or disk-seek complete. Data is usually transferred
to the user buffer usng DMA, eiminating the need to transfer data during
interrupt processing. On a DMA transfer, the DMA controller is set-up, started,
and the device driver exited to allow other threads to run. When the DMA
completes, it will generate a DMA completion interrupt, causing the device
driver’sinterrupt handler to be entered. The interrupt handler can then take the
appropriate action, such as starting a new DMA transfer. Note that the interrupt
handler iswritten in C. It could have written using assembly language, but it's
much easier to write and debug when written in C.

Most UART s and adapters contain some type of buffering, which allows a
device driver alittle dack when servicing higher data rates. The examplein
Figure 5-9 shows an interrupt handler for a serial 1/0 port utilizing the Intel
82050 UART. The UART has an internal 4-byte buffer and two internal timers.
When an interrupt occurs, the UART is examined to determine the type of
interrupt: transmit, receive, or clock.

The interrupt handler is not entered directly from OS2, but is called from our
small assembly language start-up routine (see Figure 5-7). When the SetlRQ
call ismade to register the interrupt handler, the address passed in the call isthe
address of theinterrupt handler entry point in the device driver start-up code.
The start-up code in turn calls the C language interrupt handler.

The interrupt handler routineis not difficult to write or understand. It can,
however, be difficult to debug. Errorsthat occur in the interrupt handler
frequently appear only in areal time context; that is, while the interrupt handler
is being entered as aresult of a hardware interrupt. The C library function
printf, for example, cannot be called from within an interrupt handler.
Application debuggers, such as CodeView, cannot be used in an interrupt
handler. A debugger such asthe OS/2 kernel debugger or smilar must be used.
A breakpoint placed in the interrupt routine will cause the program to stop, and
further interrupts may pass undetected while the program is stopped. A problem
may not appear when breakpoints are inserted, but will reappear when the
program executes normally. It then becomes necessary for the device driver

104

writer to “visualize’ the operation of the interrupt handler and begin applying
solutions until the problem is fixed.

The interrupt handler may receive unsolicited or spurious interrupts from the
hardware, and they should be handled accordingly by the OS/2 device driver. In
the sampleinterrupt handler, a check is made to see whether avalid read or
write request is pending. If not, the deviceisreset and the interrupt handler is
exited, effectively ignoring the interrupt. Thisis not a recommended practice.

Examine the case rxf section of the interrupt handler in Figure 5-9. Thisis
where areceived character is detected. When the UART receives a complete
character, it setsthe RX FIFO register bit which generates an interrupt. The
interrupt handler examines the interrupt source register to determineif the
interrupt was caused by a received character. If so, it checks to see whether a
valid request is pending. If not, the character isthrown away and the interrupt
handler exited. If avalid read request is pending, the UART is queried to see
how many characters are in its four-character FIFO. (At high datarates, it is
possible that a character had come in while we were handling an interrupt.)
Each character istaken out of the FIFO one by one and written to a circular
character queue. The OS2 DevHIp library supports fast reads and writes to
these circular queues. To prevent collision, queue reads and writes are
protected by disabling interrupts around the queue accesses. The interrupt
handler continues to receive characters and place them into the receive queue
until the queue becomes full or a specified time period has e apsed.

In the sample interrupt handler, datais passed back to the Strategy section of
the device driver when the queue becomes full or when a specified time has
passed without the reception of a new character. If the sample device driver
was intended for use as aterminal device driver, the interrupt handler could
have sent the data back to the Strategy section upon receipt of an end character,
such as a carriage return. Optionally, the interrupt handler can return each
character to the Strategy section asit isreceived. This method is more CPU
intensive, however, and is generally not recommended. Data rates of 9600 baud
and below can generally use the single-character method, but speedsin excess
of 9600 baud may require external buffering, DMA, or a microprocessor-based
adapter card. Overall system configuration should play a part in the design of

105

your interrupt handler. A heavily loaded system may not be able to respond fast
enough to multiple, high-speed interrupts on a character-by-character basis,
especially if the driver is servicing several devices on the same interrupt level.

The Timer Handler

At 9600 baud, the time required to receive a character viaa serial port is
approximately one millisecond. If we received several characters, and no more
characters were received within two or three hundred milliseconds, we could
assume that there was an interruption of data. This could be caused by the lack
of data, or because aterminal operator smply stopped typing. In any case, this
would be a perfect opportunity to send the received data back to the
application.

In OS2, adevice driver can “hook” the system timer interrupt with a call to the
DevHIp library SetTimer function. The device driver passes OS/2 a pointer to a
timer handler, and OS2 calls the timer handler (see Figure 5-11) each time it
receives a system clock interrupt. OS2 aso calls any other timer handlers that
had been previoudy registered.

If your driver calls SetTimer, be sure to hook the timer as the last step in your
Init code. If your Init fails, the procedure isto return O for the code and data
segment offsets, releasing the memory occupied by the driver. If your timer
references avariablein the driver’ s data segment, it is possible that the variable
will become dereferenced before the timer handler is destroyed, resulting in a
general protection fault in your timer handler.

voi d tinmer_handl er()

if (Thi sReadRP == 0) /1l make sure we're waiting
return;

Thi sReadRP- >RPst at us=(RPDONE) / / exceeded tick cnt,run thread
Run ((ULONG) Thi sReadRP);
Thi sReadRP=0L; /! insure no nore entry here

}

Figure 5-11. TickCount timer handler.

106

The operation issmple. If no data appears within eight or ten 32-millisecond
system time ticks, the assumption can be made that the flow of input data has
stopped, or at least paused. The timer handler checks for avalid pending read
request. Thisis necessary because the timer handler will continue to be called
every 32 milliseconds, even if the device driver isidle. If avalid request is
pending, the DevHIp Run function is called to Run the Blocked thread and send
the data back to the requesting application. When the Strategy section becomes
unblocked, it retrieves the data from the receiver queue and sendsit to the
application’s data buffer.

The TickCount DevHIp could also be used to set up atimer handler that gets
called every eight or ten ticks and checks if data has been read (see Figure 5-
12). The TickCount method is more efficient, as the timer handler isnot called
until the count specified in the TickCount call is reached. The TickCount
DevHIp routine can be also used to reset the tick count for a previously
registered time handler.

voi d tinmer_handl er()

if (Thi sReadRP == 0) /1 make sure we're waiting
return;

tickcount--; /'l decrement counter

if(tickcount == 0)

{
Thi sReadRP- >RPst at us=(RPDONE) ; // run bl ocked thread
Run ((ULONG) Thi sReadRP);
Thi sReadRP=0L; /'l keep us out of here
tickcount =M N_TI MEQUT; /Il reset tick-based cntr
}
}

Figure 5-12. TickCount timer handler.

Context Hooks

A context hook isa small function that can be executed when your driver exits,
allowing you to call DevHIpsthat can’'t be called in the interrupt context. The

107

most common use of a context hook isto clear a 32-bit shared event
semaphore. There are several DevHIps that deal with 16-bit semaphore (see
Appendix A) and several othersthat deal with 32-bit ssmaphores. One of the
most common uses of a semaphore isto have athread blocked on the
semaphore, then wake up when another event occurs, such as an interrupt. For
example, athread which processes a buffer of data can be blocked waiting for
the data buffer to be filled. When the buffer isfilled by the device driver, the
device driver sends the data to the processing thread’ s buffer and unblocks the
thread allowing the data to be processed.

If the application is 16-hit, the device driver can use the 16-bit semaphore
DevHIps to manipulate the semaphore. More specifically, the device driver can
clear the 16-bit semaphore, using DevHIp SemClear, whilein the driver’s
interrupt routine. If the application 32-bit, and the semaphore is a 32-bit
semaphore, the device driver is not allowed to clear the semaphorein the
interrupt handler. The DevHIp to clear a 32-bit semaphore, ClearEventSem, is
not availablein the interrupt context. It is, however, available at task time. The
solution isto place the call to CloseEventSem in the context hook, since the
context hook will get called at task time. The driver creates and armsthe
context hook, and it runs when the driver exits. Refer to the documentation on
AllocCtxHook, ArmCtxHook and FreeCtxHook in Appendix A for more
detailed information.

109

Chapter 6 - Device Driver Strategy Commands

Strategy commands are the commands that the driver receives from the OS/2
kerndl, usually in response to a driver request from an application thread. The
kernel usesthe device driver Request Packet (see Figure 6-1) to communicate
with the device driver. The kernel sends a request to the device driver by filling
in the proper fieldsin the Request Packet, and sending the driver a pointer to
the Request Packet.

0OS/2 does not guarantee the order that the Request Packets arrive at the device
driver are preserved in the same order that the API requests were issued from
the application threads. It is possible that Request Packets may arrive out of
order, and the OS2 device driver isresponsible for providing the
synchronization mechanism between itself and application thread requests.

A Reguest Packet consists of two main parts. the Request Header and the
command-specific data field.

typedef struct ReqgPacket {

UCHAR RPI engt h; /'l Request Packet |ength

UCHAR RPuni t; /1 unit code for block DD only
UCHAR RPcommand, /1 command code

USHORT RPst at us; /'l status word

UCHAR RPreserved[4]; /'l reserved bytes

ULONG RPql i nk; /1 queue |inkage

UCHAR avail[19]; /1 command specific data

} REQPACKET;

Figure 6-1. Request Packet definition.
RPlength contains the total length in bytes of the Request Packet (the length of
the Request Header plus the length of the command-specific data).

RPunit identifies the unit for which the request isintended. Thisfield has no
meaning for character devices.

110

RPcommand indicates the requested device driver function.

RPStatus is defined only for OPEN and CLOSE Request Packets on entry to
the Strategy routine. For all other Request Packets, the status field is undefined
on entry.

#defi ne RPERR 0x8000 // error occurred
#def i ne RPDEV 0x4000 // error code
#defi ne RPBUSY 0x0200 // device is busy
#def i ne RPDONE 0x0100 // driver done bit
#def i ne ERROR_WRI TE_PROTECT 0x0000 // Wite Prot

#defi ne ERROR_BAD UNI' T 0x0001 // Unknown Unit
#def i ne ERROR_NOT_READY 0x0002 // Device Not Ready
#defi ne ERROR_BAD_COVVAND 0x0003 // Unknown Conmand
#defi ne ERROR_CRC 0x0004 // CRC Error

#defi ne ERROR_BAD_LENGTH 0x0005 // Bad Driver Req Len
#defi ne ERROR_SEEK 0x0006 // Seek Error

#defi ne ERROR_NOT_DOCS_DI SK 0x0007 // Unknown Medi a
#def i ne ERROR_SECTOR_NOT_FOUND 0x0008 // Sector Not Found
#defi ne ERROR_OUT_OF_PAPER 0x0009 // CQut of Paper
#def i ne ERROR_WRI TE_FAULT O0x000A // Wite Fault

#def i ne ERROR_READ_FAULT 0x000B // Read Fault

#defi ne ERROR_GEN_FAI LURE 0x000C // GCeneral Failure
#defi ne ERROR_DI SK_CHANGE 0x000D // Change Di sk
#defi ne ERROR_UNCERTAI N_MEDI A 0x0010 // Uncertain Media

#defi ne ERROR_CHAR CALL_| NTERRUPTED 0x0011 // Char Call Interrupt

#defi ne ERROR_NO_MONI TOR_SUPPORT 0x0012 // Mons Not supported

#defi ne ERROR_|I NVALI D_PARAMETER 0x0013 // Invalid Paraneters
#def i ne ERROR_DEVI CE_I N_USE 0x0014 // Dev Already In Use
#def i ne ERROR_QUI ET_FAI L 0x0015 // Quiet faile bits

Figure 6-2. Standard OS/2 device driver errors.

For an OPEN Request Packet, bit 3 (MON_OPEN_STATUS,08H) of the
status field is set if the packet was generated from a DosMonOpen; otherwise it
was a DosOpen.

For a CLOSE Reguest Packet, bit 3 (MON_CLOSE_STATUS,08H) of the
statusfield is set if the packet was generated by a DosMonClose or a DosClose
of ahandle that was generated by a DosMonOpen. Otherwiseg, it was a
DosClose on a non-monitor handle.

111

Upon exit from the Strategy routine, the status field describes the resulting state
of the request (see Figure 6-2).

Bit 15 (RPERR) isthe Error bit. If thishit is set, the low 8 bits of the status
word (7-0) indicate the error code. The error codeis processed by OS/2 in one
of the following ways:

» If thelOCitl category is‘User Defined’ (greater than 127), FFOO is
INCLUSIVE OR'd with the byte-wide error code.

* If not ‘User Defined’ and Bit 14 (RPDEV - device driver defined error
code) isset, FEOO isINCLUSIVE OR'd with the byte-wide error code.

* Otherwise, the error code must be one of those shown and is mapped by the
kernel into one of the standard OS/2 API return codes before being returned
to the application.

Bit 14 (RPDEV) isadevice-driver defined error if set in conjunction with bit
15.

Bits 13 - 10 are reserved.
Bit 9 (RPBUSY) isthe Busy hit.

Bit 8 (RPDONE) isthe Done bit. If it is set, it means that the operation is
complete. The driver normally sets the done when it exits.

Bits 7-0 are the low 8 hits of the status word. If bit 15 is set, hits 7-0 contain
the error code.

ERROR_UNCERTAIN_MEDIA (10H) should be returned when the state of
the mediain the driveis uncertain. This response should NOT be returned to
the INIT command. For fixed disks, the device driver must begin in amedia
uncertain state in order to have the media correctly labelled.

ERROR_CHAR _CALL_INTERRUPTED (11H) should be returned when the
thread performing the 1/0 was interrupted out of a DevHIp Block before
completing the requested operation.

112

ERROR_NO_MON_SUPPORT (12H) should be returned for monitor requests
(DosMonOpen, DosMonClose, DosMonRegister), if device monitors are not
supported by the device driver.

ERROR_INVALID_PARAMETER (13H) should be returned when one or
more fields of the Request Packet contain invalid values.

RPglink is provided to maintain alinked list of Request Packets. It is a pointer
to the next packet in the chain, or -1L if thisisthe end of the chain. The device
driver may use the Request Packet management DevHIp services
PullRegPacket, PushRegPacket, FreeReqPacket, SortReqPacket, PullParticular,
and AllocRegPacket to manipulate the linked list of Request Packets.

Summary of Device Driver Commands

Table 6-1 contains a summary of device driver Strategy commands. The
commands are described in detail in the following subsections of this chapter.

Table 6-1 Device Driver Strategy Commands

Code M eaning Devices

0x00 Init Character, Block
0x01 Media Check Block Only
0x02 Build BIOS Parameter Block | Block Only
0x03 Reserved N/A

0x04 Read Character, Block
0x05 Nondest. Read, no wait Character Only
0x06 Input Status Character Only
0x07 Flush Input Buffer Character Only
0x08 Write Character, Block
0x09 Write w/Verify Character, Block
Ox0a Output Status Character Only
0x0b Flush Output Buffer Character Only
0x0c Reserved N/A

oxod Open Device Character, Block
0x0e Close Device Character, Block
OxOf Removable Media Block Only
0x10 Generic |OCtl Character, Block
Ox11 Reset Media Block Only
0x12 Get Logical Drive Map Block Only
0x13 Set Logical Drive Map Block Only
0x14 Dengall Character Only
0x15 Reserved N/A

0x16 Partitionable Disk Block Only
0x17 Get Fixed Disk Map Block Only
0x18 Reserved N/A

0x19 Reserved N/A

Ox1la Reserved N/A

Ox1b Reserved N/A

Ox1c Shutdown Character, Block
Ox1d Get Driver Capabilities Block

113

114

Table 6-1. Device Driver Strategy Commands (cont'd)

Ox1le

Reserved

Ox1f

InitComplete

Character, Block

115

Oh / Init

Initialize the device.

Format Of Request Packet

uni on
struct { /1 init packet(one entry,exit)
UCHAR units; /1 nunber of units
FPFUNCTI ON DevH p; /1 &DevH p
char far *args; /1l & init arg pointers
UCHAR drive; /] drive #
init;
struct {
UCHAR units; /] sanme as input
OFF final CS; /1 final code offset
OFF final DS; /1 final data offset
FARPO NTER BPBarr ay; /1 &BPB
} InitEXit;
}
Comments

The INIT function is called by the kernd during driver installation at boot time.
The INIT section should initialize the adapter and device. For example, if the
device was a serial port, the initialization section might set the baud rate, parity,
stop hits, etc. on a serial port or check to seeif the deviceisinstalled correctly.
INIT iscalled in a special mode at Ring 3 with some Ring O capabilities. For
example, the driver may turn off interrupts during INIT, but they must be
turned back on before returning to the kernel. The INIT code may also perform
direct port 1/0 without generating protection violations. Usually, the driver will
allocate buffers and data storage during INIT, to ensure that the driver will
work when installed. Because the memory allocations are done at Ring 3, the
system can check to make sure the alocations are valid. If not, the driver can
remove itsalf from memory, freeing up any previoudy allocated space for other
system components. Since the INIT code is executed only once, and during
system boot, its not necessary to optimize the INIT code. Do all of the work
you can up front in the INIT section, as it may be time-prohibitive or even
impossible to do some initialization during normal kernel-mode driver
operation.

116

On entry, the INIT Request Packet contains the following fields as inputs to the
devicedriver:

* A pointer to the DevHIp entry point. (in OS2 1.x, thisisabimodal pointer)

* apointer to the initialization arguments from the DEVICE=linein
CONFIG.SYS.

* Thedrive number for thefirst block device unit.

The pointer to theinitialization parameters allows a device driver to be
configured at boot time, based on arguments placed on the DEVICE= linein
CONFIG.SYS. See Chapter 8 for adiscussion of how to do this, and alisting
of the INIT section of an actual driver that performs this function.

When a base block device driver or ADD gets initialized, the pointer to the
initialization argumentsis actually a pointer to up to five pointers. In OS2 1.x,
the list contains three pointers. In OS2 2.0, the list contains four pointers. In
OS2 Warp, thelist contains five pointers. The first pointer pointsto the
InitCache parameter list. The second pointer points to the disk configuration
table. The third pointer pointsto the IRQ vector table. The fourth pointer
points to the argument list from the DEVICE= statement in CONFIG.SYS. The
fifth pointer points to the MachineConfigurationinfo structure, which contains
the information shown in Figure 6-3.

117

t ypedef _Machi neConfigurationlnfo
{

USHORT Lengt h; /1l length of info

USHORT Busl| nf o; /1 1=MCA, 2=ElI SA, 3=l SA, 4-
8="

USHORT CPUI nf o; /1l 1=386, 2=486

UCHAR Subnodel ; [l system subnodel

UCHAR Mbdel ; /] system nodel

USHORT ABI OSRevi sion; // revision of system ABI OS
(PS/ 2)

USHORT Har dDr i veCount; // nunber of hard drives

UCHAR Reserved; /'l reserved for future

} Machi neConfi gurati onl nf o;

Figure 6-3. MachineConfigurationlnfo structure.

Upon the completion of initialization, the device driver must set certain fieldsin
the Request Packet as follows:

* Thenumber of logical block devices or units the driver supports (block
devices only).

» The WORD offset to the end of the code segment.

* The WORD offset to the end of the data segment.

* A pointer to the BIOS Parameter Block or BPB (block devices only).

A block device driver must also return the number of logical devices or units
that are available. The kernd’ sfile system layer will assign sequential drive
letters to these units. A character device driver should set the number of devices
to 0.

Asafinal step in initialization, both block and character device drivers must
return the offsets to the end of the code and data segments. This allows the
device driver to release code and data needed only by the device driver’s
initialization routine. To facilitate this, the initialization code and data should be
located at the end of the appropriate segments. A device driver which fails
initialization should return O for both offset values.

118

A block device driver must return an array of BPBs for each of the logical units
that it supports. A character device driver should set the BPB pointer to O.

If initialization is successful, the status field in the Request Header must be set
to indicate no errors and the done status (RPDONE).

If the device driver determines that it cannot initialize the device, it should
return with the error bit (RPERR) in the Request Header status field set. The
device driver should return RPERR | RPDONE | ERROR_GEN_FAILURE.
Whatever the reason for the failure, the status must always indicate that the
request is done (RPDONE).

The system loader records the last non-zero code and data segment offsets
returned for the devices which successfully completed initialization. These
offset values are used to re-size the device driver’ s code and data segments.

If the device driver supports multiple devices or units, the kernd will call the
initialization section for each of the devices or units. If your device driver hasa
singleinitialization section, the offset values returned to the kernd should be
the same for each device initialization that is successful.

A limited number of OS/2 system API routines are avail able to the device driver
during initialization. Those API routines are listed in Table 6-2.

119

Table 6-2. API Routines Available During I nit

Routine Name Description

DosBeep Generate a beep from the speaker
DosCaseMap Perform case mapping
DosChgFilePtr Move a read/write file pointer
DosClose Close afilehandle

DosDelete Dedeteafile

DosDevConfig Get a device's configuration
DosDevI OCtl Do an |OCtl request
DosFindClose Close a search directory handle
DosFindFirst Find the first matching file
DosFindNext Find next file

DosGetEnv Get address of process environment
DosGetMessage Get a system message
DosOpen Open afile

DosPutMessage Display message to handle
DosQCurDir Query current directory
DosQCurDisk Query current disk
DosQFilelnfo Query file information
DosQFileMode Query file mode

DosRead Read from file
DosSMRegisterDD Register driver for SM events
DosWrite Writetofile

For more information about these functions, refer to the IBM OS2 Warp
Control Program Reference.

120

1H/ M edia Check
Determine the state of the media.

Format Of Request Packet

struct { /1 NMEDI A_CHECK
UCHAR nedi a; /1 media descriptor
UCHAR return_code; /'l see bel ow
FARPO NTER prev_vol une; /1 &previous volume |ID
} Medi aCheck;
Comments

On entry, the Request Packet will have the media descriptor field set for the
driveidentified in the Request Header (see Table 6-3).

The device driver must perform the following actions for the MEDIA CHECK
request:

» Set the status word in the Request Header.
» Set thereturn code where:

-1 = Media has been changed

0 = Unsureif media has been changed

1 = Media unchanged

To determine whether you are using a single-sided or a double-sided 8-inch
diskette (FEh), attempt to read the second side. If an error occurs, you can
assume the diskette is single-sided.

121

Table 6-3. Media Descriptor Bytes

Disk Type #Sides #Sectors/Track | Media
Descriptor
Fixed Disk | -===——-- | == OxF8
3.5Inch 2 09 OxF9
3.5Inch 2 18 OxFO
5.25Inch 2 15 OxF9
5.25Inch 1 09 OxFC
5.25Inch 2 09 OxFD
5.25Inch 1 08 OXFE
5.25Inch 2 08 OxFF
8Inch 1 26 OxFE
8Inch 2 26 OxFD
8Inch 2 08 OxFE

The Media Check function is called by the kerndl prior to disk access, and is

therefore valid only for block devices. The kernd sendsto the driver the media
ID byte for the type of disk that it expectsto find in the selected drive.

122

2H / Build BPB

Build the BIOS Parameter Block (BPB). The driver receives this request when
the media has changed or when the media type is uncertain.

Format Of Request Packet

struct { /1 BU LD BPB
UCHAR nedi a; /1 media descriptor
FARPO NTER buf fer; /1l 1l-sector buffer FAT
FARPO NTER BPBarr ay; /1 &BPB array
UCHAR drive; /] drive #
} Buil dBPB;
Comments

On entry, the Request Packet will have the media descriptor set for the drive
identified in the Request Header. The transfer addressisavirtual addressto a
buffer containing the boot sector media, if the block device driver attribute field
has bit 13 (DAW_IBM) set; otherwise, the buffer contains the first sector of the
File Allocation Table (FAT).

The device driver must perform the following actions:

» Set the pointer to the BPB table.
» Update the media descriptor.
» Set the status word in the Regquest Header.

The device driver must determine the media type in the drive, in order to return
the pointer to the BPB table. Previously, the FAT ID byte determined the
structure and layout of the media. Because the FAT ID byte has only eight
possible values (F8 through FF), it is clear that, as new media types are
invented, the available values will soon be exhausted. With the varying media
layouts, OS2 needs to be aware of the location of the FATs and directories
before it reads them.

123

The device driver should read the boot sector from the specified buffer. If the
boot sector isfor DOS 3.00, 3.00, 3.00, 3.10, 3.20, or OS/2, the device driver
returns the BPB from the boot sector. If the boot sector isfor DOS 1.00 or
1.10, the device driver reads the first sector of the FAT into the specified
buffer. The FAT ID is examined and the corresponding BPB is returned.

The information relating to the BPB for a particular mediais kept in the boot
sector for the media (see Table 6-4).

Table 6-4. Boot Sector For mat
Field Length
Short Jump (OXEB) followed by NOP 2 bytes
OEM Name and Version 8 bytes
Bytes Per Sector word
Sectors/Allocation Unit (base 2) byte
Reserved Sectors (starting at 0) word
Number of FATs byte
Number of Root Dir Entries (max) word
Number of Sectors Total word
Media Descriptor byte
Number of Sectorsin asingle FAT word
Sectors Per Track word
Number of Heads word
Number of Hidden Sectors word

The last three WORDs in Table 6-4 help the device driver understand the
media. The number of headsis useful for supporting different multiple head
drives that have the same storage capacity but a different number of surfaces.

124

The number of hidden sectorsis useful for supporting drive partitioning
schemes.

For driversthat support volume identification and disk change, this call should
cause a new volume identification to be read off the disk. This call indicates that
the disk was properly changed.

125

4H, 8H, 9H / Read or Write

Read from or write to adevice. Read (4H) / Write (8H) / Write with Verify
(9H)

Format Of Request Packet

struct { /1 READ, WRITE, WRI TE_VERI FY
UCHAR medi a; /1 media descriptor
PHYSADDR buffer; /1 transfer address
USHORT count; /] bytes/sectors
ULONG startsector; /] starting sector #
USHORT reserved;
} ReadWite;
Comments

On entry, the Request Packet will have the media descriptor set for the drive
identified in the Request Header. The transfer addressis a 32-bit physical
address of the buffer for the data. The byte/sector count is set to the number of
bytes to transfer (for character device drivers) or the number of sectorsto
transfer (for block device drivers). The starting sector number is set for block
device drivers. The System File Number is a unique number associated with an
open request.

The device driver must perform the following actions:

» Perform the requested function.
e Set the actual number of sectors or bytes transferred.
» Set the status word in the Request Packet.

The DWORD transfer address in the Request Packet is alocked 32-bit physical
address. The device driver can useit to call the DevHIp function PhysToVirt
and obtain a segment swapping address for the current mode. The device driver
does not need to unlock the address when the request is compl eted.

126

READ isastandard driver request. The application calls the READ Strategy
entry point by issuing a DosRead with the handle obtained during the DosOpen.
The READ routine may return one character at atime, but more often returns a
buffer full of data. How the READ function worksis up to the driver writer.
The driver returns the count of charactersread and stores the received datain
the data segment of the application. READ returns one of the standard driver
return codes.

Note: The functions IOCtl Read and IOCtl Write are not supported by the
standard base OS2 device drivers.

WRITE is a standard driver request, called by the application asaresult of a
DosWrite call. The application passes the address of data to write (usualy in
the applications data segment) to the driver and the count of the charactersto
write. The driver writes the data and returns the status to the application, along
with the number of characters that were actually written. WRITE returns a
standard driver return code.

127

5H / Nondestructive Read No Wait
Read a character from an input buffer without removing it.

Format Of Request Packet

struct { /1 NON_DESTRUCT READ/ NO WAI T
UCHAR char _returned; /1 returned character
} ReadNoWi t;
Comments

The device driver must perform the following actions:

* Return a byte from the device.
» Set the status word in the Request Header.

For input on character devices with a buffer, the device driver should return
from this function with the busy bit (RPBUSY) clear, along with a copy of the
first character in the buffer. The busy bit is set to indicate that there are no
charactersin the buffer. This function allows the operating system to ook
ahead one input character without blocking in the device driver.

128

6H, AH / Input or Output Status
Determine the input or output status of a character device.

Format Of Request Packet

[No Paraneters

Comments
The device driver must perform the following actions:

* Peform the requested function.
» Set the busy bit.
» Set the status word in the Request Header.

For output status on character devices, if the busy bit (RPBUSY)) isreturned
Set, an output request is currently pending. If the busy bit isreturned set to O,
there is no current request pending.

For input status on character devices with a buffer, if the busy bit isreturned
s, there are no characters currently buffered in the device driver. If the busy
bit isreturned clear, thereis at least one character in the device driver buffer.
The effect of busy bit = Oisthat aread of one character will not need blocking.
Devices that do not have an input buffer in the device driver should always
return with the busy bit clear. Thisisa“peek” function, to determine the
presence of data.

129

7H, BH / Input Flush or Output Flush
Fush or terminate all pending requests.

Format Of Request Packet

[No Paraneters

Comments
The device driver must perform the following actions:

* Peform the requested function.
» Set the status word in the Request Header.

Thiscall tdlsthe device driver to flush (terminate) all known pending requests.
Its primary useisto flush the input or output queue on character devices. The
Input Buffer Flush should flush any receiver queues or buffers, and return
DONE to the kerndl. The Output Buffer Flush should flush any transmitter
gueues or buffers.

130

DH,EH / Open or Close

Open or Close a Device.

Format Of Request Packet

struct { /| OPEN CLOSE
USHORT sys_file_num; /1 systemfile nunmber
} Opend ose;
Comments

The System File Number is a unique number associated with an open request.
The device driver must perform the following actions:

* Peform the requested function.
» Set the status word in the Request Header.

Character device drivers may use OPEN/CLOSE requests to correlate using
their devices with application activity. For instance, the device driver may
increase a reference count for every OPEN, and decrease the reference count
for every CLOSE. When the count goesto O, the device driver can flush its
buffers. This can be thought of asa“last close causes flush.”

The OPEN function is called as a result of the application issuing a DosOpen
call. The kernd makes note of the DosOpen request, and if it is successful, the
kernel sends back a handle to the application to use for subsequent driver
service. The driver writer can use this section to initialize a device, flush any
buffers, reset any buffer pointers, initialize character queues, or anything
necessary for a clean starting operation.

The CLOSE isusually called as aresult of the application doing a DosClose
with the correct driver handle, but it is also called when the application that
opened the driver terminates or is aborted with a <cntl-c> or <cntl-break>.

131

In most cases, its agood idea to make sure that the application closing the
driver isthe same one that opened it. To ensure this, the device driver should
save the PID of the application that opened the driver, and make sure that the
closing PID isthe same. If not, the device driver should reject it as a bogus
request. The driver can get the PID of the calling program using the
GetDOSVar DevHIp routine.

All devices associated with the device driver should be made quiescent at
CLOSE time.

FH / Removable Media

Check for removable media.

Format Of Request Packet

[No Paraneters

Comments
The device driver must perform the following actions:

o Setthebusy bit to 1 if the mediais non-removable.
o Set thebusy bit to O if the mediaisremovable.
» Set the status word in the Request Header.

The driver recaives this request as a result of an application generating an 10Ct|
call to Category 8, Function 0x20. Instead of calling the IOCtl section of the
device driver, the kernd issues thisrequest. The driver must set the busy bit
(RPBUSY) of the Request Packet status if the media is non-removable, and
must clear it if the mediaisremovable.

132

10H / Generic | OCitl

Send 1/0 control commands to a device.

Format Of Request Packet (DosDevl OCtl)

struct { /1 10l
UCHAR cat egory; /| category code
UCHAR function; /1 function code
FARPO NTER par aneters; /] ¶neters
FARPO NTER buf fer; /1 &buffer
USHORT sys_file_num /1 systemfile nunmber
}1octl;

Format of Request Packet (DosDevl OCtl2)

struct { /1 10l
UCHAR cat egory; /| category code
UCHAR function; /1 function code
FARPO NTER par aneters; /] ¶neters
FARPO NTER buf fer; /1 &buffer
USHORT sys_file_num /1 systemfile number
USHORT parm buf I ength;// length of paraneter buffer
USHORT data_buf _length // length of data buffer
}1octl;
Comments

On entry, the request packet will have the IOCtl category code and function
code set. The parameter buffer and the data buffer addresses are passed as
virtual addresses. Note that some IOCtl functions do not require data and/or
parameters to be passed. For these |OCltls, the parameter and data buffer
addresses may contain NULL pointers. The System File Number is a unique
number associated with an OPEN request.

If the device driver indicates (in the function level of the device attribute field of
its Device Header) that it supports DosDevli OCtl2, the Generic IOCtl request
packets passed to the device driver will have two additional words, containing
the lengths of the Parameter Buffer and Data Buffer, respectively. If the device
driver indicates through the function level that it supports DosDevIOCtl2, but

133

the application issues DosDevl OCltl, the Parameter Buffer and Data Buffer
length filds will be set to zero.

The device driver must perform the following actions:

* Peform the requested function.
» Set the status word in the Request Header.

The device driver isresponsible for locking the parameter and data buffer
segments, and converting the pointers to 32-bit physical addresses, if necessary.

Refer to the OS2 Version 3.0 Programming Reference and the OS/2 Version
3.0 Application Programming Guide for more detailed information on the
generic |OCtl interface for applications.

The third and fourth command-specific parameters of an |OCtl are the address
of the application program’s data buffer and parameter buffer, respectively. The
format of the two buffersis entirely up to the driver writer. The parameter
buffer might contain alist of USHORTS, UCHARS, or pointers. However,
pointers are not recommended because, depending on the type of application
sending them (16:16 or 0:32), the pointers might require further trandation,
affecting portability.

The data buffer parameter might be the address of a data buffer in the
application program where the driver would store data from the device. It
should also be noted that the IOCtl need not pass or receive any data.

Another feature of an 10Ctl isits ability to send back device-specific
information to the application. A standard driver request, such as DosRead or
DosWrite, returns a value to the application which is used to determine whether
or not the operation was successful. For something like aterminal driver, a
simple pass/fail indication might be sufficient. Suppose, however, that the driver
needed to tell the application that the data wasin ASCII or binary format, or
that a parity error was detected while receiving it. Here an 10Ctl would be a
better choice because the kernel ‘massages' return codes from standard function

134

callsto fit within the standard error definitions. The IOCtl, however, will pass
back special error codes to the application exactly as they were set in the driver.

11H / Reset Media

Reset the Uncertain Media error condition and allow OS/2 to identify the
media.

Format Of Request Packet

[No Paraneters

Comments

On entry, the unit code identifies the drive number to be reset.
The device driver must perform the following actions:

» Set the status word in the Request Header.
* Resat the error condition for the drive.

Before this command, the driver had returned ERROR_UNCERTAIN_MEDIA
for the drive. This action informs the device driver that it no longer needsto
return the error for the drive.

12H, 13H / Get/Set Logical Drive
Get/Set Logical Drive Mapping

Format Of Request Packet

[No Paraneters

Comments

135

On entry, the unit code contains the unit number of the drive on which this
operation is to be performed.

The device driver must perform the following actions:

* For GET, it must return thelogical drive that is mapped onto the physical
driveindicated by the unit number in the Request Header.

» For SET, it must map thelogical drive represented by the unit number onto
the physical drive that has the mapping of logical drives.

» Thelogical driveisreturned in the unit codefield. Thisfiddisset to O if
thereisonly onelogical drive mapped onto the physical drive.

» Set the status word in the Request Header.

136

14H / Deinstall
Request deingtall of driver.

Format Of Request Packet

[No Paraneters

Comments

When adevice driver isloaded, the attribute field and namein its header are
used to determine if the new device driver is attempting to replace a driver
(device) already ingtaled. If s0, the previoudy installed device driver is
requested by the operating system to DEINSTALL. If the installed device
driver refuses the DEINSTALL command, the new device driver is not allowed
to be loaded. If the installed device driver performsthe DEINSTALL, the new
devicedriver isloaded.

If a character device driver honorsthe DEINSTALL request, it must perform
the following actions:

* Reeaseany allocated physical memory.

* UnSet any hardware interrupt vectorsthat it had claimed.

* Removeany timers.

* Clear theerror bit in the status word to indicate a successful DEINSTALL.

If the character device driver determines that it cannot or will not deingtall, it
should set the error bit (RPERR) in the status field and set the error code to
ERROR_BAD_COMMAND (03H).

Dengall Considerations

An ABIOS device driver maps its device nameto a unit within aLogical ID
(LID). It receives a DEINSTALL request for its device name, which implies a
single unit of aLID. To honor the DEINSTALL request, it must relinquish the
LID by calling DevHIp FreeLIDEntry at DEINSTALL time.

137

In honoring a DEINSTALL command, a device driver must remove its claim on
the interrupt level by issuing an UnSetIRQ DevHlIp call.

If the device driver’s deviceisill-behaved (that is, it cannot betold to stop
generating interrupts), the device driver must not remove itsinterrupt handler,
and must refuse the DEINSTALL request.

16H / Partitionable Fixed Disks

Thiscal is used by the system to ask the device driver how many physical
partitionable fixed disks the device driver supports.

Format Of Request Packet

struct { /1 PARTI TI ONABLE fi xed di sks
UCHAR count; /1 nunber of disks supported
ULONG reserved;

} Partitionable;

Comments

Thisis doneto allow the Category 9 Generic I0OCtls to be routed appropriately
to the correct device driver. Thiscall isnot tied to a particular unit that the
device driver owns, but is directed to the device driver as a general query of its
device support.

The device driver must perform the following actions:

* Set the count (1- based).
» Set the status word in the Request Header.

138

17H / Get Fixed Disk/L ogical Unit Map
Get Fixed Disk/LU Map.

Format Of Request Packet

struct { /] Get Fixed Disk/Log Unit Map
ULONG units; /1 units supported
ULONG reserved;

} Get Fi xedMap;

Comments

Thiscall isused by the system to determine which logical units supported by the
device driver exist on the physical partitionable fixed disk.

On entry, the request packet header unit field identifies a physical disk number
(O-based) instead of alogical unit number. The device driver returns a bitmap of
which logical units exist on the physical drive. The physical drive relatesto the
partitionable fixed disks reported to the system by way of the
PARTITIONABLE FIXED DISKS command. It is possible that no logical
units exist on a given physical disk because it has not yet been initialized.

The device driver must perform the following actions:

» Set the 4-byte bit mask to indicate which logical unitsit owns. Thelogical
units must exist on the physical partitionable fixed disk for which the
information is being requested.

» Set the status word in the Request Packet header.

The bit mask is set up asfollows: A 0 meansthat thelogical unit does not exist,
and a1l meansit does. Thefirst logical unit that the device driver supportsisthe
low-order bit of thefirst byte. The bits are used from right to left, starting at the
low-order bit of each following byte. It is possible that all of the bitswill be 0.

139

1CH / Shutdown

Begin shutdown procedure.

Format Of Request Packet

struct { /1 Shut down
UCHAR func; /'l shutdown function code
ULONG reserved;
} Shut down;
Comments

This call isused by the system to notify a device driver to flush any data to the
device and prepare to shutdown.

Thedriver is called twice, once for a Start Shutdown and then again for an End
Shutdown. The function codeis O for the Start Shutdown call and 1 for the End
Shutdown call.

Leve 2 device drivers are called with the Shutdown request. Level 3 driversare
only called if the shutdown flag of the Capabilitiesfield is set in the Device
Header.

140

1DH/ Get Driver Capabilities
Get adisk device driver’s capabilities.

Format Of Request Packet

struct { /1 Get Driver Capabilities
UCHAR res[3]; /'l reserved, nmust be O
FARPO NTER CapStruct; /] 16:16 pointer to DCS

FARPO NTER Vol Char Struct; // 16:16 pointer to VCS
} GetDriverCaps;

Comments

This command returns the functional capabilities of the driver for device drivers
supporting the Extended Device Driver Interface.

This command is issued by the system to see whether the driver supports the
scatter/gather protocol. The driver mugt initialize this structure. Thefirst
pointer is a 16:16 pointer to the Driver Capabilities Structure, and the second
pointer is 1 16:16 pointer to the Volume Characteristics Structure. Refer to
Chapter 12 for more detailed information on this command and its associated
data structures.

141

1FH / CMDInitComplete
Notify device driver that all PDDs and IFS drivers have been loaded.

Format of Request Packet

[No Paraneters

Comments

This command notifies the device driver that all drivers have been |oaded,
allowing the device driver to initiate any driver-to-driver communications or
initialization. This command removes any problems associated with the order in
which device drivers appear in the CONFIG.SY Sfile.

This command isissued by the system only if the device driver isaleve 3 driver
and has st bit 4 in the Capabilities Bit Strip word in the device header.

143

Chapter 7 - A Simple OS2 Physical Device
Driver

This chapter outlines the operation of an actual OS/2 Physical Device Driver
(PDD). PDDs are the only type of driversthat can interface directly with
adapter or system hardware. Chapter 5 discussed the various parts and design
of an OS/2 PDD. This chapter will bring the parts together to form a PDD that
can be loaded and tested under OS/2.

Device Driver Specifications

The requirement for this device driver isto perform 1/0 to an 8-bit paralle port,
a common requirement. Although this device driver is designed for the 8255
paralle chip, it can easily be modified for any other type of 8-bit paralle
adapter. Thisdriver performsthe 1/0 using the standard DosRead and
DosWrite, and also shows how to perform the 1/0 using 10Citls. It is a good
example of handling the differences between standard device driver request and
|OCltls.

Parallel adapters are frequently used for reading switches or other pieces of
hardware which cause single bitsto be set or clear. I’ ve added an additional
function to this device driver to show how an OS2 device driver can be written
towait for asingle hit to be set or clear without using interrupts or
compromising system performance. Writing a smilar device driver under DOS
would be simple. Since DOS runs only one program at atime, the program
could wait around forever for the particular bit to be set. OS2, however, runs
many programs at the same time, and cannot afford to wait around for a bit to
be set while keeping all other programs dormant. To accomplish this without
polling, the OS2 device driver hooks a timer interrupt, and reads the port at
every tick of the OS/2 system clock (31.25 milliseconds). Between each clock
tick, the driver isether idle or blocked by an application request, so other
threads continue to run.

144

It isimportant to note that the amount of memory available for the stack in a
device driver is extremey small, approximately 4K bytes, so it isimportant to
keep the amount of local variables at a minimum.

The complete listing of this device driver can be found in the Appendix C.

Application Program Design

When the application isfirst started, it opens the device driver with a DosOpen
API call described in Figure 7-1.

i f ((RetCode=DosOpen("DI G ",
&di gi o_handl e,
&Act i onTaken,
Fil eSi ze,

FileAttribute,

FI LE_OPEN,

OPEN_SHARE_DENYNONE | OPEN_FLAGS_FAI L_ON_ERROR
| OPEN_ACCESS_READWRI TE, Reserved)) !=0)

printf("\nopen error = %", Ret Code);

Figure 7-1. Application call to open the driver.

If successful, the DosOpen call returns a handle to the application which it can
use for subsequent access to the device driver. A handle is nothing more than a
special cookiethat OS/2 usesto allow accessto a particular driver.

Device Driver Operation

Refer to the device driver source code in Appendix C. Note the Device Header
and the name assigned to the driver. For this example, the driver name has been
assigned DIGIO$. The name must be eight charactersin length, and must be

145

space-padded for up to eight character positions. The‘$' character was used in
case afile or directory had the same name as the driver, for instance
\drivers\digio.

INIT

In the INIT section in Figure 7-2, the DevHIp routine SetTimer is called to
register the timer handler we will use to periodically check a bit from the
paralld port. If the SetTimer call fails, the driver returns afailure to the kerne
and gives up the memory it had occupied during initiaization. If the call was
successful, the driver displays a sign-on message and returns the DONE status
tothekernd. The INIT section also initializes the 8255 parallel chip to setup
port address base'0 as the read-port address, and base'l as the write-port
address.

As soon asthe timer handler isregistered, the timer handler begins receiving
timer interrupts every 31.25 milliseconds. The ReadID variable is used to ignore
timer interrupts when no driver requests are pending.

146

int |nit(PREQPACKET rp)
{
/] store DevH p entry point
DevH p = rp->s.1nit. DevH p;
/1 install timer handler
i f(SetTi mer((PFUNCTI ON) TI MER_HANDLER)) {
/1 if we failed, effectively deinstall driver with cs+ds=0
DosPut Message(1, 8, devhdr. DHnane);
DosPut Message(1, strl en(Fai |l Message), Fai | Message) ;
rp->s.InitExit.final CS = (OFF) O;
rp->s.InitExit.final DS = (OFF) O;
return (RPDONE | RPERR | ERROR_BAD_COMVAND) ;
}
/'l configure 8255 parallel chip
outp (DI Gl O CONFI G 0x91);
/1 output initialization message
DosPut Message(1l, 2, CrLf);
DosPut Message(1l, 8, devhdr.DHnane);
DosPut Message(1l, strlen(lnitMessagel), |nitMessagel);
DosPut Message(1l, strlen(lnitMessage2), |nitMessage2);
/'l send back our code and data end values to os/2

if (SegLimt(H USHORT((void far *) Init),

& p->s.lnitExit.final CS) || SegLimt(H USHORT((void far *)
InitMessage2), & p->s.lnitExit.finalDS))
Abort ();

ret ur n(RPDONE) ;

Figure 7-2. INIT section.

OPEN

When the application program is started, it issues a DosOpen call to the kernd,
which routesit to the driver via an OPEN Request Packet. If the DosOpen is
successful, the kernd returns a handle to the application for subsequent driver
access. When the driver receives the OPEN Request Packet (see Figure 7-3), it
checks to see whether the driver had been opened prior to thiscall. This might
happen if more than one thread of an application opened the driver. If the driver
had not been opened, it gets the PID of the opening program and savesit for

147

later use. It then bumps the open counter and returns DONE to the kerndl. The
DONE status with no errors is mapped to the standard “no error” return to the
DosOpen call, and returned to the application. If the open count was greater
than zero, the PID of the opening program is compared to the previoudy saved
PID to seeif they are the same. If the new PID is not the same asthe old PID,
the request isreected by sending the BUSY status back to the kernel. The
kernel maps the return to a standard return code and sends that code to the
application asafallure. In all cases, whether errors occurred or not, the driver
must return with the DONE status.

case RPOPEN: /1 0x0d open driver
/1 get current processes' id

if (GetDOSVar (2, &ptr))
return (RPDONE | RPERR | ERROR_BAD_ COMVAND) ;

/1 get process info
liptr = *((PLINFOSEG far *) ptr);

/1 if this device never opened, can be opened by anyone

if (opencount == 0) /1 first time this dev opened
opencount =1; /1 bunp open counter
savepid = liptr->pidCurrent; // save current PID

}

el se
if (savepid != liptr->pidCurrent) // another proc

return (RPDONE | RPERR | ERROR_NOT_READY);//err

++opencount ; /1 bunp counter, sane pid

}
return (RPDONE) ;

Figure 7-3. OPEN section.

CLOSE

Thedriver will receive a close Request Packet as aresult of a DosClose API
call from the application, or from the kernd in the event that the application
was terminated by a <cntl-c>, <cntl-break> or other fault. In the CLOSE
section (see Figure 7-4), the driver checks the PID of the closing application to

148

make sure that it has the same PID as the program that opened it. If not, the
request isregjected by returning an error to the kerndl. If it isthe same, it wasa
valid close request, so the driver decrements the open counter and returns the
DONE status to the kerndl.

case RPCLCSE: /1 0xOe DosCl ose,ctl-C, kill
/'l get process info of caller

if (GetDOSVar (2, &ptr))
return (RPDONE | RPERR | ERROR_BAD COMVAND) ;

/1 get process info fromos/2

liptr= *((PLINFCSEG far *) ptr); // ptr to linfoseg

/1

make sure that the process attenpting to close this device

is the one that originally opened it and the device was
open in the first place.

if (savepid != liptr->pidCurrent || opencount == 0)
return (RPDONE | RPERR | ERROR_BAD COMVAND) ;

--opencount ; /1 close counts down open cntr

return (RPDONE) ; /1 return 'done' status

Figure 7-4. CLOSE section.

|OCtls

The IOCtl Request Packets are received as aresult of a DosDevliOCtl API call
from the application. In this example, the driver supports three IOCtls. They are
read a byte from a port, write a byte to a port, and read a port with wait.

The lOCtl section first checks to make sure that the category is correct for this
driver. Each device driver should have its own category, assigned by the driver
writer. Categories from O to 127 arereserved for OS2, and categories 128-255
are available for use by special drivers. You should avoid using category 128,
however, as this category is sometimes used by OS/2 for drivers such as
VDISK.SY S or OEMHLP. There are some cases where the category of a
device driver might be the same as the category for an existing OS2 device

149

driver. An example would be a driver that replaced the COMO01.SY S or
COMO02.SY S seria driver, or one that augmented an existing device driver. An
example of this might be a device driver that adds support for COM5-COM 12.
Since certain IOCtls of a particular category are used to perform operations
such as setting parity, changing the baud rate or the character length, the
replacement driver should support the same number and type of |OCtl requests.

If the category is not valid, the driver returns the DONE status to the kernel
without performing any operations. It is generally acceptable to ignore
unrecognized 10Ctl requests, because the kernd will, from time to time, issue
|OCtls to your driver which your driver does not support.

If the category isvalid, the driver checksthe IOCtl function code.

CASE 0x01

If the IOCtl request isa 1, the write-port function has been requested (see
Figure 7-5). The driver callsthe DevHIp routine VerifyAccess with the virtual
address of the IOCtl parameter buffer to verify that the caller owns the memory
that it points to. It aso checksto see that the application has the correct read
and write privileges. If the addressis valid, the driver copies the byte to be
output from the application, using a smple virtual-to-virtual copy. Using the
standard run-time library routine outp, the driver writes the byte to the
particular port. The driver then sends the DONE status back to the kerndl and
exits.

150

case 0x01: /Il wite byte to digio port
/1 verify caller owns this buffer area

i f(VerifyAccess(

SELECTOROF(rp->s.10CtI. parameters), // selector

OFFSETOF(rp->s.1OCt 1. paraneters), /1 offset

1, /1 1 byte

0)) /'l read only
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

i f(MoveBytes(rp->s.10CtI. paraneters, (FARPO NTER) &out put _char, 1))
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

out p(DI A O_QOUTPUT, out put _char); //send to digio

return (RPDONE) ;

Figure 7-5. 10Ctl 0x01, write port.

CASE 0x02

If the IOCtl code was 2, read with wait, the driver performsthe identical
operationsto the previous IOCtl (see Figure 7-6). In this IOCitl, the application
sends the driver a bit to wait for, and the driver will not return until that
particular bit becomes set.

Firgt, the driver verifiesthe IOCtl virtual buffer pointer to make sure that the
application owns the memory. Note that in this particular IOCitl, the data buffer
pointer was used and not the parameter buffer pointer. The data buffer contains
not only the port address to read from, but the space for the data read by the
driver. Either buffer area can be used for reading or writing data. In this case,
the data buffer was used for read |0Ctls and the parameter buffer was used for
write |OCtls. Which buffers are used and how they areinterpreted is entirely up
to the driver writer.

Since the driver will Block until completion, it must lock down the applications
buffer to ensureit is still there when the driver is UnBlocked. Otherwise, the
buffer addresses previoudy UnBlocked might not be valid due to swapping.
Once the memory has been verified and locked, the datais transferred from the
application to the driver. In thisdriver, the datais only one byte in size, which
contains the bit to wait for. Next, the variable ReadID is cast to a ULONG of

151

the Request Packet pointer to be used as an ID for the DevHIp Block call. The
driver then Blocks with a-1L for atime-out, which indicates that the driver will
wait forever (no timeout). When the Block returns, it was either the result of a
signal, such as <cntl-c>, or acall to the DevHIp Run routine with the same 32-
bit ID used for the Block. The driver checks the return code from the Block. If
the error code is a 2, which means a <cntl-c> caused the return from the Block,
the driver returns ERROR_CHAR_CALL_INTERRUPTED to the kerndl. If
the error code was not a 2, the driver assumesthat it was avalid Run call that
caused the driver to become UnBlocked. The driver copiesthe result of the port
read to the application, UnBlocked the caller’s memory and returns the DONE
status to the kernel. How the data is actually read from the 1/O port is detailed
in the Timer Handler section in Figure 7-9. The driver copies the result of the
port read to the application.

Note that, in this IOCtl, the device driver locked the application’s buffer to
prevent it from being swapped out. Thisis necessary when the device driver
issues a DevHIp Block request, but is not necessary in the other two 10Ctls,
where no Blocking occurs.

case 0x02: /1 read byte wwait from port
/1 verify caller owns this buffer area

i f(VerifyAccess(

SELECTOROF(rp->s.10CtI.buffer), // selector

OFFSETOF(rp->s.10Ct| . buffer), /1 offset

1, /1 1 bytes)

0)) /'l read only
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

/1 lock the segnent down tenp

i f (LockSeg(
SELECTOROF(rp->s.10CtI.buffer), // selector

1, /'l lock forever
0, /1 wait for seg |oc
(PLHANDLE) &l ock_seg_han)) /1 handl e returned

return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

i f(MveBytes(rp->s.10Ct|. paraneters, (FARPO NTER) & nput _mask, 1))
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

/1 wait for bit to be set

Readl D = (ULONG) r p;
if (Block(ReadlD,-1L, 0, &err))

152

if (err == 2)
return(RPDONE | RPERR | ERROR _CHAR _CALL_| NTERRUPTED) ;

/1 nove result to users buffer

i f (MoveByt es((FARPO NTER) & nput _char,rp->s.1OCt 1. buffer, 1))
return(RPDONE | RPERR | ERROR_GEN_FAI LURE);

/1 unlock segment

i f (UnLockSeg(!l ock_seg_han))
return(RPDONE | RPERR | ERROR_GEN_FAI LURE);

return (RPDONE) ;

Figure 7-6. I0Ctl 0x02.

CASE 0x03

The purpose of this caseisto provide aread without wait (see Figure 7-7).
Instead of waiting for a bit to be set asin I0Ctl 0x02, this IOCtl returns
immediately with the value of a port. Instead of Blocking, the driver callsthe
run-time library routine inp to get the contents of the port and sends the data
back to the application.

case 0x03: /1 read byte imed digio port
/1 verify caller owns this buffer area

if(VerifyAccess(

SELECTOROF(rp->s.10Ct| . buffer), // selector

OFFSETOF(rp->s.10Ct 1. buffer), /1 of fset

1, /1 1 byte

0)) /'l read only
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

input_char = inp(DIG O INPUT); // get data

i f (MoveByt es((FARPO NTER) & nput _char,rp->s.1OCt|. buffer, 1))
return(RPDONE | RPERR | ERROR_GEN_FAI LURE);

return (RPDONE) ;

Figure 7-7. 10Ctl 0x03.

153

READ and WRITE

The READ and WRITE sections are entered as the result of a DosRead or
DosWrite standard driver request from the application. The use of the standard
read and write requestsin Figure 7-8 is shown as an example to contrast the
differences of the standard READ and WRITE functions with the I0Ctl read
and write functions. The READ section performs the exact same operation as
the IOCtI function 0x03, read without wait, and the WRITE section does the
same for 10Ctl function 0x01, write a byte. Either call will perform the same
operation. Instead of issuing an 10Ctl request to write a byte to a port, the
application can issue a DosWrite with the byte to be written. Instead of issuing
an |OCtl function 0x03, the application can issue a DosRead.

The standard READ and WRITE sections are dightly different than their 10Ctl
counterparts. First, the application’s buffer address in the Request Packet isthe
physical address, not the virtual address, and second, OS/2 verifies and locks
the buffer segment prior to calling the device driver. Since our data transfer
routine requires virtual pointers, the device driver callsthe PhysToVirt DevHIp
to convert the physical addressto a virtual address and the data is transferred.

case RPREAD: /1 0x04
rp->s. ReadWite.count = 0; // in case we fail
i nput _char = inp(DIG O INPUT);// get data
if (PhysToVirt((ULONG rp->s.ReadWite.buffer,
1,0, &appl _ptr))
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

i f (MoveByt es((FARPO NTER) & nput _char, appl _ptr, 1))
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

rp->s. ReadWite.count = 1; // one byte read
return (RPDONE) ;

case RPWRI TE: /1 0x08
rp->s. ReadWite.count = 0;
if (PhysToVirt((ULONG rp->s.ReadWite.buffer,
1,0, &appl _ptr))
return (RPDONE | RPERR | ERROR_GEN_FAI LURE);

if (MoveBytes(appl _ptr, (FARPO NTER) &out put _char, 1))

154

return (RPDONE | RPERR | ERROR_GEN_FAI LURE);
outp (Dl G O QUTPUT, out put _char); // send byte

rp->s. ReadWite.count = 1; // one byte witten
return (RPDONE) ;

Figure 7-8. READ and WRITE section.

Timer Handler

In CASE 0x02, the driver blocks waiting for a particular bit to be set before
returning to the caller. Other threads in the system will run only when the driver
completesits job and returns DONE to the kernel, or when the driver becomes
Blocked. Recall earlier that SetTimer was called to hook the OS2 timer
interrupt, and that accessto the timer handler was controlled by the variable
ReadID. In CASE 0x02, the ReadlD was set to a ULONG cast of the Request
Packet pointer. Since the ReadID is no longer zero, each time that the timer
handler (see Figure 7-9) is entered, the driver can do an inp of the parallel port,
“and” it to the bit mask, and if non-zero, run the Blocked driver thread. The
input port value is checked every tick of the OS2 system clock, or every 31.25
milliseconds. If the bit is not set, the driver will block forever until a <cntl-c> or
<cntl-break> is detected, or the bit finally becomes set. If set, the driver clears
the timer handler entry flag, ReadID. It then calls the Run DevHIp to UnBlock
the driver Strategy thread, which set the DONE status in the Request Packet
and returns to the OS2 kernel.

tinr_handler()

{
if (ReadID !'= 0) {
/'l read data from port

input_char = inp(DIG O INPUT);// get data

155

if ((input_char && input_mask) !=0) {
Run (Readl D);
Readl D=0OL;

}

Figure 7-9. Timer handler.

157

Chapter 8 - The Micro Channel Bus

The Micro Channd busis found on most IBM PS/2 machines and on Micro
Channd machines supplied by other manufacturers such as Reply and NCR.
The Micro Channd bus provides increased speeds, interrupt sharing, full 32-bit
data path and increased noise immunity. Current specifications for Micro
Channd |1 provide for transfers at speeds of 160MB per second.

Micro Channel Adapter Cards

Micro Channe adapters have no interrupt or address jJumpers. Information
about the adapter, such asinterrupt level and memory-mapped address, is
stored on the board in a set of nonvolatile registers called the Programmable
Option Select, or POS, registers. The information stored in the POS registersis
either factory-set or configured by a setup disk supplied by the manufacturer.
On an IBM PS/2, thisis usually done with the IBM PS/2 Reference Diskette.

The POS registers are not directly accessible to a program, so the driver can’'t
get at them by doing smple“IN” and “OUT” ingtructions. A special
programmable switch must be set to alow direct register access to the
configuration program. The driver must, however, get the contents of the POS
registersin order to configure itself properly. Once the POS registers are
“vishle’, they can be accessed starting at 1/0 port address 0x100.

Normally, the driver accesses the POS registers using the PS/2 Advanced
BIOS, or ABIOS, routines. ABIOSisa set of BIOS routines that are
executable in the protect mode. ABIOS routines provide a device-independent
access to supported devices through alogical ID, or LID. The driver obtains a
LID from the ABIOS by a call to the GetLIDEntry DevHIp routine. Once the
driver hasthe LID, it can usethe LID to access the board registers.

The Micro Channd busis unique in that the position of each adapter in the
motherboard or planar isimportant. Unlike the |SA bus where boards can be

158

placed in any dot, each dot in the Micro Channd machine is addressable. For
thisreason, callsto the ABIOS routines to read the POS registers of a
particular adapter must contain an argument specifying the dot number of that
adapter. Sot 0 isthe planar, and the remaining dots are numbered starting at 1.
Some of the largest PS/2 moddls, such asthe IBM PS/2 Modd 80, contain 8
dots.

Micro Channel Adapter ID

Each 1/0 card has a unique ID number, assigned by the manufacturer. IBM
reserves | Ds 8000-FFFF for its own use. These device ID numbers can be
found in the first two POS registers, 0 and 1. The low byteisin POS register O,
the high bytein POS register 1. Therest of the POS register dataisin POS
registers 2-5. Thus POS register O can be read with an input from port address
0x100, and POS register 1 can be read from address 0x101.

Beware of conflicting definitions. Since the card ID can’t be changed, the first
available POS register, which is actually POS register 2, is sometimes referred
to as POSregister 0.

During driver INIT, it isagood idea to search the planar for a card with the
correct ID for the device driver before trying to initialize the driver. Once an
adapter isfound, the POS registers of the adapter can be accessed. ABIOS
requests must be formatted into a special structure called an ABIOS Request
Block. Refer to the IBM Personal System/2 BIOS Interface Technical
Reference for more detailed information on ABIOS Request Blocks and the
various types of ABIOS requests.

Since device driversfor the Micro Channel bus differ dightly from their 1SA bus
counterparts, it is sometimes advantageous to write one device driver that will
handle both a Micro Channel and ISA version of a particular adapter. The
driver can check to seeif the machine has a Micro Channd bus, and if so, read
the required driver configuration information from the POS registers. If the
machine has an | SA bus, the driver can set hard-coded values for the driver
configuration parameters, or can read them from the DEVICE= statement in the

159

CONFIG.SY S entry for the driver. Recall from Chapter 6 that one of the
pointers sent in the INIT request packet is the address of the parameters from
the DEVICE= linein CONFIG.SYS. This allows the user with an 1SA bus
system to enter aline such as “DEVICE=DRIVER.SY S 3E8 D8000” in the
CONFIG.SY Sfile, where 3E8 is the base port address and D8000 isthe
memory-mapped adapter address. The driver can parse the parameters, convert
them to numeric values, and use them in the driver as actual configuration
parameters.

The code shown in Figure 8-1 shows how to determine whether the system has
aMicro Channe or ISA bus, and if Micro Channd, how to search the bus for a
particular device ID and read its POS registers. If the system has an 1SA bus,
the parameters are read from the DEVICE= linein CONFIG.SYS.

Note that the ABIOS command used to read the POS registers from the card is
READ_POS REGS CARD. This command specifies that the POS register
contents be read directly from the adapter. PS/2 computers keep a copy of the
current adapter configuration in NVRAM. When the system is powered up, the
Power On Sdf Test routine, or POST, checks the installed adapter 1Ds against
the current NVRAM configuration. If a differenceis found, the POST issues an
error message on the screen directing the user to run the setup program.

Occasionally, a device driver may reprogram a Micro Channel adapter “on the
fly’. For example, assume the device driver had to perform Binary Synchronous
(BiSync) communications using a modem that could only dial using the High
level Data Link Control (HDLC) protocol. The IBM Multiprotocol Adapter, or
MPA is an example of an adapter that supports several modes of operation. It
supports asynchronous, BiSync and HDL C protocols, but its POS registers can
only be configured for one type of protocol at onetime. The MPA adapter’s
mode of operation is determined by the POS register settings, which are
normally be changed only with the PS/2 Reference Diskette.

The device driver for this application rewrites the POS registers on the fly. The
device driver configures the adapter for normal Bi Sync operation and waits for
acommand to dial a number. When adial command is received, the driver saves
the contents of the MPA’s POS registers and writes the HDLC configuration

160

datato the POSregigters. It initializes the HDLC controller, sends the dia
information to the modem using the HDL C protocol and waits for a connection.
When the modem is connected, the device driver rewrites the POS registers
with the previoudy saved POS register data, initializing it back to BiSync
operation. The result? Two adapters for the price of one.

/I EX.INIT section, combination |SA and MicroChanne bus driver

/I Thisdriver isloaded in the config.sys file with the DEVICE=

/I statement. For 1SA configuration, thefirst parameter to the

/I "DEVICE=" isthe base port address. The next parameter isthe
// board base address. All numbers arein hex. For Micro Channel
/I configuration, the board address and port address are read

/I from the board POS regs.

I

PHYSADDR board_address;, // base board address

USHORT port_address; // base port address

USHORT bus=0; /1 default 1SA bus

REQBLK ABIOS r_blk; // ABIOSrequest block

LIDBLK ABIOS |_blk; // ABIOSLID block

USHORT lid_blk_size; // sizeof LID block

CARD cardMAX_NUM_SI OTS+1];// array for IDs and POS reg
CARD *pcard; /I pointer to card array

USHORT matches=0; /I match flag for card ID

USHORT portl,port2; // temp variables for addr calc

char NoMatchMsg[] =" no match for DESIRED card ID found.\r\n";
char ManMsgMCA[] ="\r\nOS2 Micro Channel (tm) Device
Driver ingalled.\r\n";

char ManMgg[] = "\r\nOS/2 ISA Device Driver ingtalled.\r\n";

/I prototypes

int hex2bin(char);
USHORT get_POS();
UCHAR get pos data();

* Device Driver Strategy Section Here *

int hex2bin(char c)
{
if(c < 0x3a)
return (c - 48);
dse
return ((¢ & Oxdf) - 55);

161

}

USHORT get_ POS(USHORT dot_num,USHORT far *card_ID,
UCHAR far *pos_regs)
{

USHORT r¢, i, lid;
/I get aPOSLID

if (GetLIDENtry(0x10, O, 1, &lid))
return (1);

/I Get the size of the LID request block

ABIOS | _blk.f_parms.req blk_len = sizeof(struct lid_block_def);
ABIOS |_blk.f_ parms.LID =lid;

ABIOS |_blk.f_parms.unit = 0;;

ABIOS |_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS | _blk.f_parms.ret_code = Ox5a5a;

ABIOS |_blk.f_parmstime out =0;

/I make the actual ABIOS call

if (ABIOSCall(lid,0,(void far *)&ABIOS |_hblk))
return (1);

lid_blk_size= ABIOS |_blk.s parms.blk_size;
/I Fill POS regswith 0 and card ID with FF

*card_ID = OXFFFF;
for (i=0; i<NUM_POS BYTES; i++) { pos_reggi] = 0x00; };

/I Get the POS registers and card ID for the commanded slot

ABIOS r_blk.f_parmsreq blk len=1lid_blk size;

ABIOS r_blk.f_parms.LID =lid;

ABIOS r_blk.f_parms.unit = 0;;

ABIOS r_blk.f_parms.function = READ_POS REGS CARD;
ABIOS r_blk.f_parms.ret_code = 0x5a5g;

ABIOS r_blk.f_parms.time out =0;

ABIOS r_blk.s parms.dot_num = (UCHAR)d ot_num & OxOF;
ABIOS r_blk.s parms.pos_buf = (void far *)pos_regs;
ABIOS r_blk.s parms.card_|ID = OxFFFF;

if (ABIOSCall(lid,0,(void far *)&ABIOS r_blk))
rc=1,;

dse{
*card_ID = ABIOS r_blk.s parms.card_ID;// fill in ID
rc=0;

}

162

/I give back the LID

FreeL IDEntry(lid);

return(rc);
}
UCHAR get_pos_data (int dot, int reg)
{
UCHAR pos,
CARD *cptr;
cptr = &card[dot-1]; /I set ptr to beg of array
if (reg==0) /I card ID
pos = LOUSHORT (cptr->card_ID);
dse
if (reg==1)
pos = HIUSHORT (cptr->card_ID);
dse

pos = cptr->pos_regyreg-2]; // POS data register
return (pos);

}

// Device Initialization Routine
int Init(PREQPACKET rp)
{ USHORT lid;

register char far *p;

/I store DevHIp entry point

DevHIp = rp->s.Init.DevHIp;// save DevHIp entry point

if (1(GetLIDENtry(0x10, 0, 1, &lid))){// get LID for POS
FreeL IDEntry(lid);

/I Micro Channel (tm) setup section
bus=1; // Micro Channel bus
/I Get the POS data and card ID for each of 8 dots
for (i=0;i <= MAX_NUM_SLOTS; i++)
get_POS(i+1,(FARPOINTER)&card[i].card_ID,
(FARPOINTER)card[i].pos_regs);
matches = 0;

for (i=0, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++){
if (pcard->card_ID == DESIRED_ID) {

163

matches=1;
break;
}
}
if (matches==0) { /I no matches found

DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1,strlen(NoMatchM sg), NoMatchM sg);
rp->s.InitExit.final CS = (OFF) 0;

rp->s.nitExit.fina DS = (OFF) 0;

return (RPDONE | RPERR | ERROR_BAD_COMMAND);
}

/I calculate the board address from the POS regs

board_address = ((unsigned long) get_pos data(i+1, 4)
<< 16) | ((unsigned long)(get_pos data(i+1, 3) & 1) << 15);

/I calculate the port address from the POS regs data
portl = (get_pos data(i+1, 3) << 8) & 0xf800;
port2 = (get_pos _data(i+1, 2) << 3) & 0x07€0;
port_address = (portl | port2);

}

dse

/I | SA bus setup
bus=0; /1 1SA bus

/I get parameters, port addr and base mem addr

for (p = rp->slnit.args, *p && *p I="";++p);

for ;*p=="";++p); /I skip blanks after name
if (*p)

{

port_address = 0;

board_address=0; /l'i/o port address

for ;*p!=""; ++p) /I get port address
port_address = (port_address << 4) + (hex2bin(*p));
for ;*p=="" ++p); /I kip blanks after address
for (; *p!="0"; ++p) /I get board address
board_address = (board_address << 4) + (hex2bin(*p));
}

}

if (bus)
DosPutMessage(1,strlen(MainMsgM CA),MainMsgM CA);
dse

DosPutMessage(1,strlen(MainM sg),MainMsg);

/I send back our end valuesto os/2

164

if (SegLimit(HIUSHORT((void far *) Init),
&rp->s.InitExit.fina CS) ||
SegLimit(HIUSHORT ((void far *) MainMsg),
&rp->sinitExit.fina DS))
Abort();

return (RPDONE);
}

Figure 8-1. ISA and Micro Channel INIT section.

Accessing the POS Register During Debug

While debugging an OS2 Micro Channed device driver, it is sometimes
necessary to access the POS registers directly without using the ABIOS
routines. Under OS/2, the driver should always use the ABIOS routines to
access the POS registers, asthey serialize access to the adapter. During debug,
however, the POS register contents can be checked by using smple IN and
OUT ingtruction from the kernel debugger.

The -CD SETUP line, which enables the POS registers, is controlled by a
register at 1/0 port address 96h. The POS registers for a particular card are
enabled by performing an OUT 96h,(dot+7), where the dot is O for the
motherboard and 1-8 for one of up to eight dots. Once a particular dot is
enabled, the POS registers are visible with ssimple IN instructions. The POS
registers are at the base address of 100h. POS register 0, which isthe least
significant bit of the adapter 1D, can be read by an IN 100 command issued by
the kernel debugger (see Chapter 13). POSregister 1, the most significant byte
of the adapter 1D, can be found at address 101h. Other POS register data,
which might contain such things as the adapter interrupt level, DMA arbitration
level, or memory map, begins at address 102h. Only one dot can be enabled at a
time. The-CD SETUP lineis disabled by performing an OUT 96h,0.

Micro Channel Interrupts

165

Interrupts on | SA bus machines are edge-triggered and cannot be shared. Once
an | SA bus adapter registersfor a particular interrupt level, another driver
cannot gain access to the same interrupt level. Device drivers that run on 1SA
bus machines must own their interrupt or interrupts exclusively, which severely
limits the extendibility of 1SA bus systems. With over half of the interrupts
aready assigned to system components such as the timer, hard disk, and floppy
disk, not many interrupts are left over for other adapters.

Under OS2, the Micro Channel bus supports interrupt sharing of up to four
adapters on the same interrupt level. Micro Channd device drivers can register
for an interrupt level even if another device driver had previoudy signed up for
it. Thisrequires some minor changesin device driver design for the two
different bus architectures. In a Micro Channd device driver, when registering
theinterrupt level with the SetlRQ call, the nonexclusive option is used so the
interrupt may be shared. In an ISA bus device driver, the exclusive option is
used because interrupts cannot be shared. In addition, the interrupt handler
needs to be modified dightly to claim or “pass on” the interrupt to the next
interrupt handler. A flowchart showing the differences between an | SA bus
interrupt handler and a Micro Channd interrupt handler is shown in Figure 8-2.

166

INTEFFLPT INTERALIFT
Ly ERAOCESE
i e P INTESFLIET
<& \nTERRUET? >+ CAFRY [—»(T EXIT
< e FLAG e
. ?_,,f’ b
- CLEAA
YES CAFAY
J ; FLAG
PROCESS
INTERRLIET
ISELE ‘
J ECi
ChFRY et
FLAG (" EXIT)
b
135LUE
Ei
|:-E.l:|_--')

_——

Figure 8-2. Micro Channe vs. ISA businterrupt handler.

Since any one the four adapters on asingle interrupt level can cause an
interrupt, the device driver’ sinterrupt handler must have away to tell the kerned
that it accepts or denies responsibility for the interrupt. If the interrupt does not
belong to this particular interrupt handler’s device, the interrupt handler must
set the carry flag (STC), and return to the kernel. If the interrupt belongsto the
particular device, theinterrupt handler must claim the interrupt by clearing the
carry flag before returning to the kerndl. If the kernd findsthe carry flag s, it
will call each of the interrupt handlersthat have registered for that particular
interrupt until one of the handlers claims the interrupt by clearing the carry flag.
If theinterrupt isnot claimed, OS2 will continue to call the registered interrupt
handlers until one of them claims the interrupt by clearing the carry flag.

167

Chapter 9- OS2 Warp Virtual Device Drivers

One of the shortcomings of OS2 1.x was its inability to run DOS applications.
Many of these DOS applications were written for the IBM PC and IBM XT
computers, which were, by today’ s standards, fairly dow machines. To provide
acceptabl e performance, these programs frequently accessed the system
hardware and peripherals directly without using the BIOS or DOS system
services. For example, instead of writing to the display with a DOS int system
call, most programs wrote directly to video memory. Game programs frequently
used processor-speed-dependent timing loops for making sounds or pausing
between messages and screens. Other DOS programs reprogrammed the system
timer circuit to generate voice-like sounds from the computer’ s speaker.

Figure 9-1. OS2 Warp VDMs.

DOS programs can write to any memory location without checking to see if
that location isvalid or being used by another program. A programming error
under DOS will, at the worst, cause the system to crash and haveto be
rebooted. Thisis not generally a problem, as only one program can be running
at onetime. With OS2, however, a system crash could represent a magjor
problem, as many programs could be running at the time of the crash. The result
could be aloss of data, corrupt files, and a host of other problems.

168

To accommodate DOS applications, OS2 1.x used a real mode session,
referred to as the compatibility box, to run well-behaved DOS applications.
Well-behaved DOS applications are those that do not directly manipulate the
system hardware or devices, but use DOS system calls to perform their required
operations. OS2 1.x allowed only one real mode session to be active at one
time. When the DOS program was running, the processor was in real mode, so
a defective DOS application could still bring down the entire system. When the
DOS session was switched to the background, it was frozen in its current state
to prevent it from bringing down the system while an OS/2 application was
running.

The Virtual DOS Machine

The Intel 80386 and 80486 processors have a built-in feature that allows real
mode programs to run in their own one megabyte address space, isolated from
the rest of the programs running on the system. This special modeis called the
Virtual 8086 or V86 mode, and is used by OS/2 Warp to run DOS applications
in their own DOS Session. In OS2 jargon, a DOS session in the V86 mode of
the processor is called aVirtual DOS Machine, or VDM. OS/2 can support a
large number of DOS VDMSs, and the capability to do that isreferred to as
Multiple Virtual DOS Machines, or MVDMs.

DOS programs run in their own VDM without knowledge of other programs
running in the system. The V86 mode is a protected mode of operation, and it
will terminate the DOS session if it attempts a memory reference outside of its
own one megabyte space. In the V86 mode, an errant DOS application can
trash its own DOS session, but cannot bring down the rest of the system.

DOS programs that write directly to system hardware or devices are permitted
torun in aDOS session. The DOS application does not have to be modified,

but can run “out of the box.” When the DOS program attempts to write directly
to the system hardware or a system device, the operation is trapped by the
kernd and routed to a Virtual Device Driver, or VDD. The VDD is a special
driver that emulates the functions of a particular hardware device, such asthe
system timer, interrupt controller or communications port. The DOS application

169

seesthe VDD as the actual device, but direct access to the device is actually
performed through a Physical Device Driver (PDD).

The PDD performsthe actual 1/0 and passes the results to the VDD, which in
turn sends the results back to the DOS application. OS/2 Warp is supplied with
aset of VDDsthat virtualize the standard system device services such a DMA,
timer, COM ports, video, and PIC.

When VDDs are loaded at boot time, the VDD claims ownership of the system
resourcesit is responsible for while running in aVDM. The VDD can hook all
I/O associated with a particular port or the interrupts associated with a
particular IRQ. For example, the virtual COM driver, VCOM.SY'S, claims
ownership of I/0O address 0x3f8, which is the address of COM1. A DOS
program that attempts to perform direct I/0O to 0x3f8 will be trapped by the
COM VDD. The VDD must emulate the actual hardware device, and make the
DOS application believeits talking directly to the device.

If a DOS program attempts to access an 1/0O port which has not been claimed by
aVDD, itisallowed to perform that I/O directly without going through a
VDD. The DOS application can turn interrupts off, although OS2 will turn the
interrupts back on if the DOS program leaves them off too long.

If an adapter can be shared by a protect mode application and a DOS
application, a VDD should always be used to perform DOS 1/O. Before
performing I/O to the adapter, the VDD should first ask the PDD for
permission to do so. The PDD and VDD should serialize access to the common
adapter.

Although VDMs can run DOS applications that access hardware directly, there
are some limitations. Existing DOS block device drivers for disk and tape
cannot be used in the standard VDM. For character drivers, only those that
perform 1/O by polling can be used. Standard DOS drivers for the clock and
mouse are not permitted to be used. DOS INT 21 requests are formatted into a
standard OS/2 Request Packets and sent to the PDD for disposition.

170

VDMs, in which a specific version of DOS has been booted, can utilize existing
DOS block device drivers. The block device should not be accessible to protect
mode applications, so it must be dedicated to DOS operation.

Since versions of DOS differ in functionality, a DOS Setting is provided to
specify which version of DOS should be booted instead of the built-in DOS
emulator.

VDDs are loaded at system boot time, after any PDDs have been loaded and
before the PM shdll is started. The system first |oads the base VDDs which are
shared by multiple DOS sessions, such asthe video virtual device driver, and
then loads the installable VDDs from the DEVICE= linein CONFIG.SYS.
Global code and data objects are loaded into low system memory to allow the
PDD to call the VDD at interrupt time, regardless of the current process
context. After the VDD isloaded, the VDDInit entry point is called to seeiif the
load was performed without error. If so, the VDD returns TRUE, and if not,
FALSE.

Virtual Device Drivers use a set of C callable helper routines, called the Virtual
Device Helper (VDH) to perform their operations. Unlike the PDD DevHIps,
which are register-based, the VDH routines are C callable, and exist in a DLL.
They use the 32-bit C calling convention.

VDD Architecture

The VDD is nothing more than a 32-bit DLL, which must contain at least one
of the following objects:

» swappable global data

» swappable instance data
* reddent global code

* reddent global data

* reddent instance data

The VDD may aso contain the following objects:

171

* initialization code
* initidization data
» swappable global code

A VDD that does not communicate with a PDD does not need a resident object
section. Run-time memory can be private or shared. The typical VDD has a
global code object, global data object, and a private instance data object.

VDDs are loaded by the DOS emul ation component after all of the PDDs have
been loaded. When the VDD isloaded, the VDD entry point is called by OS/2
toinitializethe VDD. The entry point of the DLL is defined by writing a small
assembly language program, which callsthe DLL initialization entry point. The
last statement in the assembly language program should be an END statement,
with the parameter to the END statement being the name of the entry point. If
the name of the VDD initialization entry point is, for example, VDDInit, the last
statement in the assembly language routine should be END VDDInit. The IBM
C Set/2 Compiler now supports the pragma entry keyword which is used to
specify theinitialization entry point for VDDs written in C.

After the VDD isloaded, the VDD entry point is called to seeif the load was
performed without error. If it was, the VDD returns TRUE, if not, the VDD
returns FALSE.

VDD Initialization

The VDD performsinitiaization in amanner smilar to the PDD. It verifiesthe
presence of the hardware device, establishes contact with the corresponding
PDD, reserves regions of linear memory containing device ROM and/or RAM,
saves the current state of the device, and finally, sets hooks for DOS session
events, such as session create, session destroy, and foreground/background
switch requests. VDDs cannot make Ring 3 calls during initialization, and must
use the Virtual Device Helper routines.

172

When a DOS session is started, the DOS Session Manager callsthe VDD,
allowing it to perform a per-DOS session initialization. The VDD allocates
memory regions and passes control to the DOS emulation kernel, which loads
the DOS shell, usually COMMAND.COM. The DOS emulation kernel then
calsthe VDD session creation entry points, allowing the VDD to set up aliases
to physical memory, and optionally to allocate a block of memory between
256K and RMSIZE for aLIM 4.0 aias window.

When a DOS session is started, the DOS Session Manager calls each VDD that
has registered a DOS session create hook. This allows VDDs to perform a per-
DOS-session initialization. Control isthen passed to the DOS emulation kernel,
which loads the DOS shell, usually COMMAND.COM. At DOS session
creation, the VDD may also:

* initidizethe virtual device state.

* initializethe ROM BIOS state.

* map memory.

* hook 1/O ports.

* enable/disable 1/0O port trapping.

* hook the software interrupts.

» alocate per-DOS session memory.

The OS2 Session Manager notifies the DOS Session Manager if the session is
being switched. The DOS Session Manager notifies any VDD that has
registered to get this event via the VDHInstallUserHook VDH call. Depending
on the VDD type, different actionswill be taken. In the case of the virtual video
devicedriver, VVIDEO, the driver will appropriately disable or enable 1/0 port
trapping for the video board and re-map the physical video memory to logical
memory. The video will continue to be updated, but in logical video memory.
When the session is switched back to the foreground, the logical memory is
written to the physical video memory to update the display.

When the DOS session is exited, the VDD must perform any clean-up that is
necessary. This usualy includes rdeasing any allocated memory and restoring
the state of the device. The VDD termination entry points are called by the
DOS Session Manager at DOS program termination time.

173

OS2 Warp Virtua Device Drivers may only call OS2 Warp Physical Device
Driversthat contain the “new level” bits. Older PDDs will return an error if
called by aVDD. When anew level PDD receives an |OCil, it must check the
InfoSeg to determine whether it was called by a DOS session. If it was, it
assumes that any pointers passed in |OCtl packets are in segment:offset format,
computes the linear address directly (segment << 4 + offset) and then uses the
LinToGDT Selector to make a virtual address.

DOS Settings

OS2 Warp allows users to customi ze the configuration of a DOS session.

Using the DOS Settings, the user can adjust certain DOS session parameters via
the Desktop Manager’ s Settings menu for the DOS session. Device drivers
must call the VDHRegisterProperty routine to register their settings. A VDD
can call VDHQueryProperty at DOS session creation to get the value of the
current DOS settings. The user can also change some of the settings while the
DOS session isrunning, via a settings dialog box. The standard DOS settings
are shown in Table 9-1.

Table 9-1. DOS Settings
Property Type Operation
BREAK BOOLEAN | Controls <cntl-c> checking in the INT 21
path
FCBS INTEGER | Controls use of FCBs by errant DOS
applications
DEVICE STRING Specifies a DOS character driver
SHELL STRING Specifies the command interpreter
RMSIZE INTEGER | Specifies size of DOS memory arena

174

DOS Settings Registration

At initialization time, the Virtual Device Driver must register any settings that it
will need. Thisinformation is stored in the kerndl, and used to support all
property-related operations (see Table 9-2).

Table 9-2. DOS Settings I nfor mation

Name The property name presented to the user.
The settings should have common prefixes
so that they appear sorted together.

Ordinal The ordinal of the function independent of
the name string.

Type The property type. Boolean, integer,

enumeration, and single and multiple line
strings are supported.

Flags Flags control aspects of the property, i.e.,
whether or not they can be changed while
the DOS session is running.

Default Value The value used if the user does not supply
one.

Validation Information Thisinformation allows the user interface
to validate property values before sending
them to the device driver.

Function Thisfunction is used for validating string
settings, and for notifying the VDD when
the user has changed a property for a
running DOS session.

Since many VDDs virtualize or “mimic” hardware that generates interrupts,
these driverswill generally have to interact with a PDD. The VDD usesthe
VDHOpenPDD VDH call to establish communication between the Virtua
Device Driver and the Physical Device Driver. The two drivers exchange entry

175

points, and are subsequently free to call each other using any type of protocol,
including register-based entry points. Both drivers should also be aware of the
shutdown protocal, in case the VDD has to shut down.

VDDs can call PDDs viathe OS2 file system by using the VDHOpen,
VDHWrite, VDHIOCII, and VDHClose function calls. Using this method, a
VDD can communicate with an existing PDD without requiring modification of
the PDD.

VDDs support dynamic linking, and thus can pass data back and forth to other
VDDs via dynamic links. VDDs can also communicate with each other viathe
VDHOpenVDD, VDHRequestVDD, and VDHCloseVDD Virtual Device
Helper routines.

The Virtual COM Device Driver

The Virtual COM Device Driver for OS2 Warp, VCOM.SYS, allows for the
emulation and virtualization of the 8250/16450 UART. It provides support for
two virtual serial portson ISA bus machines, and four ports on PS/2 and PS/2-
compatible systems. VCOM.SY S does not support the 16550 UART. Dueto
the added overhead of context switching and system operation, the Virtua
COM Device Driver only guarantees error-free operation at 240 characters per
second, or about 2400 bits per second. DOS applications that access the I/O
hardware directly or through BIOS calls are supported.

The Virtual COM Device Driver “looks’ like the 8250 UART, including
registers, modem lines, and interrupts. The DOS application seesthe Virtual
COM Device Driver asthe actual device. The Virtual COM Device Driver
contains the standard set of 8250/16450 port registers for access by the DOS
application. They are:

* Receive/Transmit Buffer and Divisor Latch
* Interrupt Enable and Divisor Latch
Interrupt Identification

Line Control

176

* Modem Control
e LineStatus
 Modem Status
e Scratch

Interrupts supported by the Virtual COM Device Driver are:

* Line Status Interrupt

* Receive Data Available Interrupt
* Transmitter Empty Interrupt

* Modem Status Interrupt

Refer to Table 9-3 for alist of 8250/16450 registers supported by the Virtual
COM Device Driver.

Table 9-3. Virtualized 8250/16450 Registers

Name R/W Address Purpose

RBR R 03F8h Receive Buffer Register

THR w 03F8h Transmitter Holding
Register

DLL R/W 03F8h Low Divisor Latch

DLM R/W 03F%h High Divisor Latch

IER R/W 03F9h Interrupt Enable Register

IR R 03FAh Interrupt Identification
Register

LCR R/W 03FBh Line Control Register

MCR R/W 03FCh Modem Control Register

LSR R 03FDh Line Status Register

MSR R O3FEh Modem Status Register

SCR R/W O3FFh Scratchpad Register

177

Adapters with serial ports must conform to thisregister configuration. For
UARTs with additional registers, 1/0 to those registers will be ignored by the
Virtual COM Device Driver. All register bits are compatible with the standard
bit assignments of the 8250/16450 UART.

Since interrupts are smulated, there is no physical PIC addressed by the Virtual
COM Device Driver. Rather, asmulated PIC, VPIC, isingtalled to arbitrate
interrupt priorities and to provide an End-Of-Interrupt port for those
applications that may issue an EOI directly to the PIC.

The Virtual COM Device Driver also supports access to the serial device via
INT 14h calls. The Virtual COM Device driver emulates the BIOS call,
returning the same information as though the BIOS routine was actually called.

When a character isreceived at the actual hardware, an interrupt is generated
and the PDD gets the character from the UART receiveregister. The PDD then
sends the character to the VDD for the waiting DOS application. When the
DOS application sends a character to a port, the Virtual 8086 Emulator traps
the operation and callsthe VDD. The VDD, in turn, callsthe PDD to output
the character to the actual device. Smulated interrupts, like their physical
counterparts, are not recognized if the interrupt system is disabled, and are only
emulated if theinterrupt system ison. To maximize performance, the PDD does
not call the VDD at the receipt of every interrupt. Rather, it receivesthe
information that PDD device driver events have taken place, and determines
whether to continue simulating interrupts or take other action. For more
information on the Virtual COM Device Driver, please refer to the OS2 Warp
Virtual Device Driver Reference.

The Virtual Timer Device Driver

The Virtual Timer Device driver provides support for DOS applications by
providing the following services:

* Virtualization of timer portsto allow reprogramming of the interrupt rate
and speaker tone.

178

o Didgribution of timer ticksto all DOS sessions.

* Maintenance of thetimer tick count in the ROM BIOS data area.

e Serialization of timer 0 and timer 2 across multiple DOS sessions.

* Arbitration of the ownership of timer O and timer 2 between the VDD and
the Clock PDD.

In DOS, timer 0 is used as the system timer, and set to interrupt every 18.2
milliseconds. Thistimer is used to update the time of day clock and time-out the
floppy disk drive motor on-off functions. DOS programs that need a higher tick
resolution frequently program timer O to a higher frequency. The DOS tick
handler intercepts the timer ticks and, at specified intervals, calls the system
clock routine so that the time-of-day clock value is not affected. Timer 1 isthe
memory refresh timer and cannot be modified. Timer 2 is the speaker tone
generator, and can be programmed to generate different sounds and tones.
Timer 2 has two control bits, one to enable/disable the timer, and one to route
the output to the speaker.

Timer O ticks can be lost due to system loading, so the Virtual Timer Device
Driver continually compares the actual elapsed time with the per-sesson DOS
timer and updates it if necessary to make up for lost ticks. Every second, all of
the currently running DOS sessions have their times re-synchronized.

The hardware of timer 2 isvirtualized, allowing it to be reprogrammed. The
registers appear to the DOS applications exactly the same as the 8254 CTC (see
Table 9-4).

Table 9-4. Virtualized Timer Registers

Description Port
Count word O 40h
Count word 1 41h
Count word 2 42h
Count word 3 43h

179

See Table 9-5 for alist of timer registers supported by the Virtual Timer Device

Driver.

Table 9-5. Supported Virtualized Timer Registers

Count word O read virtualized
Count word O write virtualized
Count word 1 read virtualized
Count word 1 write ignored

Count word 2 read virtualized
Count word 2 write virtualized
Control word read virtualized
Control word write virtualized

The Virtual Disk Device Driver

The VDM supplies DOS applications with a DOS-compatible disk interface via,
the INT 13h DOS interrupt. The Virtual Disk Device Driver, VDSK, simulates
ROM BIOS for disk access. A list of supported INT 13h functions can be found

in Table 9-6.

180

Table 9-6. Virtualized INT 13 Functions

AH Function

00h | Reset Diskette System

01h | Statusof Disk System

02h | Read Sectors Into Memory (floppy and fixed disk)
03h | Write Sectors From Memory (floppy disk)

04h | Verify Sectors (floppy and fixed disk)

05h | Format Track (floppy)

08h | Get Current Drive Parameters (floppy and fixed disk)
15h | Get Disk Type (floppy and fixed disk)

16h | Change of Disk Status (floppy)

17h | Set Disk Type (floppy)

18h | Set Media Type for Format (floppy)

When a DOS application issues an INT 13h request, the request is trapped by
the Virtual Disk Device Driver, transformed into a Request Packet, and sent to
the disk PDD for processing. If the disk is currently busy, the PDD queues up
the request until it can processit. When the request can be completed, the PDD
notifies the Virtual Disk Device Driver, which unblocks the DOS session.

The disk VDD does not support direct register access to and from the disk
controller. Any attemptsto perform direct 1/0 are trapped and ignored. Some
types of copy protection algorithms that are dependent on disk timing may fail.

Foppy disk accessis allowed directly to the floppy disk controller hardware,
but only after the application gains exclusive access to the floppy disk drive.
When a DOS application gains access to the floppy disk, it disables all port
trapping and allows direct port access to the floppy controller (see Table 9-7).

Table 9-7. Virtualized Floppy Disk Ports

Port

Function

3f0h

Status Register A (PS/2 only)

3flh

Status Register B (PS/2 only)

3f2h

Digital Output Register

3f7h

Digital Input Register

3f7h

Configuration Register

3f4h

Controller Status Register

3f5h

Controller Data Register

While the DOS session has access to the floppy disk, al interrupts from the

181

floppy disk controller are reflected to the owning DOS application. Even when

the DOS application has finished with the floppy disk, the ownership of the
floppy disk will remain with the original DOS application until another

application requests ownership.

The Virtual Keyboard Device Driver

The Virtual Keyboard Device Driver alows DOS applications that accessto

keyboard to run without a change in the VDM. The Virtual Keyboard Device

Driver allows access to the keyboard, using the following methods:

* INT 21h. DOS applications can access the keyboard using the CON device
name, or get input from the stdin device.
* BIOSaccessviathe INT 16h function.

» 1/O port access, by reading and writing I/O ports 60h and 64h.

The Virtual Keyboard Device Driver must also handle the aspects of trandation

and code page tables, performance, and idle detection for those applications

that poll the keyboard. When the physical keyboard driver recelves an interrupt,

it sends that interrupt to the Virtual Keyboard Device Driver, which in turn

182

notifies the Virtual Programmable Interrupt Controller, or VPIC. The Virtua
Keyboard Device Driver must supply the key scan codes for those applications
that decipher the scan codes themselves. Setting the repeat rate is not
supported.

DOS applications frequently wait for a keyboard key to be pressed in a polling
loop. The Virtual Keyboard Device Driver detects an idle loop, and adjusts the
actual polling time as necessary. The driver increases the deep between each
pall, allowing other programsin the system to run. When akey is hit, thetime
between pollsisreset to a short period, then increased as the inactivity
increases. The Virtual Keyboard Device Driver uses the VDHWaitVRR VDH
function to deep in-between polls, and the DOS session isimmediately woken
up if akeyis pressed.

Normally, IRQ1 interrupts are channeled to the INT 09h interrupt service
routine, which is usually a BIOS routine that performs key trandation. The
Virtual Keyboard Device Driver emulatesthe INT 09h BIOS routine, calling
the INT 15h handler for scan code monitoring, handling <cntl-break> (INT
18h), and Print Screen (INT 05h) processing.

The Virtual Mouse Device Driver

DOS applications that require a mouse are supported viathe INT 33h interface,
which performs the following functions:

* position and button tracking

» position and button event natification
» Sdectable pixel and mickey mappings
* video mode tracking

» pointer location and shape

* emulation of alight pen

Operation of the virtual mouse driver issimilar to other virtual drivers. The
mouse physical device driver is aways aware of which session owns the mouse.
When a full-screen DOS session owns the mouse, the mouse PDD natifies the

183

virtual device driver of mouse events. If the DOS session is a windowed DOS
session, the mouse PDD routes the mouse events to the Presentation Manager,
which routes them to the virtual mouse device driver. The user may optionally
set the exclusive mouse access on in the DOS Settings for the DOS windowed
session. If so, events from the mouse PDD are sent directly to the mouse
VDD, bypassing the Presentation Manager. This property is used for
applications that track and draw their own mouse pointer.

The Virtual Line Printer Device Driver

The Virtual Line Printer Device Driver, VLPT, alows DOS applications access
tothe paralld printer port viaINT 17h BIOS calls. It also supports the BIOS
INT 05h print screen call. The VLPT supports up to three parallel controllers,
and virtualizes the data, status, control, and reserved ports of the printer
controller. The VLPT also provides a direct access mode for DOS programs
that control the parallel port hardware directly. When the VLPT recognizes that
a DOS application wishes to perform direct 1/0 to the parallel port, it requests
exclusiverightsto the port from the parallel port PDD.

If another application triesto use the printer after the DOS application has
gained exclusive access to it, the access will fail. Print jobs from the spooler will
continue to be queued up until the requested parallel port becomes free.

The VLPT continues to handle the traps from the DOS application. The VLPT
also traps the IRQ enable bit from a DOS application attempting to enable the
parallel port IRQ. Interrupt transfers are not supported for the paralld port, so
the VLPT contains no interrupt simulation routines. The VLPT also detects
when a DOS application triesto change the direction bit, which isillegal on
non-PS/2 systems.

The Virtual Video Device Driver

The Virtual Video Device Driver, or VVIDEO, provides display adapter
support for DOS sessions. The VVIDEO driver communicates with the DOS

184

Session Window Manager, ensuring that the DOS window stays relatively
synchronized with the DOS application. Some parts of the DOS session
environment have been designed especially for the VVIDEO driver. They are:

» foreground/background notification hooks.
o freeze/thaw services.
» code page and title change notification hooks.

The VVIDEO driver isabase driver, loaded at boot time from CONFIG.SY S.
If the VVIDEO driver cannot be loaded at boot time, no DOS sessions will be
ableto be started. The standard VVIDEO drivers support CGA, EGA, VGA,
XGA, and 8514/A adapters, and monochrome adapters as secondary display
adapters. All adapter memory sizes are supported up to 256K B, and more than
one VVIDEO driver can be loaded for the same adapter.

The DOS Window Manager starts athread for communication to the VVIDEO
driver, which callsthe VVIDEO driver and waits for a video event. The
VVIDEO driver supports both full screen and windowed operation, and can
switch back and forth between full screen and windowed, and back. The
VVIDEO driversingtall hooksto trap all port accesses, maps physical screen
memory to logical screen memory, and reports video events to the DOS Session
Window Manager. Changes that are trapped by the DOS Session Window
Manager, whether the DOS application isin focus or not, are:

* mode changes.

» palette changes.

* achangein the cursor position.

» changing the session title.

» screen switch video memory allocation errors.
» sorolling and other positioning events.

The DOS Session Window Manager can query the state of its DOS session
video for the following:

» thecurrent display mode.
* thecurrent palette.

185

» thecursor position.
» the contents of video memory.

The DOS Session Window Manager can aso issue the following directives:

* wait for video events.
e cancd wait for video events.

The VVIDEO driver opensthe Virtual Mouse Device Driver, and providesit
with the following entry points:

» show mouse pointer.

* hide mouse pointer.

* define text mouse pointer.

» define graphics mouse pointer.
* setvideo page.

o st for light pen emulation.

The VVIDEO driver calsthe Virtual Mouse Device Driver whenever the DOS
session changes video modes.

VVIDEOQ drivers can share the same video adapter by accepting to be
temporarily shut down while another VVIDEO driver uses the adapter, and
restarted when control of the adapter is released back to the original owner.

The VVIDEO driver supportsthe DOSINT 10h to support drawing operations
and the simultaneous use of the mouse pointer. The VVIDEO also supports
INT 2Fh services, which notify an application that it is about to be switched.
The 8514/A and XGA adapters can run only in the full screen mode of the DOS
session, and will immediately be frozen if it attemptsto write directly to the
8514/A or XGA adapter.

Virtual DevHIp Services By Category

186

Virtual DevHIp functions provide virtual device drivers with accessto various
services provided by the operating system and by other virtual device drivers.
The Virtual DevHIp services are listed alphabetically, with a short explanation
of their purpose. A complete reference to the Virtual Device Helper routines,
including details on parameter use, can be found in the IBM OS/2 Warp Virtual
Device Driver Reference. Virtual DevHIp services can be divided into
categories based on the type of service that the virtual DevHIp provides. These
categories are:

DOS Settings

V DHRegister Property Register virtual device driver property
VDHQueryProperty Query virtual device driver property value
V DHDecodeProperty Decode property string

File (or device) 1/0O Services

VDHOpen Open afileor device

VDHClose Close afilehandle

VDHRead Read bytes from afile or device
VDHWrite Write bytesto afile or device
VDHIOCtl Perform 10Ctl to a device

VDHPhysi calDisk Get information about partitionable disks
VDHSeek Move read/write file pointer for ahandle

DMA Services

VDHRegisser DMAChannd | Register aDMA channd with the virtual
DMA device driver

VDHCalOutDMA Let DMA doits work
VDHAIllocDMABUuffer Allocate DMA buffer
VDHFreeDMABuffer Free DMA buffer previoudy allocated

DOS Session Control Services

VDHKIllVDM Terminate a DOS session

VDHHaltSystem Halt the system

VDHFreezeV DM Freeze a DOS session; prevent the DOS
session from executing any V86 code

VDHThawVDM Allow afrozen DOS session to resume
executing V86 code

VDHISVDMFrozen Determineif a DOS session isfrozen

VDHSetPriority Adjust a DOS session's scheduler priority

VDHYidd Yield the processor

187

188

DPMI Services

VDHGetSelBase Get aflat base addressfor an LDT selector

VDHGetVPM Except Get the current DOS session's protect
mode exception vector

VDHSetV PMEXxcept Set the current DOS session's protect
mode exception vector to a specified value

VDHChangeVMPIF Change the virtual interrupt flag (IF),
enabling or disabling protect mode
interrupts

V DHRai seException Raise an exception to a DOS session, asif
the exception had been caused by the
hardware

VDHReadUBuUf Read from protect mode address space

VDHWriteUBuUf Write to a protect mode address space

VDHCheckPagePerm Check Ring 3 page permissions

VDHSwitchToVPM Switch a DOS session to protect mode

VDHSwitchToV 86 Switch a DOS session to V86 mode

VDHCheckVPMIntV ector

Determine if a DOS session protect mode
handler exists

VDHGetVPMIntV ector

Return the DOS session's protect mode
interrupt vector

VDHSetVPMIntV ector

Set the DOS session's protect mode
interrupt vector

VDHArmVPMBPHook

Obtain the address of a DOS session's
protect mode breakpoint

VDHBeginUseVPM Stack

Begin using the DOS session's protect
mode stack

VDHENdUseVPM Stack

End the use of the DOS session's protect
mode stack

(The"VPM" in many of the function names in this section stands for "Virtual

Protect Mode").

GDT Selector Services

VDHCreateSel Create a GDT selector to map alinear
range

VDHDestroySel Destroy a GDT selector previoudy created
by VDHCreateSe

VDHQuerySel Get the selector for an addressin the

virtual device driver's data or on its stack

Hook Management Services

VDHAIlocHook Allocate the hooks needed for interrupt
smulation

VDHArmBPHook Obtain the address of a V86 breakpoint

VDHArmContextHook Set alocal or aglobal context hook

VDHArmReturnHook Set a handler to receive control when an

IRET or RETF is executed in V86 mode

VDHArmSTIHook

Sets a handler to receive control when
interrupts are enabled in the current DOS
session

VDHArmTimerHook

Set atimer handler

V DHFreeHook

Disarm and free a hook

VDHInstallIntHook

Set ahandler for a V86 interrupt

VDHInstalll OHook

Install PIC I/O port hooks

VDHlInstallUserHook

Ingtall a handler for a DOS session event

VDHQueryHookData Returns a pointer to a hook's reference
data (created during the VDHAIlocHook
call

VDHRemovel OHook Remove hooks for PIC I/O ports

VDHRegisterAPI Set V86 or protect mode API handler

VDHSda IOHook State

Enable/Disable I/O port trapping

189

190

DOS Application Management

V DHReportPeek Report DOS session polling activity for
the purpose of idle detection

VDHWakeldle Wake up a DOS session that is doing
VDHSe | OHook State sleep

These services allow virtual device driversto tell OS/2 when a DOS application
appearsto beidle, and when there is some activity that could make the DOS
application busy.

| nter -Device Communication Services

VDHRegisterVDD Register avirtual device driver's entry
points

VDHOpenVDD Open avirtual device driver previoudy
registered with VDHRegisterVDD

VDHOpenPDD Open aphysical devicedriver for VDD -
PDD communications

VDHRequestVDD Issue arequest for an operation of a
virtual device driver

VDHCloseVDD Close avirtual device driver opened with
VDHOpenVDD

Keyboard Services

| VDHQueryK eyShift | Query the keyboard shift state

191

Memory Management Services
There are three subcategories of memory management virtual DevHIp services.

Thefirst two are based on the granularity of the memory alocation unit, the
third category isfor memory locking services.

Byte Granular Memory Management Services

VDHAIllocMem Allocate a small amount of memory

VDHFreeMem Free memory allocated with
VDHAIllocMem

VDHAIllocDOSMem Allocate a block of memory from the DOS
area

VDHCreateBlockPool Create a memory block pool

VDHAIlocBlock Allocate a block from a memory block
pool

VDHFreeBlock Free a previoudy allocated block of
memory (return the block to a memory
block pool)

VDHDestroyBlockPool Destroy a memory block pool

VDHCopyMem Copy from one linear memory address to
another

VDHExchangeMem Exchange the contents of two linear
memory regions

192

Page Granular Memory Management Services

VDHAIllocPages Allocate a page-aligned memory object
VDHReall ocPages Reallocates (re-sizes) a memory object
VDHFreePages Free a memory object
VDHFindFreePages Find the largest available linear memory

region

VDHGetDirtyPagelnfo

Returns the status of the dirty bitsfor a
range of memory pages (resets the hits)

VDHQueryFreePages Returns the total amount of free virtual
memory in bytes

V DHReservePages Reserve arange of linear addresses

V DHUnNreservePages Unreserve arange of linear addresses

VDHMapPages Map a specified linear address

VDHIngtall FaultHook Install your own page fault handler

VDHRemoveFaultHook Remove your page fault handler

Memory L ocking Memory Management Services

VDHLockMem

Verify access to aregion of memory, then
lock that memory

VDHUnlockMem

Release a memory lock

These services allow virtual device driversto alocate, free, reallocate, and lock
memory for global and per-DOS session objects, page or byte granular objects,

and with different options, such as fixed or swappable allocations.

193

Four types of mapping are supported:

Mapping to a physical address.

Mapping to another linear address.

Mapping to black hole (don't care) pages.
Mapping to invalid pages, which means unmapped.

El N

Virtual device drivers can aso request smaller memory allocations from the
kerne heap, which isgloba and fixed. Small, fixed-size block services are
available to speed up frequent allocations and the freeing of memory. For a
particular block size, a pool of blocks are maintained, and the requirements are
met by taking off a block from the block pooal.

194

Miscellaneous Virtual DevHIp Services

VDHSetFlags Set the DOS session's FLAGS register to a
specified value

VDHSetA20 Enable or disable the A20 line for the
current DOS session

VDHQueryA20 Query the current state of the A20 line

VDHDevBeep Device beep Virtual DevHIp service

VDHGetError Get the error code from the last Virtual
DevHIp service called

VDHSetError Set the error code for VDHGetError to

query

VDHHandleFromSGID

Get the DOS session handle from the
screen group ID

VDHHandleFromPID

Get the handle for a given process ID

VDHEnumerateVDMs For each DOS session in the system, run a
worker function

VDHQueryLin Get the linear address for a FAR16
(16:16) address

V DHGetCodePageFont Return information about the DOS
session's code page font

VDHRe easeCodePageFont | Release code page font returned by
VDHGetCodePageFont

VDHQuerySysVaue Query a system value

VDHPutSysValue Set a system value

V DHPopup Display a message

VDHSetDosDevice Register/Install a DOS device driver

NPX (Numeric Coprocessor) Services

VDHRe easeNPX Give up ownership of NPX
VDHNPXReset Reset port F1

VDHNPXClearBusy Clear busy latch

VDHNPXRegisterVDD Register virtual device driver entry points

Parallel Port and Printer Services

VDHPrintClose Fush and close all open printersfor a
DOS session
Semaphor e Services
VDHCreateSem Create an event or mutex semaphore
VDHDestroySem Destroy a semaphore
VDHResetEventSem Reset an event semaphore
VDHPostEventSem Post an event semaphore
VDHWaitEventSem Wait on an event semaphore
VDHReguestM utexSem Request a mutex semaphore
VDHRe easeM utexSem Release a mutex semaphore
VDHQuerySem Query a semaphore's state

195

These services are used for synchronizing with an OS/2 process. Virtual device
drivers must be careful not to block (VDHRequestSem/VVDHWaitSem) in the

context of a DOS session task, or that task will recelve no more simulated

hardware interrupts until it becomes unblocked.

196

Timer Services

VDHArmTimerHook

Set atimer service handler

VDHDisarmTimerHook

Cance atimer service before the handler
has been called

Virtual Interrupt Services

VDHOpenVIRQ Register an IRQ handler for avirtual
device driver

VDHCloseVIRQ Deregister an IRQ handler for avirtua
device driver

VDHSetVIRR Set the virtual Interrupt Request Register
(IRR), causing an interrupt to be smulated
to the DOS session

VDHClearVIRR Clear the virtual IRR, stopping the

simulation of interruptsto the DOS
Session)

VDHQueryVIRQ

Query the IRQ statusin a DOS session

VDHWaitVIRRs

Wait until an interrupt is smulated

VDHWakeVIRRs

Wake up a DOS session that iswaiting
with VDHWaitVIRRs

VDHSendVEOI

Send avirtual EOI (End-Of-Interrupt) to
the VPIC

197

V8086 Stack Manipulation

VDHPushRegs Push a client DOS session's registers onto
the client's stack

VDHPopRegs Pop aclient DOS session's registers from
the client's stack

VDHPushFarCall Simulate a far call to V86 code

V DHPopStack Pop data off client stack

V DHPushStack Push data onto a client's stack

VDHPushint Transfer control to aVV86 interrupt handler
when an interrupt is Smulated

VDHPoplInt Remove IRET frame from aclient DOS
sesson's stack

Many of the virtual DevHIp functionsthat are called with invalid parameters or
other error conditions often cause a system halt. Thisis because virtual device
driversrun at Ring O; they have free access to everything in the system. If an
invalid parameter is detected, it has probably done enough damage that the
system has become unstable. The only thing to do at that point isto halt the
system.

198

DOS Session Interrupts

Table 9-8 describes the DOS hardware interrupts virtualization supplied by the
Virtual Device Drivers and the DOS emulation component of the VDM.

Table 9-8. Virtualized DOS Interrupts

Interrupt Description Notes
IRQO Timer (INT 08h) DOS programs can hook thisinterrupt
with the INT 08h call. The INT 08h
handler is called for each tick of the
channel 0 system clock.
IRQ 1 Keyboard (INT The INT 09h handler isinvoked for every
0%h) press and release of a keystroke.
IRQ 2 Cascade Interrupt Use for the support of interrupts 8-15 to
Controller emulate the second PIC
IRQ 3 Serial Port (COM2, | Supported when VCOM.SY S and
COM3) COM.SY S are | oaded.
IRQ 4 Serial Port (COM1) | Supported when VCOM.SY S and
COM.SY S are loaded.
IRQ5 Paralld Port Not supported
(LPT2)
IRQ 6 Diskette Not supported
IRQ 7 Paralld Port Not supported
(LPTY)
IRQ 8 Real Time Clock Not supported
IRQ9 Redirect cascade Not supported
IRQ 10 Not supported
IRQ 11 Not supported
IRQ 12 Aux. device Not supported
IRQ 13 Math Coprocessor | Supported
IRQ 14 Fixed disk Not supported
IRQ 15 Not supported

199

Table 9-9 describes the DOS BIOS software interrupts supported in a VDM.

Table 9-9. Virtualized BIOS Interrupts

Interrupt Description Notes

02h NMI Not supported

05h Print screen Supported by the Virtual Line Printer
driver

08h System timer Supported by the Virtual Timer device

driver. Due to system overhead, interrupts
may comein short bursts

Oeh Diskette Not supported

10h Video Fully supported

13h Disk/diskette Supported by a subset of the DOSINT
13h functions. The supported functions
are

* 00h - Reset diskette

* 01h - Read status

* 02h - Read sectors

* 03h - Write sectors (diskette only)
* 04h - Verify sectors

* 05h - Format track (diskette only)
* 08h - Get driver parameters

* Oah - Read long (fixed disk only)

« 15h - Read DASD type

* 16h - Change status (diskette only)
* 17h - Set disk type (diskette only)
* 18h - Set media type (diskette only)

200

Table 9-9. Virtualized BIOS Interrupts (continued)

14h

Serial Port (Async)

Supported by the Virtual COM driver

15h

System services

Supports the following system services:

* 00h - Cassette motor on

* 01h - Cassette motor off

* 02h - Cassette read

* 03h - Cassette write

* Ofh - Format periodic int

* 4fh - Keyboard intercept

* 80h - Open device

* 81h - Close device

* 82h - program terminate

* 83h - Event wait

* 84h - Joystick

* 85h - SysReq key

* 86h - Wait

* 87h - Move block

* 88h - Get extended memory size
* 89h - Switch to protect mode

* 90h - Device wait

* 91h - Device post

* cOh - Get system config parameters
* clh - Get ABIOS data area

* c2h - PS/2 mouse functions

* c3h - Watchdog timer

» c4h - Programmable Option Select

16h

Keyboard

Fully supported

17h

Printer

Fully supported by the VLPT

19h

Reboot

if DOS STARTUP_DRIVE is s&t, the
session isrebooted: if not, the session is
terminated.

1ah

Time of Day

Read only accessto Real Time Clock is
supported.

201

Table 9-9. Virtualized BIOS Interrupts (continued)

leh

Diskette parameters

Fully supported

70h

Real Time Clock

Not supported

202

Table 9-10 describes the DOS software interrupts which are supported by the
DOS emulation component.

Table 9-10. Virtualized DOS Softwar e Interrupts

Interrupt Description Notes
20h Program terminate | Fully supported
21h Function request Fully supported, plus some undocumented

functions. Thefollowing calls are
supported with restrictions:

* 38h - Return country information
* 44h - Generic IOCtl

* 66h - Get/set code page

* 67h - Set handle count

22h Terminate address | Fully supported
23h Cntl-break exit Fully supported
address
24h Critical error Fully supported
handler
25h Absolutedisk read | Fully supported
26h Absolute disk write | Fully supported, but error generated for
attempt on fixed disk
27h Terminate/stay Fully supported
resident
28h Idle loop Fully supported
2fh Multiplex When aDOS application issuesan INT
2fh with AX=1680h, it yiddsitstime dice.
33h Mouse Fully support, providing VMOUSE.SY S
driver isloaded
67h LIM expanded Supported when Expanded Memory

memory manager Manager VDD isingalled. Supports LIM
EMS V4.0 functions.

203

Sample Virtual Device Driver

The following code represents a sample VDD designed to work with the simple
paralle PDD outlined in Chapter 7. It iswritten using the IBM C Set/2
compiler. ThisVVDD traps I/O to the 8-hit ports from a DOS application
running in aVDM. This VDD performs simple input and output to the
dedicated parallel port adapter described in Chapter 7.

Note that input and output for OS/2 printer portsis handled much differently
than in the sample driver. For OS2 printer 1/0, the OS/2 virtua printer driver
VLPT callsthe OS2 kernel, which formats the request into a standard OS2
Request Packet. The kernd then sends the Request Packet to the PDD for
disposition.

The VDD can perform input and output in one of two ways. The VDD can ask
the PDD to use the specific ports and, if permission is granted, can do the
inputs and outputs directly from within the VDD. The VDD can aso call the
PDD and have the PDD perform the required 1/0, and pass the results back to
the VDD. If the adapter is dedicated to the VDM application, and no other
programs will accessit, the VDD need not call a PDD to perform the operation.
If the adapter can be accessed by protect mode programs, the VDD must get
permission to use the adapter by calling the PDD. The PDD will queue up any
subsequent requests from other threads until the VDD is finished with the
adapter.

In most cases, writing a VDD will be unnecessary, as most of the required DOS
virtualization is handled by the VDDs that come with OS/2 Warp. Writing a
VDD isonly necessary if the DOS application needs to support a custom
adapter in a VDM which cannot be serviced by the existing VDD supplied with
0OS2. This should be rare, as most new applications should be written for
protect mode operation.

In this sample VDD, the VDD traps I/O on a per-DOS-session basis, to ports
0x210, 0x211 and 0x212. When the hook is entered, the VDD checks to see

204

that the current requester isthe also the current owner of the port. If not, the
VDM application attempting the accessis terminated. If the requester isvalid,
port trapping is disabled, allowing subsequent 1/0 to go directly to the
hardware for increased performance. When the DOS session is exited, the 1/O
hooks are removed and port trapping is reenabled. This VDD shows you how
to call some basic VDH functions, such as VDHInstalllOHook,
VDHRemovel OHook, and VDHInstal|lUserHook.

When a VDM is created, the PIOCreate routine is called, and when the VDM is
closed, the PIOTerminate routineis called. PIOCresgteis called with a handleto
the VDM, which is actually the base linear address of the VDM. Y ou may
verify the operation of any of these funtions if you have the kernel debugger
ingtalled. Smply place acall to Vdhint3 in the source code, recompile and
relink, then reboot. The Vdhint3 call will cause abreak at the debugging
terminal, and if you used the MAPSY M éfter the link, you can examine VDD
variables. Do not insert the call to Vdhint3 if you do not have the kernel
debugger installed, or have the debugging terminal connected.

205

/* file pioinit.c */
/**/

/* sanple parallel port VDD init section */

/**/

#i ncl ude "mvdm h" /* VDH services, etc. */
#i ncl ude "pio.h" /* PIO data defines */

#pragma entry (_PIOnit)

#pragma dat a_seg(CSWAP_DATA)

extern SZ szPropl pt1ltineout;

#pragma al l oc_text (CI NI T_TEXT, Pl O nit, Pl O PDDProc)
/* init entry point called by systemat load tine */

BOOL EXPENTRY _PI Ol nit (psz) /* PI'O VDDI nit *
{

/* Register a VDM term nati on handler entry point*/
if ((VDHI nstall UserHook((ULONG VDM _TERM NATE,
(PUSERHOOK) PI OTermi nate)) == 0)
return O; /* return FALSE if VDH call failed */
/* Register a VDM creation handler entry point */
if ((VDHI nstall User Hook((ULONG) VDM _CREATE,
(PUSERHOCK) PI OCreate)) == 0)
return 0 ; /* return FALSE if VDH call failed */
/* Get the entry point to the PDD */
PPI OPDDPr oc = VDHOpenPDD(PDD_NAME, Pl O_PDDPr oc) ;

return CTRUE;
}

/* entry point registered by VDHOpenPDD, called by the PDD */

SBOOL VDDENTRY PI O _PDDPr oc(ul Func, f 16p1, f 16p2)
ULONG ul Func;

F16PVO D f 16p1;

F16PVO D f 16p2;

{
}

return O;

Figure 9-2. VDD initialization section.

206

/* piodata.c */

#i ncl ude "mvdm h" /* VDH services, etc. */
#i ncl ude "pio.h" /* PIO specific */

#pragnma dat a_seg(SWAPI NSTDATA)

HVDM owner _VDM = 0; /* actual VDM handl e */
HVDM cur r ent _VDM

ULONG Resp = O;

#pragma dat a_seg(CSWAP_DATA)

FPFNPDD PPI OPDDPr oc = (FPFNPDD) 0; /* addr of PDD entry pt */

Figure 9-3. VDD data segment.

207

/* pioin.c */

#i ncl ude "mvdm h" /* VDH services, etc. */
#i ncl ude "pio.h"
#i ncl ude "basem d. h"
/* PIO specific */
#pragma al | oc_t ext (CSWAP_TEXT, PI ODat al n, Request Di rect)
extern | OH | oh;
/* entry fromdata input trap in VDM */
BYTE HOOKENTRY PI ODat al n(ULONG portaddr, PCRF pcrf)
{
BYTE dat ar ead; /* set up byte to return */
RequestDirect () ;
/* disable I/Otrap */
VDHSet | CHook St at e(current _VDM DI G O_BASE, 3, &l oh, 0);
dataread = i np(portaddr);
ret urn(dat aread); /* return data read */
}
BOOL HOOKENTRY Request Direct (voi d)
{
if (owner_VDM'!= current_VDM
{
i f (owner_VDM ! =0)
VDHPopup(0, 0, MSG_DEVI CE_I N_USE, &Resp, ABORT, 0) ;
if (Resp != ABORT)
{
VDHKi | | VDM current _VDM) ;
owner VDM = current _VDM
}
}
el se
owner VDM = current _VDM
}
}

Figure 9-4. VDD input handler.

208

/* pioout.c */

#i ncl ude "mvdm h" /* VDH services, etc. */
#i ncl ude "pio.h" /* PIO specific */

#pragma dat a_seg(CSWAP_DATA)
extern | OH | oh;
#pragma al | oc_t ext (CSWAP_TEXT, Pl ODat aQut)
/* this routine is the data out trap entry point */
VO D HOOKENTRY Pl ODat aCut (BYTE chartowite, ULONG portaddr, PCRF pcrf)
{ RequestDirect () ;
/* disable port trapping */
VDHSet | CHook St at e(current _VDM DI G O_BASE, 3, &l oh, 0);

out p(portaddr, chartowite); /* wite the char */
return;

Figure 9-5. VDD data port output handler.

209

/* file piouser.c */
#i ncl ude "mvdm h" /* VDH services, etc. */

#i ncl ude "pio.h" /* PIO specific */
#i ncl ude "basenid. h"

#pragma dat a_seg(CSWAP_DATA)
/* our routines are for 8-bit ports */
I OH 1 oh = {PI CDat al n, Pl ODat aCut, 0O, 0, 0};

#pragma al | oc_t ext (CSWAP_TEXT, Pl CCr eat e, Pl OTer m nat e)

Pl OCreate, entered when the VDM is created

BOOL HOOKENTRY PI OCr eat e(hvdm)
HVDM hvdm

{

current _VDM = hvdm /* save our vdm handle */
/* install 1/0O hooks for our three 8-bit ports */

if ((VDHI nstalll OHook(hvdm
Dl G O BASE,
3,
(Pl OH) &l oh,
I VDH_ASM HOOK)) == 0)

Pl OTer m nat e(hvdn) ;
return O; /* return FALSE */

}

return CTRUE;

Pl OTerm nate, called when the VDM tern nates. This code is
optional, as the User and | O hooks are renoved automatically by
the system when the VDM term nates. It is shown for exanple.

BOOL HOOKENTRY PI OTer mi nat e(hvdm)
HVDM hvdm

{
owner VDM = 0;

VDHRermovel CHook (hvdm /* renmove the | O hooks */

210

}

return CTRUE;

DI G O_BASE,
3

(Pl OH) &l oh) :

Figure 9-6. VDD user routines.

211

/*

digio menory map for os/2 virtual device driver
*/
#define DIG O BASE 0x210 /* board address
#define DIG O OUTPUT DIA O BASE /* output port
#define DIG O INPUT DI d O BASE+1 /* input port
#define DIG O CONFIG DA O BASE+2 /* initialization port
#define ABORT 0x02
/* nane of the PDD */
#defi ne PDD_NAME "DDA s \0" /* string
/* pioinit.c */

BOOL EXPENTRY PI A nit(PSZ);
SBOOL VDDENTRY PI O_PDDPr oc(ULONG, F16PVQO D, F16PVQ D) ;

/* piouser.c */

BOOL HOOKENTRY PI OCr eat e(HVDM ;
BOOL HOOKENTRY PI OTer mi nat e(HVDM ;

/* pioin.c */

BYTE HOOKENTRY Pl ODat al n(ULONG, PCRF) ;
BOOL HOOKENTRY RequestDirect (void);

/* pioout.c */

VO D HOOKENTRY PI ODat aCut (BYTE, ULONG, PCRF);
VO D HOOKENTRY PI OConfi gQut (BYTE, ULONG, PCRF);

extern ULONG Machi neType; /* Machi ne Type

*/
*/
*/
*/

*/

ext ern FPFNPDD PPl OPDDPr oc; /* addr of PDD entry point

extern HVDM owner _VDM
extern HVDM current VDM
extern ULONG Resp;

/* ioseg */

USHORT _Far32 _Pascal inp(ULONG);
VO D _Far32 _Pascal outp(ULONG USHORT) ;

*/
*/

Figure 9-7. VDD includefile.

212

vpi 0. sys: pioinit.obj piouser.obj pioin.obj pioout.obj piodata.obj \
i oseg. obj

1ink386 /A:16 /M FULL /NOL pi oi nit+pi ouser +pi oi n+pi oout +\
pi odat a+i oseg, vpi 0. sys, vpi o. map, vdh, pi o. def

mapsym vpi o

pioinit.obj: pioinit.c nvdmh pio.h
icc /ISm/Ss /O/Q /W2 /Rn /G /C pioinit.c

pioin.obj: pioin.c pio.h nmvdmh
icc /ISm/Ss /Q/O /W2 /Rn /G /C pioin.c

pi oout . obj: pioout.c pio.h mvdmh
icc /ISm/Ss /Q/O /W2 /Rn /G /C pioout.c

pi ouser.obj: piouser.c pio.h nvdmh
icc /ISm/Ss /Q/O /W2 /Rn /G /C piouser.c

pi odat a. obj: piodata.c pio.h nvdmh
icc /ISm/Ss /Q/O /W2 /Rn /G /C piodata.c

i oseg.obj: ioseg.asm
masm /M /X io0seg.asm

VI RTUAL DEVI CE VPI O

PROTMODE

STUB ' OS2STUB. EXE'

SEGVENTS
CODE32 CLASS ' CODE' SHARED NONDI SCARDABLE ~ RESI DENT
_TEXT CLASS ' CODE' SHARED NONDI SCARDABLE ~ RESI DENT
CI NI T_TEXT CLASS ' CODE' SHARED DI SCARDABLE RESI DENT
CSWAP_TEXT CLASS ' CODE' SHARED NONDI SCARDABLE
CI NI T_DATA CLASS ' CI Nl TDATA' SHARED DI SCARDABLE RESI DENT
CSWAP_DATA CLASS ' CSWAPDATA' SHARED NONDI SCARDABLE
MVDM NSTDATA CLASS ' M DATA NONSHARED NONDI SCARDABLE RESI DENT
SWAPI NSTDATA CLASS ' SI DATA' NONSHARED NONDI SCARDABLE
DATA32 CLASS ' DATA SHARED NONDI SCARDABLE ~ RESI DENT
_DATA CLASS ' DATA SHARED NONDI SCARDABLE RESI DENT

Figure 9-8. VDD Make And DEF Files.

Establishing a VDD-PDD Link

Note that, in this VDD, the actual 1/0 was performed by the VDD routines
PIODataln and PIODataOut. The VDD could have called the PDD to perform

213

the actual 1/0. Thiswould be necessary if the 1/O involved interrupts, as device
interrupts must be handled by a PDD.

The PDD requires dight modifications to support VDD-PDD communications.
The PDD mugt register its ability to provide VDD support by issuing a
RegisterPDD DevHIp call in the Init section of the PDD. The RegisterPDD
informs OS2 of the name of the PDD and the 16:16 address of the PDD’s
communication function. Note that thisis not the same entry point as defined by
the IDC entry point in the PDD Device Header. The VDD can then establish
communications with the PDD by calling the VDHOpenPDD Virtual Device
Helper function. Thisis one of the reasons that OS/2 loads all of the PDDs
before the VDDs during system boot. Note that this DevHIp function has no
error return. A faillure when registering the PDD will cause a system crash
during boot.

If the PDD failsinitialization for another reason, such as afailed SetIRQ or
SetTimer, the PDD must rel ease the PDD-VDD registration by calling
RegisterPDD, with the function pointer equal to 0:0. The PDD described in
Chapter 7 would be modified as outlined in Figure 9-9.

Init code

i?egi st er PDD((FPUCHAR) devhdr . DHnhane, (FARPO NTER) Di gi oComm) ;
ﬁore Init code

mai n Strategy code section

i:)i gi oComm({ ULONG Func, ULONG Parnil, ULONG Par nR)

{

VDD- PDD comm code here
}

Figure 9-9. Registering PDD for VDD-PDD communications.

214

During initialization, the VDD calls VDHOpenPDD, passing it the ASCII-Z
name of the PDD and the 16:32 entry point of the VDD’ s communication
routine. Note the call to VDHOpenPDD in the pioinit.c routine above. If
VDHOpenPDD (or any other VDH call) fails, it will return FALSE and the
driver must call VDHGetError to retrieve the exact error. If the call succeeds,
VDHOpenPDD returns a pointer to the PDD’s communication routine,
previoudy registered by the RegisterPDD call in the PDD Init section.

The two drivers communicate by sending a structure back and forth. This
structureis described in Figure 9-10.Thefirst parameter is a private function
code, which the drivers pass back and forth to identify the operation to be
performed. The two parameters can be data or 16:16 pointersto input and
output packets. The VDD-PDD communication functions should return
nonzero for success, and zero for failure.

If the PDD allocates any resources on behalf of the VDD, the VDD must call
the PDD to release those resources when the VDM is destroyed.

typedef _DRVCOW {
ULONG Funct i onCode;
ULONG Par n;
ULONG Par n2;
} DRVCOWM

Figure 9-10. VDD-PDD communications structure.

215

Chapter 10 - Memory-Mapped Adaptersand
| OPL

A large number of adapters provide on-board memory for communication
between the adapter and the program or drivers. Generally, a program or driver
maps the on-board memory to a physical memory address, and reads or writes
board memory asif it were normal system RAM. These adapters are referred to
as memory-mapped adapters. Memory-mapped adapters, when placed in a
specia hardware mode, appear to adevice driver or application as normal RAM
memory. An application that is allowed direct access to the adapter memory can
transfer data much faster than if it were to call a device driver to perform the
transfer. This type of operation, called memory-mapped /O, can result in
increased performance and is the preferred method for transferring large
amounts of memory quickly. Memory-mapped adapters may also utilize
interrupts or DMA. An example of a memory-mapped adapter would be a video
adapter, such asaVGA card.

Programs that perform transfers with memory-mapped adapters usually write
datain a special format to an area of memory between the 640K and one
megabyte, although some adapters can be mapped in the region above one
megabyte.

The most common example of a memory-mapped adapter isthe standard VGA
graphics adapter found in most IBM clones. Data to be displayed on the screen
iswritten to the adapter’s RAM memory. The video controller constantly reads
this memory, convertsit to eectrical signals and presents these voltage levelsto
the actual display device. If you power down your display terminal and power it
back up, the contents of the display is not lost because the display is actually
kept in video memory, not in the display itsdlf.

High and Low Memory Maps

216

Memory-mapped adapters come in two basic flavors. The first has a memory-
mapped address that is selectable in the area between 640K and one megabyte.
Some of the memory space between 640K and one megabyte is reserved for
such things as BIOS shadow RAM and video memory. Thereisroom, however,
to map an adapter board in that space, providing no address conflicts exist.
Most memory-mapped adapters were designed for personal computers running
DOS, so there was no need to provide memory-mapped addresses greater than
one megabyte. Recall that DOS runs in the real mode of the Intel
microprocessor, which provides for only a 20-bit address. Thislimitsthe
addressing capahility of the CPU to one megabyte, so an adapter designed for
the DOS environment that could be mapped to addresses greater than one
megabyte would not be of much use.

The second type has a memory-mapped address of greater than one megabyte.
The 32-bit addressing mode of OS2 Warp allows adapters to be mapped above
the one megabyte boundary and accessed directly.

I|SA bus memory-mapped adapters use small jumpers or switchesto set thelr
memory-mapped address, while Micro Channd adapters usually contain their
memory-mapped address in the POS registers (see Chapter 3). Some recently-
introduced adapters designed to run in 32-bit systems like OS/2 have been
designed for memory-mapped addresses of greater than one megabyte.

Application Program Access To Adapter Memory

One of the most important features of OS2 isits ability to protect programs
from one another. With the aid of the protect mode circuitry in the CPU, the
operating system can determine beforehand if a program is about to read from
or write to another program’s memory space. If the processor detects this kind
of error, the system’s error handler is called to display the error and the
offending program is immediately terminated. How then does an application
operating at Ring 3 gain access to the memory-mapped adapter addressthat is
not within its own address space?

217

Recall the discussion of the processor architecture in Chapter 3. Aswas
outlined, a program’ s access to memory is controlled by selectors, which are
indexes into the program’s Local Descriptor Table. The descriptor contains a
physical address and Requested Privilege Level, or RPL, of the memory object.
When a program is executed, it get’sitsown list of selectors, or LDT, which
definesits valid addressable memory areas and their access restrictions. When
the program attempts to read or write memory, the CPU compares the target
address and type of operation to a corresponding entry in the LDT. If the
program does not have access to the target memory, a General Protect, or GP
fault is generated, and the program isimmediately terminated. If the addressis
valid, the CPU verifies that the memory has the correct permissions, such as
read and write, and generates a fault if the permissions do not agree with the
attempted operation.

If the adapter’s memory-mapped address could be placed in the application’s
LDT, the program would be free to access the adapter’s memory. The
application’sLDT, however, is created at load time, and is not modifiable by
the application. If that were permitted, applications would be free to select the
memory addresses they wished to read and write, and crash OS/2. The only
program that can grant an application accessto memory isadevice driver. The
device driver, operating at Ring O, is free to manipulate the application’s
environment, with some limitations.

To alow the application to access the foreign memory, the application program
opens up the device driver and passesiit the physical address and size of the
memory it wishes to access. For most adapters, the memory sizeis generally
4K, 8K, 16K, or 32K bytes. The driver should first verify that the memory
addressis within the valid range for the adapter. The driver can be hard-coded
with the valid physical addresses, it can be sent the address via an 10Ctl, or the
valid address could be entered at driver load timein the “DEVICE=XXX.SYS’
linein the CONFIG.SY Sfile (see Chapter 8). The driver then allocatesan LDT
selector for the new adapter address. Even though the LDT belongsto the
application, the driver can accessit fredly. Thisis due to the fact that when the
driver is called by the application, the driver and application share the same
context.

218

Next, the driver callsthe OS2 system DevHIp function PhysToUVirt (see
Figure 10-1), which maps the physical addressto an LDT sdlector in the
application’'sLDT. Theresult isreferred to as a fabricated address. Using an
|OCitl, the driver then passes back the new LDT selector:offset value to the
application. The application makes a pointer from the selector using the
MAKEP macro, and uses this pointer for direct access to adapter memory. The
LDT entry remains valid until the program is terminated.

if (PhysToWVirt(0xd8000, 0x8000, 1, &men))
return (RPDONE | RPERR | ERROR GEN FAI LURE);

Figure 10-1. PhysToVirt call.

The 0xd8000 is the physical adapter memory address. The 0x8000 isthe
requested size, the parameter 1 means get a virtual pointer and make the
memory read-write, and & mem isthe address of DS-relative storage for the
returned virtual address.

Accessto Adapter Memory In the Interrupt Handler

In some cases, such as upon receipt of an interrupt, the device driver may be
required to access memory-mapped adapter inside the interrupt handler. If a
driver isrequired to perform interrupt-time memory transfers, it should set up
the references to the memory in the INIT section. Since the interrupt handler
can be entered in any context, the LDT of the application may not be in the
current context. The driver cannot use an LDT to address memory, but must
use a GDT entry for memory access. The GDT entry will be valid in any
context.

If the device driver will be performing memory-mapped transfersinsde an
interrupt handler, it must alocate the required sdector(s) by issuing the
AllocGDT Selector DevHIp, then map the new selector(s) to the physical
address with the PhysToGDT Sdlector DevHIp call (see Figure 10-2). The

219

driver now has direct addressability to the adapter memory regardless of
context, and can fredly transfer data to and from the adapter memory at
interrupt time. The device driver must allocate and map the GDT selector(s)
during INIT. However, remember that the INIT codeisrun asaRing 3 thread
of the system, so the driver cannot access the memory mapped to the GDT
selector at INIT time.

A complete memory-mapped device driver and sample 16-bit and 32-bit
application codeis shown in the Listings section.

FARPO NTER fabricated_ptr = 0;
/1 allocate space for a GDT selector during INT

if (Al ocGDTSel ector (1,sel_array))
{ /1 allocate a GDT sel
DosPut Message(1, 8, devhdr.DHnane);
DosPut Message(1, strl en(GDTFai | Msg), GDTFai | MsQ) ;
br eak;

}

/1 now map the board nenory address to the GDT sel ector

i f (PhysToGDTSel ector (board_address,
(USHORT) MEMSI ZE,
sel _array[0],
&err))

{

DosPut Message(1, 8, devhdr.DHnane);

DosPut Message(1, strl en(SELFai | Msg), SELFai | MsQ) ;
br eak;

}
fabricated_ptr = MAKEP(sel _array[O0],0);

Figure 10-2. Mapping a GDT selector during INIT.

I nput/Output Privilege Level (IOPL)

OS2 alows programs with 1/0 Privilege Level (IOPL) enabled to do direct
register 1/0 to adevice. If the device your application will be using is a paralldl
card or digital switch, an actual device driver may not be necessary. With IOPL,

220

the application program can perform direct register I/0O using IN and OUT
instructions. If the device does not require interrupt or timer support, |OPL
may be the ticket.

Note, however, that IOPL is a processor-specific function, and thusis not
portable across hardware platforms such as RISC. For instance, the port
mapping of a MIPS processor is not the same as an Intel processor, so code
written for one processor will not necessarily run on another processor. The
current trend isto migrate operating systems onto other platforms such as RISC
and SMP. For these reasons, you can only perform IOPL from a 16-bit
segment, and cannot enable a 32-bit C Set/2 segment to perform IOPL. 16-bit
segments are allowed to perform 1OPL since the 16-bit segments themselves
are processor-dependent, and can’t be migrated to other processor platforms

anyway.

There are circumstances when it makes sense, for performance reasons, to
allow the application to perform smple I/O. This could mean something as
smple as controlling an external switch, or testing for a single bit from an 1/0
port. Calling a device driver to accomplish thisisthe preferred method, since its
more likely to be portable. Under some circumstances, however, IOPL may be
the best solution.

The IOPL Segment

To enable IOPL, the segment descriptors of the segment that contains the 1/0
code must be marked Descriptor Privilege Level, or DPL 2. OS/2 alows
segments with properly marked descriptors to perform direct register 1/0.
There are two ways you can structure your |OPL routines. If you'reusing
Microsoft C 6.0, the inp and outp functions are located in a separate segment
called IOSEG. You can indicate with your DEF fileto mark _|OSEG as

IOPL, and call the standard run-time library routines inp and outp. Y ou can also
write a smple function (See Figure 10-3) to perform the input and output.

221

’

Sampl e 1 OPL segnent

PUBLI C | N_PORT
PUBLI C OUT_PORT

. model | ar ge
. 286P

DGROUP GROUP _DATA

' DATA

_DATA SEGMENT WORD PUBLI C
_DATA ENDS
| OSEG segment word usel6 public ' CODE

assunme CS: _| OSEG, DS: DGROUP, SS: DGROUP

. 286P

IN_PORT proc far

’

push bp
nmov bp, sp
push dx
nmov dx, [bp+6]
in ax, dx
pop dx
pop bp
ret 2

I N_PORT endp

OQUT_PORT proc far

’

pus
nmov
pus
pus
nmov
nmov
out

pop
pop
pop
ret

h bp

h ax
h dx
ax, [bp+6]
dx, [bp+8]
dx, al
dx
ax
bp
4

OUT_PORT endp

| CSEG ends

end

;set up stack frame

; save bp

;save dx

;get port address
; do i nput
;restore regs
creturn in ax

;renove from | OPL stack

;set up stack frame

;save it
;save ax

;and dx

;get data
;get port

; do out put
;restore regs

;renove off | ocal

st ack

Figure 10-3. IOPL Segment.

222

During the link operation, the linker istold to mark the special segment as
IOPL. The linker must also know the names of the exported routines and the
size of the parameters that will be passed to the routines by the Ring 3
application. The number of words that the parameters will occupy on the stack
is extremely important. Since the Ring 3 code (application) and the Ring 2 code
(the IOPL code) do not share the same physical stack area, OS/2 must copy the
contents of the Ring 3 stack to the Ring 2 stack. The linker informs OS2 of the
number of bytes to copy by the size parameter in the EXPORTS statement in
the linker module definition file (see Figure 10-4).

NAME SAMPLE
STACKSI ZE 8192
SEGVENTS
_IOSEG [10PL
EXPORTS
PORTIN 1
PORTQUT 2
PROTMODE

Figure 10-4. IOPL DEF file.

When the application calls either the IN_PORT or OUT_PORT routine, OS/2
will perform aring transition from Ring 3 to Ring 2, copy the caller’ s stack to
the separate Ring 2 stack, call the I/O routine, and perform another ring
transition back to the Ring 3 application. Because of the extra overhead in ring
transitions and copying stacks, this method will not be as fast asthe DOS
equivalent, but will be much faster than calling the device driver for every port
input or output.

Remember that devices that generate interrupts, reguire asynchronous service,
or operatein atime-critical environment must utilize a device driver. Y ou may
be able to get by usng memory-mapping and IOPL, and | suggest using it if
possible. Just keep in mind that eventually, OS2 PDDs will eventually become
32-bit PDDs, and the handy shortcuts like IOPL will most likdly disappear.

223

IOPL From 32-bit Applications

|OPL isnot permitted from 32-bit segments. To use IOPL from a 32-bit
application, the application must call 1/0 routines located in a 16-bit segment.
The easiest way to do thisisto create asmple 16-bit DLL, then link it to the
application with the IMPLIB utility. The same IOPL code can be used for 16-
bit and 32-hit applications. A complete set of code for performing IOPL from
16-bit and 32-bit applications can be found in the Listings section.

225

Chapter 11 - Direct Memory Access (DMA)

DMA isthe ability of a device to access the computer system’s memory without
going through the CPU. Since DMA reads and writes bypass the CPU, data can
be transferred very quickly without affecting system performance. This feature
isuseful for devices that generate large amounts of data frequently, such as
video frame grabbers or an Analog to Digital (A/D) converter. The measure of
adevice s ability to transfer large amounts of data at atimeis called its
bandwidth. The larger the amount of datain a given time period, the higher the
bandwidth. Devices that transfer large amounts of data frequently are therefore
called high bandwidth devices. An example of a high bandwidth device would
be ahard disk drive. The hard disk driveis capable of reading or writing large
amounts of data very quickly. So quickly, in fact, that the CPU and device
driver software cannot keep up with the disk drive' s data transfer rate. If aread
was requested from the disk driver using the CPU, the data from the disk would
appear faster than the CPU could dispose of it, leading to overruns and data
corruption.

The DMA Controller

Since memory is connected to the computer system’s bus, the DMA controller
must request that the CPU “give up” the bus for a short period of time. The
DMA controller isa special set of circuitry responsible for performing the DMA
transactions. Since memory is connected to the computer system’s bus, the
DMA controller must request that the CPU “give up” the bus for a short period
of time. When the DMA controller needs to transfer data, it asks the CPU for
control of the bus by issuing a HOLD request. When the CPU can release the
bus, it grantsthe DMA controller use of the bus by raising a HOLD
ACKNOWLEDGE or HLDA signal. When the DMA controller seesthe HLDA
signal, it begins transferring data to or from the adapter to the computer’s
memory. Memory transfers are very fast, much faster than if the CPU was
involved. When the DMA contraller finishes transferring the data, it drops the
HOLD line, allowing the CPU to again use the system bus.

226

DMA isalso atime-saving feature, in that it “steals’ machine cycles from the
CPU. The net effect isthat of no noticeable lossin system performance, even
when transferring large amounts of data. During DMA operation, the CPU
remains free to execute program threads without knowledge of any DMA
activity, other than the occasional giving up of the system bus.

Most IBM-compatibles and clones use a configuration of two 8237A-5 4-
channel DMA controllers. Like the 8259 PIC, the 8237A-5 controllers are
cascaded to provide additional functionality. One channel of the upper four
DMA channdsis used for the cascade to the lower DMA controller, so atotal
of seven DMA channels are available (see Table 11-1). Thefirst DMA
controller, called DMA controller 1, contains channels 0-3. Channels 0-3
support 8-bit transfers between adapters and memory. The largest block of
memory that can be transferred is 64K bytes. Channels 5-7 support 16-bit
transfers between adapters and memory, and the largest block that can be
transferred is 128K bytes.

Table 11-1. DMA Channel Assignments

Controller 1 | Description Controller 2 | Description

Channd O 8-bit DMA channe | Channd 4 Cascade for
controllerl

Channd 1 Reserved for SDLC | Channd 5 16-bit DMA channd

Channdl 2 Diskette (IBM PC) | Channd 6 16-bit DMA channd

Channd 3 8-hit DMA channd | Channd 7 16-bit DMA channd

Sincethe 8237 isa 16-bit DMA controller with an 8-bit page register, all DMA
transfers must occur from an address between 0 and 16 MB. The DMA
controller contains a 24-bit address register, which limits the memory
addressing. The DMA controller also has a count register, which is 16 bits long,
[imiting the transfers to 64KB (65536* 8) with an 8-bit DMA channd and

227

128KB (65536* 16) with a 16-bit channel. When using the 16-bit mode, bytes
must be transferred on even-word boundaries.

Table 11-2 liststhe DMA controller port assgnments.

228

Table 11-2. DMA Controller Port Assgnments

Port address Description

0000h channel 0 base/current address
0001h channdl 0 base/current word count
0002h channel 1 base/current address
0003h channd 1 base/current word count
0004h channel 2 base/current address
0005h channd 2 base/current word count
0006h channel 3 base/current address
0007h channd 3 base/current word count
0008h channel 0-3 status register

000Ah channel 0-3 mask register (set/reset)
000Bh channedl 0-3 mode register (write)
000Ch clear byte pointer (write)

000Dh DMA controller reset (write)
000Eh channd 0-3 clear mask register (write)
000Fh channel 0-3 write mask register
0018h extended function register (write)
001Ah extended function execute

0081h channel 2 page table register
0082h channel 3 page table register
0083h channel 1 page table register
0087h channel 0 page table register
0089h channel 6 page table register
008Ah channel 7 page table register
008Bh channel 5 page table register

008F channel 4 page table register

0COh channel 4 base/current address
0C2h channd 4 base/current word count
0C4h channel 5 base/current address
0C6h channd 5 base/current word count

0C8h

channel 6 base/current address

229

Table 11-2. DMA Controller Port Assignments (cont'd)

0CAh channd 6 base/current count

0CCh channd 7 base/current address

OCEh channd 7 base/current count

0DOh channd 4-7 read status'write command
0D2h channdl 4-7 write request register

0D4h channe 4-7 write single mask register bit
0D6h channdl 4-7 write mode register

0D8h clear byte pointer flip-flop

ODAh read temporary register/write Master Clear
0DCh channd 4-7 clear mask register (write)
ODEh channd 4-7 write mask register bits

Addressing for the DMA contraller is accomplished by loading the address and
page registers defined in Table 11-3.

Table 11-3. DMA Channel Addressing

For DMA Channels0-3

Source DMA Page Register Address Register

Address A23<->A16 Al5<->A0
For DMA Channels 5-7

Source DMA Page Register Address Register

Address A23<->A17 Al6<->Al

More detailed information on the 8237A DMA controller and support circuitry
can be found in the Intel iIAPX 86/88 User's Manual Hardware Reference.

230

Using DMA

To utilize DMA, the device adapter must support DMA transfers. When data
has to be written, the appropriate DMA channel registers are loaded with the
address of the data to be written, the length of the data, and the proper mode
(read/write) by the device driver. The adapter circuitry, usualy a UART or
some type of controller, issues awrite request based on a programmed
operation initiated by the device driver. An on-board arbiter issuesa DMA
request, which causes the system bus HOLD line to be raised. When the bus
becomes available, the DMA controller raises the hold acknowledge line,
HLDA, to signal the adapter that access to the bus has been granted. The
adapter controller then begins a read operation on the system bus until the
number of requested bytes have been read from memory, and then outputs the
data to the device. The adapter normally generates an interrupt when the
transfer is complete, so that the device driver can check the status of the
transfer.

When data has to be read, the DMA channdl registers are loaded with the
address of the receive buffer, and the adapter controller programmed to start a
read operation. The on-board arbiter requests a DMA operation, and the input
dataistransferred from the adapter controller directly to the memory buffer
without using the CPU. When the required data has been read, or the adapter
controller decides that the input should be terminated, it generates an interrupt
so that the device driver can examine the received data. The DMA controller
will give up the bus by releasing the HOLD line when the DMA channe transfer
count goes to zero or the DMA channd isreset. In addition to the adapter
initiating the DMA operation, the DMA controller can be programmed to start
aDMA transfer using the 8237’ s request register.

To start the DMA, the particular channd isfirst masked to prevent it from
running. Normally, device drivers are free to utilize DMA channds 5, 6, and 7.
The mask register for DMA channels4-7 isat 1/0 address OxD4. The driver
masks the DMA channd by setting the proper bitsin the DMA mask register
(seeTable 11-4).

Table 11-4. DMA Mask Register

Bit

Meaning

00 = sgect channd 4 mask hit

01 = sdect channd 5 mask hit

10 = sdect channd 6 mask hit

11 = sdect channd 7 mask hit

0 =clear mask hit

1 =sat mask bit

3-7

don't care

Next, the mode register for the selected channel is configured by setting the

channd bit and the read/write bits (see Table 11-5).

231

232

Table 11-5 DMA Mode Register

Bit

Meaning

00 = channd 4 sdect

01 = channd 5 sdect

10 = channd 6 sdlect

11 = channd 7 salect

2-3

00 = verify transfer

01 = write transfer

10 = read transfer

11 =llegd

xx = don't careif bits6-7 = 11

0 = auto-initialize disable

1 = auto-initialize enable

0 = addressincrement

1 = address decrement

00 = demand mode sdl ect

01 = single mode select

10 = block mode select

11 = cascade mode sdl ect

The DMA Command Registers are defined in Table 11-6.

233

Table 11-6. DMA Command Register

Bit | Meaning

0 0 = memory to memory disable

1 = memory to memory enable

1 0 = channd 4 address hold disable
1 = channel 4 address hold enable
x =don't careif bit0=0

2 0 = contraller enable

1 = controller disable

3 0 = normal timing

1 = compressed timing

x =don'tcareif bit0=1

4 0 = fixed priority

1 = rotating priority

5 0 = late write selection

1 = extended write selection

x =don't careif bit3=1

6 0 = DREQ sense active high

1 = DREQ sense active low

7 0 = DACK sense active low

1 = DACK sense active high

The channd isthen programmed to transfer words or bytes by the loading of
the page select, base address and count registers. To start the DMA operation,
the channd is unmasked by writing the proper mask bits to the mask register.

The codeto initiate a DMA transfer is shown in Figure 11-1. A completelisting
of the code can be found in Appendix C. The DMACh structure is assumed to
be initialized before the call to SetupDMA. The DMA channd might be active
at thetime that it is needed, so the device driver should examine the status of
the DMA channd to verify that it isavailable. Thisis done by examining the
status word of the controller and checking the DMA channd busy bits.

234

USHORT Set upDMA(USHORT channel)

i f (DMAChannel Busy(channel))
return (DMA_CHANNEL BUSY);

MaskDMVA(channel) ;

Set DMAMbde(channel , DMA_SI NGLE | DMA_READ) ;

I ni t DMA(channel , (UCHAR) DMACh. PageSel ect,
(USHORT) DMACh. BaseAddr ess,
(USHORT) DMACh. Wor dCount) ;

UnmaskDVA(channel) ;

return (DVA_COVPLETE) ;

}

Figure 11-1. DMA setup routine,

DMA and Micro Channel

The Micro Channe bus permits adapters to be masters or daves. During a
memory or 1/O transfer under DMA, the master owns the bus and transfers data
to and from a dave. Adapters that need the bus compete for it using a
centralized arbiter, called the Central Arbitration Control Point, or CACP. The
CACP arbitrates DMA channe utilization based on a 4-bit arbitration bus,
known asthe ARBUS. The ARBUS and CACP work together to ensure that
the highest priority master gets control of the bus when it needsit, and that
other masters which are competing for the bus get afair share of the available
time.

In aMicro Channe system, the DMA controller isa master, which assstsin
transfers between daves during a DMA operation. The DMA controller cannot
arbitrate the bus. Rather, a dave initiates the arbitration which is monitored by
the DMA controller. The DMA controller then transfers the data between the
dave and memory. In this capacity, the DMA controller acts asa*® middle man”,
responsible for helping out with the transfer. Thus this arrangement is
sometimes referred to as “third-party DMA”™.

Micro Channel dave adapters capable of DMA operation are fitted with a
second DMA contraller, called a DMA arbiter. To perform DMA transfers, the

235

device driver initializes the adapter with the source, destination, and count of
the transfer. The on-board hardware DMA arbiter arbitrates for the use of the
bus using its preassigned arbitration level, which isusually stored in the
adapter’s POS registers. Data transfers can also be performed to and from
Micro Channel Bus Masters without using the system DMA controller.

237

Chapter 12 - Extended Device Driver Interface

The Extended Device Driver Interface, EDDI, is anew interface devel oped to
take advantage of a new generation of intelligent disk controllers. These new
disk controllers are capable of handling transfers to and from discontiguous
memory areas. Although EDDI isintended for disk drivers, other types of
device drivers can aso utilize EDDI.

EDDI improves performance by allowing multiple, prioritized requests to be
submitted to the device driver at the same time. Instead of the standard
synchronous Request Packet, the EDDI driver is sent a Request List of
commands, which it can reorder to provide maximum performance. The Read
and Write operations use scatter/gather descriptors (SGDs), which allow for
datatransfer to and from discontiguous data buffers. The driver does not need
to block waiting for the request to complete, but returns immediately. The
actual transfer isusually completed by the disk adapter hardware.

The ability to handle transfers to and from discontiguous memory is more
efficient in a system such as OS2 Warp, which utilizes the 4KB paging
functionality of the 80386 and 80486 processors. Data buffers to be written to
or from the device driver are normally partitioned into 4K pages, and are not
necessarily contiguous. EDDI requires that the device driver contain a second
Strategy routine in addition to the normal Strategy routinein an OS/2 device
driver. The new extended Strategy routineis also called the Strategy 2 or
scatter/gather entry point.

Device Driver Capabilities

The OS2 kernd issues a GetDriverCapabilities request to the device driver. If
the device driver supports the scatter/gather interface, it returns to the kernd a
structure containing two 16:16 pointers to special structures that are supported
and maintained by the device driver. Contained in one of the structuresis a
16:16 pointer to the second Strategy routine to handle synchronous I/O, along

238

with several other parameters. See the Get Driver Capabilities command in
Chapter 6.

Thefirst structure returned is the Driver Capabilities Structure, or DCS (see
Figure 12-1). The DCS can be changed only by the device driver.

typedef struct _DRI VCAPSTRUCT

USHORT reserved;

UCHAR Ver Mpj or ; /1 maj or version, should be 01
UCHAR Ver M nor ; // mnor version, should be 01
ULONG Capabilities;// capabilities bits

PFUNCTI ON Strat egy?2; /1 16:16 pointer to STRAT2

PFUNCTI ON Set FSDI nfo; // 16:16 pointer to Set FSDI nfo

PFUNCTI ON ChgPriority; // 16:16 pointer to ChgPriority

PFUNCTI ON Set Rest Pos; // 16:16 pointer to RestPos

PFUNCTI ON Get Boundary; // 16:16 pointer to GetBoundary
} DRI VCAPSTRUCT;

Figure 12-1. Driver Capabilities structure.

The major and minor version number specifies the version of the EDDI
interface that the driver supports. For OS2 Warp, these should both be 1.

The capabilities bits are described in Table 12-1.

Table 12-1. Capabilities Bits

Bit(s) Description

0-2 reserved, must be zero

3 if set, supports disk mirroring

4 if set, supports disk multiplexing

5 if set, driver does not block in STRATZ2 requests. LAN
Server and LAN Manager requirethis.

6-31 reserved, should be 0

239

If the driver does not provide a particular service such as ChgPriority, it must
return 0:0 as the pointer to the nonexistent function.

The second pointer returned from the Get Driver Capabilities functionisa
pointer to the Volume Characteristics Structure, or VCS. The VCS structure
appearsin Figure 12-2.

typedef struct _VOLCHARSTRUCT

{
USHORT Vol Descri ptor;
USHORT AvgSeekTi ne;
USHORT AvglLat ency;
USHORT Tr ackM nBIl ocks;
USHORT Tr ackMaxBl ocks;
USHORT HeadsPer Cyl i nder;
USHORT Vol Cyl i nder Count ;
USHORT Vol Medi anBl ock;
USHORT MaxSGLi st ;

} VOLCHARSTRUCT;

Figure 12-2. Volume Characteristics Structure.

The VolDescriptor is defined in Table 12-2.

240

Table 12-2. Volume Descriptor Word

Bit(s) Description

0 if set, volume resides on removable media

1 if set, volumeisread only

2 if set, average seek timeis independent of position, such
asaRAM disk

3 if set, outboard cacheis supported

4 if set, scatter/gather is supported by the adapter

5 if set, Read Prefetch is supported

6-15 reserved, should be zero

The AvgSeekTimeisthe disk seek time specified in milliseconds. If unknown,
the time should be set to FFFF. If the deviceisa RAM disk, the time should be
0.

The AvgLatency is the average rotational latency in milliseconds. Like the
average seek time, the latency should be set to FFFF when it is unknown, and O
when the deviceisa RAM disk.

The TrackMinBlocks specifies the number of blocks available on the smallest
capacity track. If thisvalueis not known, it should be set to 1.

The TrackMaxBlocks is the number of blocks available on the largest capacity
track. If thisvalueis not known, it should be set to O.

The Heads Per Cylinder isthe number of heads per disk cylinder. If not known
or applicable, this value should be set to 1.

The VolCylinderCount is the number of cylindersin the volume. If not known,
it should contain the number of sectorsin the volume.

The MaxSGLigt is the maximum number of scatter/gather list entriesthat can be
submitted with one command. If the adapter does not directly support
scatter/gather, thisfield should be set to O.

241

Request Lists and Request Control

To enable the EDDI driver to be called with multiple requests at onetime, a
new request format was defined, and is referred to as a Request List. The
Request List allows an EDDI device driver’s Strategy entry point to be called
with alist of requests. The device driver can reorder the requests to provide
maximum performance. Only four types of requests have been defined. The four
requests are Read, Write, Write Verify, and Read Prefetch. Other commands
may be added in the future. The requests have Request Control flags associated
with them which can be used to force sequential execution.

The Request list consists of a 20-byte Request List Header shown in Figure 12-
3.

typedef struct _REQUESTLI STHEADER {

USHORT ReqLi st Count ;
USHORT Reserved;

FARPO NTER Li st Noti f yAddr ess;
USHORT Li st Request Control ;
UCHAR Bl kDevUni t ;

UCHAR Li st St at us;

ULONG Reservedl

ULONG Reserved?;

} REQUESTLI STHEADER;

Figure 12-3. Request List Header structure.

The RegListCount is the number of requestsin the Request List.

The LstNotifyAddressis a 16:16 pointer to the notification routine to be called
when all requestsin the Request List have been completed, or when an
unrecoverable error has occurred. The LstNotifyAddressis called with ES:BX
pointing to the Request List Header, and the carry flag set (STC) if an error has
occurred. The device driver must save all registers before making the call to the

242

NotifyAddress, and restore them when the call is complete. This call should not
be madeif both bit 4 and bit 5 of the LstRequestControl word are clear (0).

The LstRequestControl word is defined in Table 12-3.

Table 12-3. L stRequestControl Word Bits

Bit(s) Description

0 reserved

1 if s&t, only onerequestisin thelist

2 if set, execute the requests sequentially (do not
reorder)

3 if set, abort on error, set all status, error code and
count (BlocksXferred) fields

4 if set, notify immediately (by calling the
LstNotifyAddress) if an error is detected

5 if set, call the LstNotifyAddress upon completion
regardless of any errors

6-15 reserved, set to 0

The BlockDevUnit isthelogical unit number of the volume.

The LstStatus contains the current status of the request list asit isbeing
processed. The device driver should update the list as requests are being
processed. The LstStatus byte is divided into two 4-byte nibbles. The lower 4
bits indicate the completion status of the requestsin the list and the upper 4 bits
indicate the error status of the requestsin thelist. The bits are defined in Tables
12-4 and 12-5.

Table 12-4. L stStatus Byte, Lower Nibble
Value M eaning
00h No requests are queued
01h gueueing isin process
02h al requests queued
04h all requests completed
08h reserved

Table 12-5. L stStatus Byte, Upper Nibble
Value M eaning
00h no error
01h recoverable error occurred
02h unrecoverable error occurred
03h unrecoverable error with retry
04h reserved
08h reserved

Request Format

The valid requests are Read (1Eh), Write(1Fh), Write Verify(20h) and Read

243

Prefetch(21h). Each extended request has a Request Header which is different

from the Request List Header. The Request Header is 32 byteslong and is

described in Figure 12-4.

244

typedef struct _REQUESTHEADER {

USHORT RegLengt h;
UCHAR CndPr efi x;
UCHAR CndCode;
ULONG Header Of f set ;
UCHAR Request Ct | ;
UCHAR Priority;
UCHAR St at us;

UCHAR Er r or Code;

FARPO NTER Noti f yAddress;
FARPO NTER Hi nt Poi nter;

ULONG Reservedl;
ULONG Reserved2;
ULONG Reserved3;

} REQUESTHEADER;

Figure 12-4. Request Header structure.

The RegLength is the offset to the next request. FFFF terminates the list.

The CmdPrefix is always set to Ox1C to differentiate the request from a
standard Request Packet.

The CmdCode is one of the valid command codes, 1Eh, 1Fh, 20h, or 21h.

The HeaderOffset is the offset from the beginning of the Request List Header to
the header of thisrequest, and is used as a quick accessto the Request List
Header.

The RequestCltl field is defined in Table 12-6.

The notify routines should not be called if bits 4 and 5 are both clear (0).

245

Table 12-6. RequestCt| Byte
Bit(s) Description
0-3 reserved, must be 0
4 if set, notify on error only by calling the NotifyAddress
immediately
5 if set, notify on completion by calling the NotifyAddress
6-7 reserved, must be 0

The Request Priority definesthe priority of the request, and is defined in Table
12-7.

Table 12-7. Request Priority
Value M eaning
00h prefetch requests
01h low-priority request
02h read ahead, low-priority pager 1/0
04h background synchronous user 1/0
08h foreground synchronous user 1/0
10h high-priority pager 1/10
80h urgent request, should be handled immediately

The Status field contains the status of the current request and is defined in
Tables 12-8 and 12-9.

246

Table 12-8. Request Status, L ower Nibble (Completion Status)
Value M eaning
00h not queued yet
01h gueued and waiting
02h in process
04h done
08h reserved

Table 12-9. Request Status, Upper Nibble (Error Status)
Value M eaning
00h no error
01h recoverable error occurred
02h unrecoverable error occurred
03h unrecoverable error occurred
04h the request was aborted
08h reserved

ErrorCode contains one of the errors described in Tables 12-10 and 12-11 if the
corresponding error bits are set in the Status field.

247

Table 12-10. Request Unrecoverable Error Codes

Value M eaning

00h write protect violation

01h unknown unit

02h device not ready

03h unknown command

04h CRC error

06h seek error

07h unknown media

08h block not found

OAh write fault

0Bh read fault

0Ch genera failure

10h uncertain media

13h invalid parameter

Table 12-11. Request Recoverable Error Codes

Value M eaning

1Ah verify error on write, recovered after 1 try

2Ah write error, write to duplexed or mirrored driver
succeeded

3Ah write error on mirrored or duplexed drive, write
to primary drive succeeded

1Bh read error, corrected using ECC

2Bh read succeeded after retry

3Bh read error, recovered from mirrored or duplexed
driver

The NotifyAddress contains a 16:16 pointer to the driver to call when the

request has been completed or aborted. If bits4 and 5 of the RequestCtl field
are both clear (0), the Notify Addressis not valid and should not be called. The

248

device driver must save all registers before calling the notify routine, and
restore them when the call returns.

The HintPointer isa 16:16 pointer to a Request Packet in the Request List. The
device driver can use this pointer to determine whether the current request can

be grouped with another pending request, providing that the other request has
not yet been compl eted.

Read/Write/Write Verify Request

The format of these requestsis described in Figures 12-5 and 12-6.

typedef struct _SGD {
PHYSADDR BufferpPtr;
ULONG Buf fer Si ze;
} SGh;

Figure 12-5. Scatter Gather Descriptor structure.

typedef struct _READWRITE {
REQUESTHEADER ReadW it eHeader ;

ULONG St art Bl ock;

ULONG Bl ockCount ;

ULONG Bl ocksXferred;
USHORT Fl ags;

USHORT SGDescr Count
ULONG Reserved;

SGD Sgd[SGDescr Count] ;
} READWRI TE;

Figure 12-6. Read/Write Request structure.

The StartBlock isthe string disk block for the data transfer. A disk block is
defined as a 512-byte logical disk sector.

The BlockCount is the number of 512-byte blocks to be transferred.

249

The BlocksXferred isthe number of blocks that have been transferred at the
time that the notification routine was called.

The Fagsfied currently uses only the two least significant bits. All other bits
areset to 0. If bit 0 is s, it specifies write-through, defeating any lazy write. If
bit 1 is set, the data should be cached on the outboard controller cache.

The SGDescrCount field contains the number of scatter/gather descriptorsin
the Sgd fied.

The Sgd field contains an array of scatter/gather descriptors.

Read Prefetch Request

The format of the Read Prefetch request is described in Figure 12-7.

typedef struct _READPREFETCH {
REQUESTHEADER ReadPr eHdr ;

ULONG St art Bl ock;
ULONG Bl ockCount ;
ULONG Bl ocksXferred;
USHORT Fl ags;

USHORT Reserved;

} READPREFETCH;

Figure 12-7. Read Prefetch Request structure.
The StartBlock isthe string disk block for the data transfer. A disk block is
defined as a 512-byte logical disk sector.
The BlockCount is the number of 512-byte blocks to be transferred.

The BlocksXferred isthe number of blocks that have been transferred at the
time that the notification routine was called.

250

The Fagsfied currently uses only the least significant bit. All other bits are set
to 0. If bit 0 is s, it specifies that the driver should retain datain the controller
prefetch buffers only until it has been read once. This prevents redundant
caching in the controller.

Request Control Functions

The EDDI device driver may optionally provide other servicesto allow OS/2 to
manage extended requests. The current implementation is OS2 WARP defines
four functions that the device driver may support. The device driver exports
these functions by placing a 16:16 pointer to the functionsin the DCS returned
from the Get Driver Capabilities call. If the pointer in the DCS structure is 0:0,
the function is not supported by the device driver. Since the request control
functions may be called at interrupt time, they must not block. Request control
functions are called by the OS2 File System Driver, or FSD. Request control
functions must save and restore the segment registers, as the interrupt context
may not be the same as the device driver. The four request control functions are
summarized in Table 12-12.

251

Table 12-12. Request Control Functions

Request Control Function | Description

SetFSDInfo Send the device driver 16:16 pointersto
the FSD's End of Interrupt and Access
Validation routines

ChgPriority Allows the FSD to change the priority of a
pending request

SetRestPos Allows the FSD to inform the device
driver where to send the disk drive heads
when there are no requests pending

GetBoundary The device driver returns a block number
greater than the block number passed to
the device driver

SetFSDInfo

This device driver function is called by the FSD with 16:16 pointers to the
FSD’s End of Interrupt and Access Validation routines. The driver iscalled
with ES:BX pointing to a FSDInfo structure, described in Figure 12-8.

typedef struct _FSDInfo {

ULONG Reservedl; /1
FARPO NTER EndCOf I nit; /1
ULONG Reserved?2; /1

FARPO NTER AccValidate; //
} FSDI nf o;

reserved, nust be 0
pointer to FSD s EQ
reserved, nust be 0
pointer to FSD s AccValidate

Figure 12-8. SetFSDInfo structure.

The device driver should allow this function to be called only once. If thecall is
thefirst call, the device driver should return with the carry flag set (STC).

252

Subsequent calls should be ignored, and the device driver should return with the
carry flag clear (CLC).

If the EndOfInit pointer is 0, the FSD does not provide an End Of Interrupt
routine. All registers are preserved during the call to EndOfInit.

The device driver callsthe FSD’s AccValidate with the AL register set to O for
a nondestructive operation, such as READ or VERIFY, and the AL register set
to 1 for a destructive operation, such asWRITE or FORMAT TRACK. The
FSD’s AccValidate function returns with the carry flag clear if accessis
allowed, or the carry flag set if accessis denied. The device driver should return
awrite-protect violation to the caller if accessis denied.

ChgPriority

The device driver’s ChgPriority routineis called with ES:BX pointing to the
request, and the AL register containing the new priority. The pointer in ES:BX
isaways avalid pointer. The device driver should return with the carry flag set
if the Request Packet was not found or was no longer in the device driver’s
internal queue. If the priority change was successful, the device driver should
return with the carry flag clear.

SetRestPos

The device driver’s SetRestPos routine is called with AX:BX containing the
block to be used for the resting position. A value of FFFF:.FFFF meansrest at
the block where the heads end up. The device driver should return with the
carry flag set if the block number is out of the range for the volume, otherwise
it should return with the carry flag clear.

GetBoundary

253

The device driver’s GetBoundary routine is called with AX:BX containing the
block number to be used as a reference to calcul ate the next block number.
Using thisinformation, the FSD can store files more optimally. If the next block
cannot easily be calculated or is not known, the device driver can return the
reference block'l. If the block number is out of the range, the device driver

must return with the carry flag set, otherwise it should return with the carry flag
clear.

255

Chapter 13 - Debugging OS2 Device Drivers

The Kernel Debugger, or KDB, is generally used to debug device drivers as
well as the system kernel code. The KDB kernel, OS2KRNLD, is actually a full
function replacement OS2 kernel, which contains the debugger and the
debugger support functions. KDB communicates with a standard ASCI|
terminal through one of the COM ports. If the system contains only one COM
port, COM1, KDB uses COML1. If the system has two COM ports, COM1 and
COM2, KDB uses the second COM port, COM2. KDB defaults to 9600 baud,
no parity, 8 data bits and one stop bit.

The COM port is attached to an ASCII terminal via an RS-232 interface with
data leads only in a null modem configuration (pin 2 and 3 switched). Before
ingtaling the debugger, the terminal link should first be verified by sending
some text out to the terminal using the DIR > COMn command. If the baud
rate of the COM port has not been previoudly initialized to 9600 baud, use the
command MODE COM1(or COM2):96,n,8,1 <enter>. The text of the directory
list should be displayed on the debugging terminal. You do not have to issue the
MODE command when KDB isingtalled, as KDB will initialize the port on
start-up to 9600,n,8,1.

Toingtall the kernel debugger, the attributes of the OS2KRNL file are changed
to makeit visible. This can be done by using a utility such a attrib. The
OS2KRNL fileisrenamed to OS2KRNL.OLD, and the debugging kernd,
OS2KRNLD, copied to OS2KRNL. The OS2KRNL.OLD fileis kept to allow
reingtallation of the non-debug kernd when reingtalling OS2. When the system
is rebooted, the debugger should sign on at the debug terminal with the
message “ System Debugger 03/16/89 [80386]”.

TheIBM OS2 Warp Toolkit contains an install utility for the kernel debugger
which will perform the above steps automatically.

KDB can be entered normally in several ways. Three special keys entered on
the debugging terminal cause KDB to be entered prior to the complete boot of

256

0OS2. The“r” key causes the debugger to be entered at the beginning of DOS
initialization in real mode. The“p” key causes the debugger to be entered after
0OS/2 goesinto the protect mode for the first time. The “<space-bar>" causes
the debugger to be entered after most of DOS has been initialized. Symbols for
DOS have been loaded at thistime.

After initialization is complete, the debugger can be entered at any time by
typing <cntl-c> at the debug terminal. The debugger is entered when and where
the next timer tick istaken after the key was pressed.

When KDB is entered, it will execute the current default command, usually the
“r’ (register contents), and then display the debugger prompt, “##”. The system
will not run until the debugger is exited, usually by entering the GO command
(9). KDB will also be entered when the system detects an “INT 3" instruction.
A common debug techniqueisto insert INT 3 instructions in the driver source
code while debugging, which will cause KDB to be entered. Once KDB has
been entered, the KDB commands can be used to display the contents of
variables, system information, or memory contents, and to run from or single-
step from the breakpoint.

After any symbolsfiles are loaded, an initialization file, called KDB.INI, is read
and executed. Any debugger command or list of debugger commands can bein
the KDB.INI file. A “g” command should usually be at the end of the
command list, unless the debugger isto remain stopped.

At any time during the display of data on the debug terminal, the display can be
stopped with a <cntl-s>, and restarted with a <cntl-g>. The GO command (Q)
always resumes execution at the instruction displayed in the CS:IP register.

KDB displays information in machine code, and requires a thorough
understanding of machine language and processor architecture to fully utilize its
capabilities.

A complete list of the valid KDB commands can be displayed by entering the
“?" command at the KDB prompt for internal KDB commands, and “.?7" for
external commands.

257

KDB obtains its symbolic debug information from a symbal file with the
extension of .SYM. Thesefiles can be created with the MAPSY M utility, which
creates a symbol file from the .MAP file created during the link operation.
When loading a device driver during system boot, the debug kernel looks for a
.SYM filewith the same file name as the driver .SY Sfile, and in the same
directory asthe driver .SY Sfile. If the device driver “TEST.SY S’ were being
loaded, the debug kernel would look in the same directory as“TEST.SY S’ for
thefile*TEST.SYM”, and load the symbols. The symboal fileis not necessary,
and the driver will load without it, but variables will not be able to be accessed
by name. Several drivers may be loaded, each with their own .SYM file.

If the KDB was supplied with the operating system SYM files, these will also
be loaded if they are placed on the root directory with the OS2KRNL file. The
system symbol fileswill allow access to system variables and structures by
name. Symboals are displayed usng a KDB command such as display word

(dw), display byte (db), or display double word (dd). They are referenced by the
symbolic name preceded by the underscore (“_"), if the driver iswritten in C.
For example, to display the 16-bit variable “bytecount”, the command “dw
_bytecount” would be entered.

KDB Keywords

KDB supports the keywords in Table 13-1 which return their value when used
in expressons.

258

Table 13-1. KDB Keywords

[E]AX, [E]BX, [E]CX, register values

[E]DX, [E]SI, [E]DI, [E]BP,

DS, ES, SS, CS, [E]SP,

[E]IP

FLG value of flags

GDTB value of GDT base physical address
GDTL value of GDT limit

IDTB value of IDT base physical address
IDTL value of IDT limit

TR,LDTR, MSW valueof TR, LDTR, MSW registers
BRO, BR1..BR9 value of breakpoint address

FS, GS segment registers

EFLG value of extended flags

CRO, CR2, CR3 value of control registers

DRO, DR1, DR2, DR3, DR4, | value of debug registers

DR5, DR6, DR7

TR6, TR7 value of test registers

KDB Operators

KDB supports the binary operators described in Table 13-2.

Table 13-2. KDB Binary Operators
Operator M eaning
0 Parentheses
+ Addition
- Subtraction
* Multiplication
/ Divison
MOD Modulo
> Greater than
< Lessthan
>= Greater than or equal to
<= Lessthan or equal to
I= Not equal to
== Equal to
AND Boolean AND
XOR Boolean exclusve OR
OR Boolean inclusve OR
&& Logical AND
Il Logical OR
: Address separator

259

260

KDB supports the unary operators described in Table 13-3.

Table 13-3. KDB Unary Operators
Operator M eaning
| Task number/address operator
&addr Interpret address using segment value
#addr Interpret address using selector
Yoaddr Interpret address as 32-bit linear
%%0addr 32-bit physical address
- Twao's complement
! Logical NOT
NOT On€e's complement
SEG Segment address
OFF Address offset
BY Low byte of address
WO Low word of address
DW Doubleword from address
POI Pointer from address
PORT One byte from a port
WPORT Word from a port

The operator precedenceis as follows:

I()

& #% %% - ! NOT SEG OFF BY WO DW POI PORT WPORT (unary
operators)

* [MOD

+ -

><>=<=

KDB Command Reference
In the following command descriptions, the following rules apply:

» brackets ([]) mean the parameter is optional

* the"or” sign () means either of the parametersisvalid

o parameters surrounded by carets (<>) are mandatory

» parameters may be separated by a comma (,) or blank

» multiple commands on the same line are separated by a semicolon (;)
» al numeric entry is defaulted to hexidecimal

* (...) means repeats

Table 13-4 lists the KDB parameter types and their meaning.
Expressions

261

262

Table 13-4. KDB Parameter Definitions
Parameter Definition
<expr> evaluatesto an 8, 16, or 32-bit value
<number> anumber in decimal, octal, hex or binary
<string> any number of characters between" " or ' '
<range> <addr> [<word>] | [<addr>] [L <word>]
<addr> [& | #][<word>:]<word> | Y%o<dword>
<list> <byte>, <byte>, ... | "string"
<bp commands> alist of debugger commands, separated by ;
<string> "char" | 'char'
<dword>,<word>,<byte> expressons that evaluate to thesizein <>

An expression (expr) isacombination of parameters and operators that evaluate
toan 8, 16 or 32-bit value.

Numbers

A number (number) parameter can be any number with hex as the default.
Numbers may be evaluated in a different radix by appending a special character
to the number. These special charactersarey for binary, o for octal, T for
decimal and h for hex (default).

Strings

A string (string) parameter is any number of characters within double (“) or
sangle (* ") quotes. Double quotes within the string should be preceded by
another double quote to be correctly evaluated.

Ranges

263

A range (range) parameter specifies an address followed by either alength or an
end address. An additional parameter may also be used to specify the number of
times to perform the operation.

Addresses

An address (addr) parameter indicates a memory address in one of four modes.
The four modes are: real mode (& segment:offset), protect mode
(#selector:offset), linear address (Yodword), and physical address (%%dword).
The operators preceding the address override the current address type.

Lists

A listisalist of two-character bytes separated by a space, or a string
surrounded by double quotes.

Commands

Commands (bp cmds) are one or more debugger commands, separated by
semicolons (;), to be executed when a condition is met, such as a breakpoint
encountered.

Strings

A dring isalist of characters bounded by single or double quotes.

Dwords, words, bytes

Expressions that evaluate to the specified size.

Breakpoints

There are two kinds of breakpointsin the kerndl debugger. Temporary

breakpoints are set as an option to the go (g) command, and disappear when the
go command is executed again. Sticky breakpoints are set with a KDB set

264

breakpoint command, and remain until cleared with a KDB command or the
system is rebooted. Sticky breakpoints are numbered 0-9, inclusive.

On a 386, the debug registers can be used in a sticky breakpoint (see the br
command).

When a breakpoint is encountered, the current default command is executed.

Thiscommand is set to r, or the dump registers command. The default
command may be changed by the zs command, and listed with the z command.

Internal Commands

Set Breakpoint
bp[bp number] [<addr>] [<passcnt>] [<bp cmds>]

Set anew sticky breakpoint, or change an existing old breakpoint. The number
parameter is an optional breakpoint number, which selects a new breakpoint by
the number or changes an existing breakpoint with the same number.

The passcnt parameter specifies how many times the breakpoint will be passed
by beforeit is executed. If passcnt is omitted or O, the breakpoint will be
executed the first timethat it is encountered.

The commands parameter isalist of KDB commands to be executed when the
breakpoint is encountered.

Set Register Breakpoint
br[<bp number>] ew|r|1|2]4 [<addr>] [<passcnt>] [“ <bp cmds>" |
Sets a 386 debug register. Debug registers can be used to break on data reads

and writes, and on instruction execution. Up to four debug registers can be set
and enabled at onetime. Disabled br breakpoints don’t occupy a debug register.

265

The e parameter specifies a one-byte length (default)
Thew parameter specifies break on write operation.
Ther parameter specifies break on read operation
The 1 parameter specifies a one-byte length.

The 2 parameter specifies aword length. Word-length breakpoints must be on a
word boundary.

The 4 parameter specifies a doubleword length.

Set Time Stamping Breakpoint
bt[<bp number>] [<addr>]

Set atime stamping breakpoint.

Show Timestamp Entries
bs

Show the time stamp entries.

List Breakpoint(s)
bl

Lists the currently set breakpoints with current and original passcnt, and
breakpoint commands (bp cmds) associated with them.

266

An “¢e" after the breakpoint number means that the breakpoint is enabled; a“d”
meansthat it is disabled. After either one, there may be an “i”, which indicates
that the address was invalid the last time the debugger tried to set or clear the
breakpoint.

Clear Breakpoint(s)
bc[bp number],[bp number],...

Removes (clears) thelist of breakpoint numbers from the debugger’ s breakpoint
table.

Enable Breakpoint
be [bp number],[bp number],...

Enablesthe list of breakpoint numbers.

Clear Breakpoint(s)
bd[bp number],[bp number],...

Disables the list of breakpoint numbers. The breakpoint is not removed, but
disabled so that it can be re-enabled later.

Compare Bytes
c <range> <addr>
Compares the bytes in the memory location specified by <range> with the

corresponding bytes in the memory locations beginning at <addr>. If all
corresponding bytes match, the kernel debugger displaysits prompt and waits

267

for the next command. If one or more corresponding bytes do not match, each

pair of mismatched bytesis displayed.

Dump Memory

d [<range>]

Dump memory in the last format selected (byte, word, doubleword).

Dump Bytes
db [<range>]

Dump memory in byte format and ASCII representation.

Dump Words
dw [<range>]

Dump memory in word format.

Dump Doublewords
dd [<range>]

Dump memory in doubleword format.

Dump GDT Entries

dg [a] [<range>]

268

Dump global descriptor table entries.
The a parameter specifiesadump of all entries, not just valid entries.
Without the a parameter, the dg command will display only thevalid GDT

entries. If therangeisan LDT selector, KDB will display “LDT” and the
associated entry.

Dump IDT Entries

di [a] [<range>]

Dumps the interrupt descriptor table.

The a parameter specifiesadump of all of the IDT entries.

The default isto display only thevalid IDT entries.

Dump LDT Entries

dl [alp|s|h] [<range>]

Dump local descriptor table entries.

The a parameter specifiesadump of al of the LDT entries.
The default isto display only thevalid LDT entries.

The p parameter specifies the private selectors only.

The s parameter specifies the shared sdectors only.

The h parameter specifies the huge segment selectors only.

269

Dump Page Directory/Page Table Entries

dp [a[d] [<range>]

Dump the page directory and page tables. Page tables are skipped if the
corresponding page directory entry is not present. Page directory entries with
an asterisk next to the page frame should be ignored.

The a parameter specifiesa dump of all of the page directory and page table
entries.

The default isto skip entries that are zero.

The d parameter specifies a dump of page directory entries only.

Table 13-5. Page Bit Definitions (bit set/clear)

Dc Dirty/clean

Au | Accessed/unaccessed
Us User/supervisor

Wr | Writable/read-only
Pn Present/not present

The pteframe field contains the contents of the high 20 bitsin the pte. If the
page is present, the value is the high 20 bits of the physical address that the
page maps to. To find out information about the physical address, use the .mp
command. If the pageis not present, the pteframe field contains an index into
the Virtual Page (VP) structure. The .mv command can dump information from
the VP structure. A not-present page may still be cross-linked to a page of
physica memory viathe VP, and if so, that physical addressisin the frame
column.

270

Note: uvirt pagesin the state column represent a direct mapping of physical
memory without any other page manager structures associated with them.

Dump Task State Segment (T SS)
dt [<addr>]

Dumpsthe TSS. If no addressis given, the dt command will dump the current
TSS pointed to by the TR register, extracting the type (16- or 32-hit) from the
descriptor access byte. If an addressis given, the type is determined by the
386env flag.

Dump Loadall Buffer
dx

Dump the 80286 loadall buffer.

Enter Data
e <addr> [<list>]
Enter one or more byte values into memory at the specified addr.

Thelist parameter specifies alist of bytes to be stored at addr and each
subsequent address, until al of the datain thelist has been used.

If thelist isomitted, KDB prompts the operator for a byte . If an error occurs,
the contents of memory are left unchanged. Each time the space bar is hit, the
addressisincremented by one byte. The minus key (-) decrements the address.
The return key with no data terminates the entry and returns to the KDB
prompt.

271

Fill Memory With Pattern

f <range> <list>

Block fills the addresses in the range with the valuesin thelist.

Thelist parameter specifies a pattern or list of bytesto be stored.

If the range specifies more bytes than the number of valuesin thelist, the
pattern of bytesin thelist isrepeated until al bytesin the range arefilled. If the

list has more values than the number of bytesin the range, the extra bytes are
ignored.

Go
g[9 [t] [=<start addr>][<break addr>],[<break addr>...]

Passes execution control to the code at the start addr. Execution continues to
the end of the code, or until the break addr or a breakpoint is encountered.

If no start addr is given, the command passes execution to the address specified
by the current CS.IP.

The equal sign (=) parameter is used only when a start addr is given.

The s parameter causes the number of timer ticks since the system was started
to be displayed.

Thet parameter allows trapped exceptions to resume at the original trap
handler address without having to unhook the exception.

Up to 10 addresses may be used. Only the first address encountered during
execution will cause a break. All othersareignored. If more than 10
breakpoints are entered, an error message will be displayed.

272

When the breakpoint is encountered, the default command is executed.

Help/Print Expression
?[<expr>][|' string’]

If no arguments are entered, KDB displays the command syntax help for the
internal debugger commands.

The expr parameter is an expression to be evaluated. The evaluated expression
isdisplayed in hex, decimal, octal, and binary.

The string parameter printsthe ASCII string on the debugger terminal.

Hex Arithmetic
h <number 1> <number 2>
Perform hex arithmetic in two values. KDB adds number 1 to number 2,

subtracts number 1 from number 2, multiplies number 1 by number 2, divides
number 1 by number 2, and displays the results.

Input Port
i <port>

Reads and displays one byte from the specified port.

273

List Near Symbols
In [<addr>]

Lists the nearest symbol both forward and back from addr.

List Groups
Ig [<mapname>]

Lists the sdector or segment and the name for each group in the active maps or
the specified map mapname.

List Maps
Im

Lists all of the current symbal files loaded, and which ones are active.

List Absolute Symbols
la [<mapname>]

Listsal of the absolute symbols in the active maps or the specified map
mapname.

List Symbols
Is <addr>

Lists all of the symbolsin the group that the address addr isin.

274

Add/Remove Active Map

wa <mapname> | *
wr <mapname> | *

Adds (wa) or deletes (wr) a map to the active map list. The active maps are
listed with the Im command.

The mapname parameter isthe name of a map file to make active or an active
map to be removed.

The* parameter adds or removes all map files.

Conditional Execution
] <expr>[<command list>]

Executes the command list if the expression evaluates to TRUE (nonzero).
Otherwiseg, it continues to the next command in the command line, but not
including the ones in the command list. The command list is one or more
commands surrounded by single or double quotes. If more than one command
appearsin the command list, the commands must be separated by the semicolon
(;) character.

The j command is normally used to set a conditional breakpoint at a particular
address.

Traces the bp chain on the stack and prints the address, 4 words/dwords of
parameters, and any symbol found for the address.

The s parameter specifies a 16-bit frame width.

The b parameter specifies a 32-bit frame width.

275

The ss.bp specifies a stack address other than the current ss:.bp.

The csiip parameter specifies an execution address other than the current csiip
values.

Move Memory
m <range> <addr>

Moves the block of memory specified by a range to the location starting at
addr.

Ouput Byte
0 <port> <byte>

Sends the byte to the specified output port.

Ptrace/Program Step
p [n[t] [=<start-addr>] [<count>]

Executes the instruction at the start address, then executes the current default
command.

The n parameter causes the register to be suppressed if the default command is
r.

Thet parameter allowsthe original trap handler address to be traced without
having to unhook the exception.

276

The start addr parameter is an optional addressto start at, otherwise execution
begins at the current csiip.

The count parameter specifies the number of instructions to execute before
stopping.

The p command is different than the t command, in that the p command will
allow afunction call to complete before stopping again. A p command executed
at acal ingtruction will stop only after the call has been completed. Thet
command will trace into the call and stop at every instruction.

Register

r [t][<register-name> [<value>]]

Displays the contents of CPU register and allows its contents to be changed.
Thet parameter toggles the terse register display flag.

Theregister name is any one of the valid register names listed in Table 13-6.

277

Table 13-6. KDB Register Definitions

Register name M eaning

AX, BX, CX, DX, S, DI, | general registers

BP, SP, IP

DS, ES, SS, CS segment registers

GDTB GDT base asalinear address
GDTL GDT limit

IDTB IDT base as alinear address
IDTL IDT limit

TR, LDTR TR, LDTR registers

|OPL iopl portion of flag registers
F flag register

MSW Machine status word

EAX, EBX, ECX, EDX, extended general registers
ESl, EDI, EBP, ESP, EIP

FS, GS segment registers

EF extended flag register
CRO, CR2, CR3, CR4 control registers
DRO, DR1, DR2, DRS, debug registers

DR6, DR7

TR6, TR7 test registers

IP, PC the Instruction Pointer
F the Flags register

If no register name parameter is supplied, the r command displays al of the
registers, flags, and the instruction at the current csip.

If aregister name parameter is supplied, the current value of the register is
displayed, and KDB prompts for a new value. If both the register name and
value are given, the command changes the register name to the value.

278

To change one of the flag values, supply the register name f when entering the
Register command. Thef register parameter will display the current value of
each flag as atwo-letter name. Table 13-7 contains alist of flag values by name.

Table 13-7. KDB Flag Register Definitions
Flag name Set Clear
Overflow ov NV
Direction DN (Decrement) UP (Increment)
Interrupt El (Enabled) DI (Disabled)
Sign NG (Negative) PL (Plus)
Zexro ZR NZ
Aux Carry AC NA
Parity PE (Even) PO (Odd)
Carry CY NC
Nested Task NT (toggles)

At theend of the list of values, the command displays a minus sign (-). The new
values for the flags can now be entered in any order. To terminate the flags
entry, pressthe return key.

To change the MSW (Machine status word), use names outlinein Table 13-8.

Table 13-8. KDB Machine Status Word

Flag Set Clear

Protected Mode PM (toggles)
Monitor Processor Extenson | MP (toggles)
Emulate Processor Extenson | EM (toggles)
Task Switched TS (toggles)

279

Toggles means that if the flag is set, using the flag name will clear it. If theflag
isclear, it will berest.

Search
s<range> <list>

Searches the memory range for a pattern matching the list parameter.

Trace

t [alc|n|glt[x][=<start addr>][<count>][<addr>]

Executes the instruction at the start address or current cs.ip.

The a parameter specifies an ending address for the trace.

The ¢ parameter suppresses all output and counts the instructions traced.

The n parameter suppresses the register display. Only the assembly lineis
displayed. This option works only if the default command isr.

The s parameter isa specia trace that which causes the instruction and count
for every call and return to be displayed.

Thet parameter allowsthe original trap handler address to be traced without
unhooking the exception.

The x parameter forces KDB to trace regions of code known to be untraceable.

280

Unassemble
u [<range>]

Display the instructions in arange in a mnemonic format. All of the 286 and
287 op-codes can be displayed.

List Real/Protect M ode Exceptions

viln|p|v|r[f]

Liststhe real and protected mode exceptions that the debugger intercepts.
The n option specifies the traps that beep when hit.

The p option specifies only the protect mode vectors.

The r option specifies only the real mode vectors.

The v option specifies both real and protect mode vectors.

Thef option directs the kernd to route fatal faults to the debugger and not to
display a pop-up message.

Vectors set with vt (as opposed to vs) will be printed with a star following the
vector number.

281

Add Interrupt/Trap Vector, All Rings

viin|p|v]|r [f] n[,n,.]

Adds a new intercept vector that the debugger intercepts.

Ther option will ingtall a debugger handler in thereal mode IDT.
The p option will install a debugger handler in the protect mode IDT.
The n option causes the intercepted traps to beep when hit.

Thef option directs the kernd to route fatal faults to the debugger and not to
display a pop-up message.

Intercept Trap Vector Except Ring O
ven|p|v]|r|f]n[n,.]

Identical to vt except that vswill not intercept ring O interrupts.
VSV or vtv intercepts V86 mode exceptions or traps.

For GP faults, vsf d isthe same avsp d. For page faults, vsp e would trap all
ring 3/2 page faults, but vsf e would trap only the invalid page faults.

Clear Interrupt/Trap Vectors
ve[n|p|v]r|f]n[n],.

Clears the vectorsindicated, reinstalling whatever address was in the vector
before the debugger grabbed the vector.

282

The n option causes the trap(s) not to beep when hit. The trap remains intact.

To intercept general protection faults before OS/2 does, use vtp d before the
fault is hit, examine the information about the fault, and do a vcp d and g, which
will let the OS/2 GP handler get control (and kill the process, etc). Another
option would be to enter avep d after hitting the fault and trace into the
exception handler. Thett or gt commands perform this automatically.

Debugger Options
y[?] [386env|diswr |regter se]
Toggles one of the debugger option flags.

386env 386 environment
didwr display lower case
regterse terseregister display flag

The 386env flag controls the size of addresses, registers, and other information
when displayed. When 386env is on, the display format is 32 bits. When off, the
display format is 16 hits.

The didwr flag, when enabled, displays assembler code in lower case. When
disabled, assembler code is shown in upper case.

The regterse flag determines the number of registers displayed with ther
command. If regterseison, only thefirst three lines of registers are displayed. If
regterseis off, all six lines of registers, plus the unassembled instruction, are

displayed.
The ? parameter displays the currently supported options.

They command without any parameters displays the current state of the option
flags.

283

Execute Default Command
z

Executes the current default command. The default command is a string of
debugger commands that are executed any time that the debugger is entered
and there is no breakpoint command attached to the entry. The r command is
initialized as the default command when the system is rebooted.

List Default Command

Zl

Lists the current default command.

Change Default Command
zs<string>

Changes the default command to a string. Any errors will cause the default
command to bereset tor.

External Commands

Help

?

Prints the help menu for the external debugger commands.

284

Baud Rate
b <baud rate> [<port addr>]
This command will set the baud rate of the debugging port.

Thelegal baud rate values are 150t, 300t, 600t, 1200t, 2400t, 4800t, 9600t, and
19200t.

The port addr parameter is 1 for COM1 and 2 for COM2. The default port addr
is2.

Dump ABIOS Common Data Area
.C

Dumps the ABIOS common data area.

Display Data Structure
.d <data struct name> [<addr>]

Displays an OS/2 data structure. The valid data structure names appear in Table
13-9.

Table 13-9. KDB Recognized Structures
Name Description
BPB BIOS Parameter Block
BUF File system buffer
DEV Device driver header
DPB Disk Parameter Block
MFT Master File Table entry
REQ Request Packet
SFT System File Table entry
CDS Current Directory Structure
SEM32 32-Bit Semaphore Structure
OPENQ 32-Bit Semaphore OPENQ chain
MUXQ 32-Bit Semaphore MUXQ chain
KSEM 32-Bit Kernd Semaphore Structure
DT Task State Segment Structure
VPB V olume Parameter Block

285

Swap In TSD or Page

i[d[b] [<addr>]
it[d[b] [<slot>]

Swapsin aTSD or Page.

Thei command with an address will cause the page enclosing the address addr

to be swapped in. The address may contain an optional task ot number

override, such as %2|40000.

The it command swaps in the corresponding task’s TSD.

The d option queues up a single swap-in request to be acted upon by the KDB

daemon thread.

286

The dot parameter isthetask’s dot number.

Trace User Stack
K[s|b] [<ss:bp addr>] [<cs:ip addr>]

Traces the bp chain on the user stack and prints the address, 4 words/dwords of
parameters, and any symbol found for the address.

The s option specifies a 16-hit frame width.
The b option specifies a 32-hit frame width.
The ss.bp specifies a stack address other than the current ss:bp.

The csiip parameter specifies an execution address other than the current csiip
values.

Display MTE Segment Table
Im[o][l|p|v|x] <hobmte|laddr | module name”]

Prints modul e table entries and their associated object and segment table
entries.

The o option suppresses the object or segment table display.
Thel option displays only library (.DLL) MTEs.
The p option displays only Physical Device Driver (PDD) MTEs.

The v option displays only Virtual Device Driver (VDD) MTEs.

287

The x option displays only executable (.EXE) MTEs.

If a nonzero hobmte is supplied, only those MTEs with a matching hobmte are
printed. If anonzero linear addressis given, only the MTE pointed to by the
linear addressis printed. If a quoted string is given, only those MTEs with a
matching module name are printed.

The module name for a:\bar.dll and c:\foo\bar.exe are both “bar”. No drive,
path, or extension information should be given.

Dump Memory Arena Records

.ma[alb|c|f|h|l|m|r] [<har|laddr>] | [<har|laddr> L <number of entries>]
This command displays the virtual memory manager’s arena records. If no
handle or linear addressis given, the entire table is displayed. If alinear address
isgiven, it istaken to be a pointer to an arena record. One record or arange of
records can be displayed.

The a option displays all contexts.

The b option displays only busy entries (default).

The ¢ option finds the corresponding object record, and displays the arena,
object, alias, and context record chains.

The h option walks hash links, displaying the entries.

Thel option walks forward links, displaying the entries.

Ther option walks reverse links, displaying the entries.

The m option specifiesthe display of all arena records whose linear address

encloses the supplied linear address to be displayed. A linear address must also
be supplied, and no count is alowed. Context information isignored, so if the

288

linear addressisvalid in multiple contexts, multiple arena records will be
displayed. A physical address may be supplied instead of a linear address, to
allow not-present linear addresses to get past the debugger’s expression
analyzer. If a sdector addresstypeis used, it must be converted to a linear
addressin the command line.

To find out who owns a selector because of a GP fault in some unknown LDT
or GDT segment or memory object, the following command is used:

.mor .mamc cs.eip

Thiswill display the arena record and memory object record (and the owner) of
the code segment. It will also walk the context record chains and display them.
The cs can be substituted with any selector, and the eip with any offset. This
command converts the selector:offset into a linear address automatically, so the
resulting address can be used to find and interpret the arena record(s) and
memory object record(s).

Dump Memory Context Recor d
.mc[b|c|f] [<hco|laddr>] | [<hco|laddr> L <number of entries>]
Displays the virtual memory manager’s context records. If no parameters are

supplied, the entire table is displayed. If alinear addressis given, it istaken to
be a pointer to a context record. One record or arange of records can be

displayed.
The b option specifies only busy files.
Thef option displays only free entries.

The c option walks context record chains and displays them.

289

Dump Memory Alias Record

.mi[b|c|f] [<hal|laddr>] | [<hal|laddr> L <number of entries>]
Displays the virtual memory manager’s alias records.

If no parameters are supplied, the entire table is displayed.

If alinear addressis supplied, it istaken to be a pointer to an alias record. One
record or arange of records can be displayed.

The b option displays only busy entries.
Thef option displays only free entries.

The ¢ option finds the corresponding object record, and displays the arena,
object, alias, and context record chains.

Dump Memory Object Record

.mo[b|c|f|m|n|p|slv] [<hobl|laddr>] | [<hobl|laddr> L <number of entries>]
Display the virtual memory manager’s memory object records. If no handle or
linear addressis supplied, the entire table isdisplayed. If alinear addressis
given, it istaken to be a pointer to an object record. One record or arange of
records can be displayed.

The b option causes busy object records to be displayed.

Thef option causes free object records to be displayed.

The c option displays the arena, object, alias, and context record chains.

290

The m option causes al pseudo-object records with an exactly matching linear
address to be displayed. A linear address must also be supplied, and no count is
allowed. If asdector addresstypeisused, it must be converted to alinear
address on the command line. A physical address may be supplied instead of a
linear address, to allow not-present linear addresses to get past the debugger’s
expression analyzer.

The n option causes non-pseudo object records to be displayed.
The p option causes pseudo-object records to be displayed.

The s option causes object records with the semaphore busy or wanted to be
displayed.

The v option causes object record linear addresses to be displayed. It also
disables the owner interpretation. This command attempts to display what
process, MTE, or PTDA owns the segment. It will display the owner as a short
ASCII string, when appropriate. It will display the PID of the process and, if
possible, the name of the module that owns this segment. Code segments will
normally have only a module name and no process ID. If the sesgment is an
MTE, PTDA, or LDT, KDB will display the object name, process ID (if the
segment isa PTDA), and the module name, if possible.

Dump Memory Page Frame

.mp[b|f|h|l|r|s] [<frame]laddr>] | [<frame]laddr> L <number of entries>]
Displays the page manager’ s page frame structures. I1f no handle or linear
addressis supplied, the entire table is displayed. If alinear addressisgiven, itis
taken to be a pointer to a page frame structure. One record or arange of
records can be displayed.

The b options displays only busy entries.

Thef option displays only free entries.

2901

The h option walks hash links, displaying entries.
Thel option walks forward links, displaying entries.
Ther options walks reverse links, displaying entries.

This data structure contains per-physical page information. To find out the
owner of a particular physical page, use .mp FrameNumber where
FrameNumber is the physical address shifted right by 12 (take off 3 zeros). If
the pageisn’t free, the pVP field contains a flat pointer to the virtual page
structure. Use.mv %pV P where pVP isthe value from the .mp dump, to get
the contents of the VP. The Hob field of the VP is a handle to the Object
Record. Use.mo Hob to dump it. That will display a readable string for the
owner on theright of the display. ma of the Har field in the object record will
give the base virtual address of the object containing the page (under va). Use
the HobPg field of the VP to get the page offset within the object.

Dump Virtual Page Structure

.mv[blf|l|r] [<vpid|laddr>] | [<swapid|laddr> L <number of entries>]
Displays the swap manager’ s swap frame structures. If no handle or linear
addressis supplied, the entire table is displayed. If alinear addressisgiven, itis
taken to be a pointer to a swap frame structure. One record or a range of
records can be displayed.

The b option displays only busy entries.

The f option displays only free entries.

Thel option walks forward links, displaying entries.

Ther option walks reverse links, displaying entries.

292

Process Status
.p[bu] [<slot> | #]*]

Displays the current process and thread status. An asterisk (*) by the slot
number indicates the currently running task. A # by the dot number indicates
what the debugger thinks the current task is.

The .p command, with no options, displays the following information:

e dot number

* PID of the current process
* PID of the parent process
e command subtree number

* thread number
* current state

e priority

e Block ID

* Per Task DataArea (PTDA)

» Task Control Block (TCB) offset
o digpatch sp register value

* SCreen group

* name of the process or thread

The pb command directs KDB to display detailed block information including
the:

e dot
e Block ID
* name

* address blocked at
» symbol blocked on
* semaphore type.

The pu command directs KDB to display user state information including:

293

* csipandsssp values at the time the kernd was entered
* number of arguments passed and their PTDA offset
o Offset of theregister stack frame

e thread number
« PTDA address
e pame

Display User Registers
I [<dot> | #]|*]

Displays the contents of the user’s CPU registers, flags, and the next instruction
to be executed for a specified dot, at time of entry to the kernd.

The dot parameter isthe dot number to use.
The # parameter specifies the use of the current dot.

The* parameter specifiesto use the currently scheduled dot or the last one
bl ocked.

Reboot

.reboot

Warm-boot the machine.

294

Change Task Context
gs] [<slot>]*]

Changes what the debugger thinks the current task context is. If no dot number
ispassed, it will print the current task number.

The s option changes the ss and sp to the new task’s PTDA selector and
dispatch sp value. The original ssand sp is restored when the debugger exits or
when the ss command is used to switch back to the current task.

The* parameter changes the current debugger’s task number to the real OS2
task number.

Dump RAS Trace Buffer
1 [<count>] [ma]=<xx> [min=<yy>]]

Dumps the RAS trace buffer, optionally dumping only events with the specified
major and minor event codes.

295

Chapter 14 - OS2 Display Drivers

Presentation Device Drivers (PMDDs) for OS2 provide support for graphics
devices such as display terminals, printers, plotters, and scanners. Presentation
drivers provide hardware independence for application programs that perform
1/O to these devices.

The presentation driver in OS/2 WarpisaDLL, which runsat Ring 3, and has
the filename extenson DRV. When an application needsto perform I/Otoa
Presentation driver, it callsa system DLL, which in turn calls the Presentation
Manager graphics engine. The Presentation Manager graphicsengineis
contained in PMGRE.DLL.

When a presentation driver isloaded, the graphics engine allocates a dispatch
table containing pointers to routines in the graphics engine. The first time that
the presentation driver iscalled at its OS2 PM_DRV_ENABLE entry point, it
replaces pointersin the dispatch table with pointers to functions supported by
the presentation driver. Some of the pointer replacements are mandatory, and
others are optional. The presentation driver is passed the pointer to the dispatch
table by the graphics engine with the Fill Logical DeviceBlock routine function
cal.

Presentation drivers are called using the C (_cdec!) calling convention. The first
parameter passed is the function number and flags word. The function numbers
are defined in PMDDIM.H, and represent ordinals for graphics engine (Gre...)
cals. Theflag bits are defined in Table 14-1.

296

Table 14-1. Presentation driver flag bits

Bit

#define

Description

COM_DRAW

if set, draw the output at the device, if
clear, don't draw the data but update the
internal data

COM_BOUND

if set, the driver calculates the bounding
rectangle for the output. When done, the
driver callsits own GreAccumulateBounds
to accumulate the bounding rectangle
(GPI_BOUNDYS). All presentation drivers
must supply this function.

COM_CORR

for display driversonly, if set, the
presentation driver must determineif the
output intersects a pick window, and
returns TRUE or FALSE.

COM_ALT_BOUND

directs adisplay driver to accumulate
USER BOUNDS in screen coordinates

COM_AREA

if set, specifiesthat the function call is part
of an area.

62

COM_PATH

if set, the function is part of a path

COM_TRANSFORM

if set, the presentation driver must convert
the coordinates for the specified function
from world to device coordinates using
GreConvert.

\‘

COM_RECORDING

this bit should be ignored.

COM_DEVICE

if set, the driver should handle this
function and not passit back to the
graphics engine for disposition.

9-15

N/A

ignored.

297

Device Context

The presentation application usually makesa KDB, MOU, VIO, DEV, AVIO,
GPI, or WIN call to perform 1/0O. These functionsexist in Ring 3DLLs, and
they call the graphicsenginein PMGRE.DLL. PMGRE.DLL, in turn, callsthe
display or printer driver. The display driver may then access the adapter
hardware directly through memory-mapped 1/0, or may call the OS2 kerndl via
the standard driver interface mechanism to perform the 1/0.

The application program that needsto write to a Presentation Manager device
first opens a Device Context (DC), using the DevOpenDC call. The application
associates a presentation space with the DC and writes or draws in that space.
Each time DevOpenDC is called, a new instance of aDC is created. This
instance is destroyed when the application closes the Device Context with the
DevCloseDC function call. Each instance of a DC has:

» adevice context type
o datatype

* ingtancedata

* dtack

When the DC is enabled, the type of device that is being opened is passed to the
presentation driver, using one of the context types described in Table 14-2.

298

Table 14-2. Device Context Types

Type description

OD_INFO The context isfor information only. The
driver does not generate output. All
Gre...... functions are processed by the
presentation driver.

OD_MEMORY The driver processes the output for the
device, but the output iswritten to a
device-compatible bitmap.
OD_DIRECT The presentation driver processes the
Gre...... routines to generate device
specific data. The datais passed to the
adapter PDD viathe kernel (hard-copy
driversonly).

OD_QUEUED The output is spooled using the Spl...
interface (hard-copy drivers only).

Data Types

Presentation driversthat write to a spool file (OD_QUEUED) must support the
two data types described in Table 14-3.

299

Table 14-3. Data Typesfor Queued Date

Data type Description

PM_Q STD the driver usesthe spooler to create a
device-independent spool file using the
SplSid... and SplQm... functions

PM_Q RAW the driver processesthe Gre...... functions
to generate device-specific output data,
which iswritten to a spoal file using the
SplQm... functions.

| nstance Data

Each instance of a DC contains a double word pointer to information about the
current context. The pointer isreturned to the system by the presentation driver
when the driver context is enabled. The pointer is passed back to the driver asa
parameter in every call through the dispatch table.

Program Stack

Presentation drivers get a 500-byte stack, but should allocate their own stack of
about 4K bytes.

DLL Functions

Theinitialization section of the presentation driver must be compiled and linked
torun in Ring 3, and must EXPORT the following functions:

* MoveCursor (display driversonly)
* MoveCursorForInterrupt (display driversonly)
« OS2 PM_DRV_ENABLE (al drivers)

300

« OS2 PM_DRV_DEVMODE (hard-copy presentation driversonly)
« OS2 PM_DRV_DEVICENAMES (hard-copy presentation driversonly)

Hard-copy presentation drivers should also export entry points for routines that
handle user interaction.

The graphics engine exports the entry pointslisted in Table 14-4.

Table 14-4. Graphics Engine Exports

Entry Point Description

InnerGreEntry main entry point for al Gre... ordinals
GETDRIVERINFO used by the presentation driver to get the
instance pointer for a device context or
pointer to a bitmap header
SETDRIVERINFO used by the presentation driver to set a
specific value in the instance pointer of a
device context

To access the graphics engine, the module definition file would have most of
the function references associated with the InnerGreEntry point by ordinal.

Presentation Driver Design Consider ations
Presentation drivers must always return a 32-bit value.

Coordinate values are normally passed as 32-bit world coordinates, and can be
converted to other coordinate systems by calling the graphics engine function
GreConvert. Screen coordinates are device coordinates to which the DC origin
has been added.

301

Transform Matrix values are signed val ues represented by a 16-bit integer and
16-bit fraction. This resolution is maintained by the graphics engine matrix
functions.

Angles are 32-hit signed values, where O represents a positive X-axis and
FFFFFFFF represents 360 degrees.

Application bounds (COM_BOUND) are accumulated in model space, and user
bounds (COM_ALT_BOUND) are accumulated in device-coordinate space.

If the presentation driver hooks al of the Gre... path and area functions, it is
responsible for generating closures for figures within areas or paths. Otherwise,
the graphics engine will generate the closures.

The presentation driver must provide clipping for drawing and text functions
except GreDrawLineslnPath and GrePolyShortLine. Clipping for these two
functionsis provided by the graphics engine.

Presentation Driver Errors

When an error occursin a presentation driver, the driver should call the
WinSetErrorinfo functionsto log the error. The presentation driver must
validate all symbol sets, fonts, bitmaps, and regions before calling the graphics
engine. The presentation driver must also verify all passed parameters and log
any errors detected. Four severity levels are provided for presentation driver
errors. Theerror levels are defined in Table 14-5.

302

Table 14-5. Presentation Driver Errors

Severity Description

Warning A problem was detected but a workaround
was found.

Error A problem was found, but no workaround
was available. The system state remains
intact.

Severe Error A problem occurred and the system cannot
reestablish its state.

Irrecoverable Error An error occurred and it isimpossible for
the system to reestablish its state. It isalso
impaossible for the application to restore
the system to a known state.

Presentation Driver Error Codes

The presentation driver must call WinSetErrorinfo with the severity of the error
and error code. Some of the general error codes are defined in Table 14-6.
Refer to the Gre... function call referencein the IBM OS2 Presentation Driver
Reference for error codes specific to each Gre... function.

303

Table 14-6. Presentation Driver Error Codes

Error

L ogged by

PMERR_COORDINATE_OVERFLOW

functions requiring matrix
computations

PMERR_INSUFFICIENT_MEMORY

functions that allocate memory

PMERR_INV_BITMAP

functions with hbm as a parameter

PMERR_INV_HRGN

functions with hrgn as a parameter

PMERR_INV_COORDINATE

functions with coordinates as
parameters

PMERR_INV_IN_AREA

functions valid ingde an open area

PMERR_BASE_ERROR

functions that call DOS routines

PMERR_DEV_FUNC_NOT_INSTALLED

functions not supported by the
presentation driver

Additional Presentation Driver Functions

Presentation drivers must also provide correlation to identify whether an object
picked with the mouse, for example, lies within the pick aperture, and must
consider if the object isvisible or invisible. Hard-copy presentation drivers may
need to support banding for raster technology hard-copy devices. Banding is
technique where the output page is broken up into one or more bands, recorded
in memory as a bitmap and sent to the device or the spooler.

Hard-copy presentation drivers must work with back-level and forward-level
drivers across a network. Hard-copy presentation drivers can also support
output to afile. They must also provide the user with the following push

buttons.

* Retry (default position)
e Abort
* Ignore

304

The hard-copy presentation driver should respond as described in Table 14-7 to
each of the returns.

Table 14-7. Job Error Returns

Return What the hard copy driver
should do

MBID_RETRY continue sending data to the
output buffer
MBID_ABORT issue a PrtAbort to notify the
spooler to delete the current
job.

MBID_IGNORE continue sending data to the
output buffer

Examples of presentation drivers can be found in the sample code included with
the IBM OS/2 Warp Toolkit. Refer to the OS2 Warp Presentation Device
Driver Reference and the toolkit documentation for more information on
writing presentation drivers.

305

Chapter 15- OS2 Printer Drivers

307

Chapter 16 - Working With Pointers

OS2 Warp exploits the flat memory model of the Intel 80x86 processors. This
permits applications to be written using a 32-bit compiler and/or a 32-bit
assembler. Memory is organized so that it can be utilized by flat-model
applications and also by 16-bit, ssgmented memory model applications. OS2
accomplishes this by tiling, a method by which a any particular memory object
is addressable using a 32-bit linear address or 16:16 virtual address. Thus a 32-
bit application that references data can do so using native, linear addressing, and
a 16-hit application can aso reference its data using native 16-bit pointers.

As outlined above, when the 32-bit application references a variable or function,
it uses a 32-hit linear or flat address. Applications written for OS/2 Warp can
be aslarge as 512MB, so it islikely that dataitems such as buffers and
structures will cross 64KB tiled boundaries. This represents somewhat of a
problem for driver writers, asthe PDD is still operating in a 16-bit mode.
Fortunately, OS2 Warp provides the necessary DevHIp routines to make it
easer for the device driver to deal with these large data objects.

C Set/2 and C Set++

The C Set/2 and C Set++ compilers are 32-bit flat model C compilers from
IBM. Both compilers utilizes full 32-bit linear addressing and pointer
manipulation. If the application that uses your 16-bit device driver iswritten
with a 32-bit compiler such as C Set/2 or C Set++, there are some specia
considerations you should take into account.

Y ou should also know if your driver will be called by a 16-bit C/2 or Microsoft
C 5.1/6.0 application. If you're not sure, you should assume the application isa
16-bit application, and design your driver to work with either 16-bit or 32-bit
applications. However, if the application will be written in a 32-bit compiler
such as C Set/2 or C Set++, the device driver can optimize performance
somewhat by using 32-bit pointers.

308

In most cases, your driver will work fineif the application is 16-bit or 32-hit.
Thisis because the kernd converts most pointers, if necessary, into 16-bit
virtual addresses beforeit calls your device driver.

Applications written in MS C5.1/6.0 or IBM C/2 will require no changes when
they are run on OS2 Warp and access your 16-bit PDD. The application’s
pointers are 16-bit virtual addresses which can be used directly by the device
driver.

With a 32-bit application, pointers within the application are 32-hit linear
addresses in the process address space. Linear addresses are specia addresses
which include, as part of the address, page information which is decoded by
special page decoding hardware to produce a 32-hit physical address.

Your PDD, however, isa 16-bit program which must deal with the 32-bit
addresses generated by the 32-bit compiler. When a 32-bit application callsthe
OS2 kernd via a standard device driver request, the kernd converts the
addresses contained in the request packet to 16:16 addresses. Thus, the PDD
sees only 16:16 addresses, and has no direct knowledge if the application isa
16-bit or 32-hit application. The process of converting the pointers and/or
addresses from 32-bit to 16-hit is called thunking. Conversely, pointers may be
also converted from 16-bit to 32-bit by thunking. Thunking is accomplished by
invoking the DosSel ToFlat and DosH atToSel macros. There is a performance
penalty when you use thunks, however, so it is best to avoid thunking whenever
possible.

When your device driver receives a request packet for a DosRead or DosWrite,
the caller’s buffer addressin the request packet is the 32-bit physical address of
the caller’ s buffer. The conversion necessary to convert the caller’ s 32-bit linear
addressto avalid physical address has aready been performed by the kernd.
When your device driver is called viaan 10Ctl request from a 32-bit process,
the caller’ s data and parameter buffer pointers are also converted from linear
addresses to 16:16 virtual addresses. Thisis done automatically for you by the
OS2 kernd.

309

If, however, you use the private IOCtl data or parameter buffers to pass the
linear address from the processto the driver, the addressis not thunked. Thisis
because the data and parameter buffersin an IOCtl packet are private data areas
shared by the process and the driver, so the kernel has no way to differentiate
the address from a 32-bit data item. Before using linear addresses passed in this
fashion, you must convert them to an address which the device driver can use.

A 32-bit linear address, such asthe address of avariablein a process, issaid to
be in the process address space, or mapped into the LDT of the process.
Addresses within the process address space may be used freely by the
application, providing it has the proper access rights. However, the addressis
not valid for adevice driver. Since the device driver isoperating in ring 0O, it
needs an address which is global, or mapped to a GDT entry. Pointers which
arevalid for the device driver are said to be in the global address space because
they utilizea GDT sdlector for access.

Sharing the pointers between the process and the device driver iseasy. A linear
address in the process address space can be made valid for the device driver by
acall tothe VMProcessToGlobal DevHIp function. Conversdly, alinear address
in the global address space can be made valid for the process by calling the
VMGl obal ToProcess DevHIp function. Thus, processes and device drivers can
share each other’s common memory areas. An example of thisis shown in the
Figure 15-1.

/'l convert driver-relative address to a process address

if (VMd obal ToProcess(!inaddr, 0x1000, 0x01, (FARPO NTER) &new_| i naddr))
return(RPDONE | RPERR | ERROR_GEN_FAI LURE);

/'l convert an application address to a global 32-bit address

if (VMProcessTod obal (Iinaddr, 0x1000, 0x01, (FARPO NTER) &new_| i naddr))
return(RPDONE | RPERR | ERROR_GEN_FAI LURE);

Figure 15-1. VMGlobal ToProcess and VMProcessT oGlobal

310

Your driver may also allocate virtual memory with the VMAIIoc DevHIp (see
Figure 15-2). VMAIloc will return a 32-bit linear address to the allocated
memory. Depending on the flags parameter passed the VMAIIoc, the 32-bit
linear address returned will be in the process address range or the global
address range. Thus, a device driver may allocate a buffer and pass a 32-bit
pointer to that buffer to the 32-bit process. VMAIIoc parameters can aso
gpecify that the memory to be allocated is above or below the 16MB line, and
whether or not the memory is contiguous. Thisis especialy helpful for DMA
buffers which for most clones, must be in the memory area under 16MB.

/1 use VMAIloc to map the adapter address to a linear address in the
/1 gl obal address space

ULONG MapAddress = 0xd8000;
LI NADDR Li nAddress = O; /1 linear address to MapAddress
LI NADDR dev_Il i naddr = O; /1 for global |inear address

/1 VMalloc requires a |inear address to the physical map address
Vi rt ToLi n((FARPO NTER) &vapAddr ess, (PLI NADDR) &Li nAddr ess) ;
if (VMAll oc(Li nAddress, 0x1000, 0x30, (PLI NADDR) &dev_I| i naddr))

DosPut Message(1, 2, CrLf);
DosPut Message(1, strlen(AllocFail Message), AllocFail Message);
}

el se

DosPut Message(1, 2, CrLf);
DosPut Message(1, strlen(AllocPassMessage), All ocPassMessage);
}

Figure 15-2. Using VMAIlloc

Virtual Addresses

A 16:16 virtual address which has be mapped to a 32-bit linear addressis caled
atiled virtual address. It represents a selector/offset of the same physical
address as defined by the 32-bit linear address. The normal addresses used in
your device driver are 16:16 virtual addresses. Several DevHlIp calls, such as
VMLock and LinToPagelList, require the addresses of parameters to be 32-bit
linear addresses. If these dataitems or parameters exist in the driver’s data

311

segment, passing the pointer to theseitems will cause these DevHIps to fail.
You must first convert the 16:16 virtual addressesto linear by calling
VirtToLin, and then call the DevHIp function as shown in Figure 15-3.

Fl ags = Oxla;
/[l first convert address arguenents to |inear

i f (VirtToLi n((FARPO NTER) PageLi st , (PLI NADDR)
&l Pageli st));

f
Vi rt ToLi n((FARPO NTER) LockHandl| e, (PLI NADDR) & LockHan
le));

i f (VM.ock(linaddr, 100, | PageLi st, | Lockhandl e,
Fl ags, (FARPO NTER) &El enents))

Q_A_

DosPut Message(1, 2, CrLf);

DosPut Message(1, strlen(LockFail Message),
LockFai | Message) ;
}

el se

DosPut Message(1, 2, CrLf);
DosPut Message(1, strlen(LockPassMessage),
LockPassMessage) ;

}

Figure 15-3. Calling VML ock

Pointersin A VDM

DOS applications running in a VDM utilize real mode addressing. A 20-bit real
mode address in the segment:offset form can refer to a physical address within

312

the VDM'’s one megabyte address space. If the VDM makes an 10Ctl call to
your device driver with pointersin the private data and/or parameter buffers,
the driver must take an extra step to ensure the pointers are converted
correctly. The driver checks the TypeProcess variable in the local info seg
structure to determine of the application isa VDM application (bit 1 = 1).

If it isa DOS application, the driver alocatesa GDT sdlector and convert the
segment: offset address to a VDM-re ative physical address by shifting the
segment left 4 bits and adding in the offset. Thisisthe same way the physical
addressis calculated in real mode for a real-mode application. The driver then
calls LinToGDT Sdector with the 20-bit physical address of the VDM
application’s buffer and/or parameter address. This call maps the 20-bit physical
addressto the caller’saddressusing a GDT selector which can be accessed at
kernd or interrupt time. The selector should be released by a call to
FreeGDT Sdlector when the driver isfinished with it. It isimportant to note that
normally, LinToGDT Selector requires a 32-hit linear address and not a 20-bit
physical address. Thisis possible only because LinToGDT Selector can
determine that the current process making the call isin aVDM. If
LinToGDTSdector determines that the caller isa VDM application, it converts
the 20-bit real addressto avalid 32-hit linear address before mapping it to the
GDT selector.

313

Chapter 17 - PCMCIA DeviceDrivers

The latest technology to affect OS/2 device driversis called the Personal
Computer Memory Card Interface Association, or PCMCIA, architecture. The
PCMCIA isan organization of hardware and software vendors who are
developing a set of standards for small, credit-card size adapters, dubbed
PCMCIA cards. The PCMCIA has attempted to define both the hardware and
software standards for the PCMCIA adapters, and the standards are still
emerging. In order to support this new emerging technology, OS/2 Warp has
introduced support for the current PCMCIA standards.

The information supplied here either exists or is planned, and is therefore
subject to change. Since the PCMCIA specifications are till evolving, it is
possible that some of the information presented in this chapter is may not be
accurate at the time of publication. In addition, OS2 Warp does not support,
nor isit planned to support, the full implementation of the PCMCIA 2.00
services. Future versions of OS2 2.x may provide additonal support for
PCMCIA services. Please refer to the latest publications from IBM for the most
accurate description of the OS2 Warp PCMCIA support.

At the time of thiswriting, the hardware specification outlines three different
size PCMCIA adapters, although more may be added. The different sizes, or
form factors, specify the thickness of the adapter. The current sizes defined by
the PCMCIA specification are 3.3, 5, and 10 millimeters. The adapters are
inserted into a PCMCIA dot (called a socket) with the power on. The adapter
hardware must therefore accommodate inrush currents associated with power-
on insertion. Although the PCMCIA adapter is usually inserted into a dot
without latches or hardware restraints, the PCMCIA specification does not
preclude such additional hardware. Up to 256 PCMCIA adapters can be
installed on a system, and each adapter can have up to 16 sockets. PCMCIA
adapters can be such things as RAM, flash RAM, hard disks, modems, LAN
adapters, or any other device which can fit within the PCMCIA form factor.
Whatever the size or type device, OS2 regards the PCMCIA device as just
another device, and is not aware of the PCMCIA architecture.

314

The PCMCIA Software Trilogy

The software specification outlines three major software components. The OS/2
PDD that deals with the specific device characteristicsis called the client. There
must be a client for each adapter type, but the driver may handle multiple
instances of the same adapter type. Thisis analogous to a device driver for a
multiport serial adapter, which can handle each port with the same driver. The
client driver is usually supplied by the PCMCIA card vendor, although its
possible that generalized OS2 PCMCIA driverswill be available from other
sources. The client driver may also have a VDD counterpart for operation in a
VDM.

The second part of the PCMCIA software architectureis called card services.
Card servicesisresponsible for providing the client an interface to the operating
system In OS/2 Warp, card servicesisimplemented asaring 0 PDD, called
PCMCIAS. The PCMCIA client performs an AttachDD DevHIp to PCMCIAS,
which yields a 16:16 pointer to the PCMCIA$ device driver's IDC entry point.
Subsequent calls to card services are performed by setting up the proper
registers and calling the IDC entry point from the client. Since card services
needs hooks into OS2, card servicesis supplied by IBM.

Card services, like the DevHIp routines, are register based, so in order to write
your PCMCIA driver in C, you'll need to provide alibrary of C callable
functions similar to the DevHIp library. The optional PDD driver library (see
order form at the end of this book) contains the C callable routines for the
PCMCIA card services, alowing you to write your PCMCIA driversin C.

The third component of the PCMCIA software is socket services. Socket
servicesis a hardware-specific layer of software which isolates the socket
specific architecture from the other the software components. It is expected that
the supplier of the system will supply this driver in software form or in the
BIOS. The simplified architecture is shown in Figure 16-1. It should be noted,
however, that the PCMCIA specification allows the client to perform direct I/O

315

and memory-mapped operation with the adapter, avoiding the card services or
socket services layer.

Client PDD

Card Services
PCMCIA$

Socket Services
PDD or BIOS

PCMCIA Adapter
Hardware

Figure 16-1. PCMCIA software architecture.

OS2 Warp PCMCIA Initialization

Thefirst component loaded in CONFIG.SY Sisthe card services PDD. The
card services PDD assumes that the following system resources are available:

* Non-system memory from C0000h to DFFFFh

« |RQ2-15

* 1/O ports 0x108-0xffff, except 0x3b4, 0x3b5, 0x3bah, ox3bbh, 3c0-3dfh,
and 3f0-3f7h

These are the default resources that card services expectsto be available. To
determine what is actually available, another PDD, called the Resource Map
Utility or RMU, isloaded from CONFIG.SY S. When the RMU receives the

316

InitComplete strategy command, The RMU pokes around the system and
verifies the actual resources available, opens the card services driver

PCMCIAS, and calls the card services driver with the AdjustResourcelnfo
function. The card services PDD then adjusts the information on the available
resources so it can more intelligently respond to a subsequent client request for
those resources. It isimportant to note that the RMU driver has the special bit
(bit 4) in the capahilities bit strip word set, informing the kernd to call it with
the InitComplete strategy command. It is also important to note that if no RMU
isloaded, or the RMU failsto call the card services driver, that the card
services driver will assumethat all the default resources are available.

Next, the socket services driver isloaded, and when processing the

InitCompl ete strategy command, the socket services driver calls DevHIp
AttachDD with PCMCIA$, which returns a 16:16 pointer to the PCMCIA$
driver's IDC entry point. It then calls the card services AddSocketServices to
establish bidirectional communications with card services. When card services
receives the socket services AddSocketServices request, it must:

» identify the socket services resources required by calling socket services
GetSetSSAddr, GetSSInfo, InquireAdapter, GetAdapter, InquireSocket and
GetSocket. The socket services are provided by the socket service PDD
when the card services driver calls the socket service driver's IDC entry
point.

» alocateresources, if necessary, from the current resource map.

* ingall any necessary client interrupt handlers by calling DevHIp SetIRQ.

* program socket service hardware with SetAdapter and SetSocket socket
services.

Next, the client PDD isloaded to support the particular adapter. The client
establishes communications with card services by calling the AttachDD DevHIp
during InitCompl ete processing. It is possible that the AttachDD call might fail
in the case that the card services driver isnot yet loaded (out of proper
sequence in CONFIG.SYS). In this case, the client driver should enter a
dormant state, waiting for the card services driver to be loaded. When the client
driver detects that the card services driver isloaded, it issues a RegisterClient
request and commences normal operation.

317

Note that the sequence these drivers appear in CONFIG.SY Swill determine if
processing occurs normally. Therefore, each driver should be sensitive to that
fact and execute accordingly. The card services driver must be loaded first, but
the other drivers may appear out of sequence. Note also that the InitComplete
strategy command isissued in the reverse order of the way they appear in
CONFIG.SYS.

Client Device Driver Architecture

The client driver isanormal OS2 PDD, but contains additional resource
allocation logic not usually found in a PDD. First, since the client driver exports
its entry points, those entry points must never move or be relocated. This means
al of the exported entry points must exist in the first 64KB code segment. This
segment must also contain the strategy, interrupt, timer, and IDC entry points.
Second, although a normal PDD allocates resources using the device helper
routines, the client PDD allocates its resources by calling the card services
driver. Sincethe client driver is activated only be an inserted card or insertion
event, it should not allocate extra memory or resources until the card is actually
detected.

When the user inserts a card into a PCMCIA dot, the card services interrupt
handler is called to signal the insertion. The card services driver acknowledges
the card insertion interrupt by calling the socket services driver with the
Acknowledgel nterrupt function, which returns the identification of the socket
that caused theinterrupt. The card services driver sets up atimer handler to
handle the card insertion event.

The timer handler calls the socket services driver's GetStatus, GetSocket, and
SetSocket functions to determine the cause of the interrupt. The timer handler
then calls each client that has previoudy registered for a card insertion event for
that particular socket.

The client processes the card insertion event by calling the card services
function GetConfigurationinfo to determine if the card was previoudy claimed

318

by another client driver. The client may get more detailed information from the
card by calling the card service tuple functions GetFirstTuple, GetNextTuple,
and GetTupleData. If the card cannot be supported by the client, the client just
returns. If the card can be supported, the client calls the card services functions
Request! O and RequestConfiguration to allocate the resources. The card
services driver then calls the socket services SetSocket function to program the
card for the proper configuration. The client then calls the SetIRQ DevHIp
routine to hook its interrupt handler like a normal PDD.

Under normal operation, the client driver processes requests like any other
PDD.

When the PCMCIA card is removed, the card causes a status change interrupt
to the card services driver. Card services calls the socket services driver's
Acknowledgel nterrupt function to get the socket that generated the interrupt.
The card services driver then setsup atimer handler likeit did in the card
insertion event.

When the timer handler is entered, it processes the interrupt by calling the
socket service GetStatus, GetSocket, and SetSocket function to determine the
cause of the interrupt. Thetimer handler then calls al the clients that have
registered for the particular socket.

The client drivers process the event by calling the card services
ReleaseConfiguration, Releasel O, and Releasel RQ functions. When the card
services driver receives the ReleaseConfiguration command, it calls socket
services to reprogram the card to stop generating interrupts or other events.

If the client previoudy claimed a system interrupt with a SetIRQ call, the must
call UnSetIRQ to give back to interrupt to OS/2.

319

OS/2 Warp Restrictions

The OS2 Warp card services driver contains the following restrictions:

amaximum of 4 adapters

amaximum of 8 sockets

amaximum of 16 clients

amaximum of 4 socket services drivers

amaximum of 16 Memory Technology Drivers (MTDs)
amaximum of 16 memory handles

amaximum of 16 erase queues

amaximum of 16 memory regions

amaximum of 16 disk partitions

amaximum of 7 memory windows (5 memory and 2 |/O)

In addition, card services provides no power management support or write
protection. For PCMCIA disk drivers, the following restrictions apply:

the client must claim all the logical drivesit supports, even if the DASD
card is not currently inserted

disks with multiple partitions must have a driver |etter assigned to each
partition

PCMCIA disk cards do not support HPFS or disk caching

Card Services Functions

Card services provides for the following client services:

function

callbacks

events

MTD hepers

media access routines
return code information

320

The OS2 PCMCIA implementation also has reserved 10Ctl category 13 for a
PCMCIA application interface. OS2 Warp supports or is planned to support
the card services functions shown in Table 16-1.

Table 16-1. OS2 PCMCIA Card Services
Function Code
CloseMemory 0x01
DeregisterClient 0x02
GetClientInfo 0x03
GetConfigurationlnfo 0x04
GetFirstPartition 0x05
GetFirstRegion 0x06
GetFirstTuple 0x07
GetNextPartition 0x08
GetNextRegion 0x09
GetNextTuple Ox0a
GetCardServicesinfo 0x0b
GetStatus 0x0c
GetTupleData OcOd
GetFirgClient 0x0e
RegisterEraseQueue OxOf
RegisterClient 0x10
ResetCard Ox11
MapL ogSocket 0x12
MapL ogWindow 0x13
MapMemPage 0x14
M apPhySocket 0x15
MapPhyWindow 0x16
M odifyWindow 0x17
OpenMemory 0x18
ReadMemory 0x19
RegisterMTD Ox1la

321

Table 16-1. OS2 PCMCIA Card Services (cont'd)
Function Code
Releasel O Ox1b
Releasel RQ Ox1c
ReleaseWindow Ox1d
ReleaseConfiguration Oxle
Request|O Ox 1f
RequestIRQ 0x20
RequestWindow 0x21
RequestSocketM ask 0x22
ReturnSSEntry 0x23
WriteMemory 0x24
CheckEraseQueue 0x26
ModifyConfiguration 0x27
SetRegion 0x29
GetNextClient Ox2a
ValidateCIS O0x2b
RequestExclusive Ox2c
ReleaseExclusive Ox2d
GetEventMask Ox2e
Rel easeSocketM ask Ox2f
RequestConfiguration 0x30
SetEventMask 0x31
AddSocketServices 0x32
ReplaceSocketServices 0x33
AdjustResourcelnfo 0x35

322

Calling Card Services

Card services, likethe OS2 DevHIps, are register-based. The current registers
assigned to these functions under OS2 Warp are shown in Tables 16-2 and 16-
3.

Table 16-2. Card Services Register Interface (input)

Register Contents

AL function number
AH set to AFh

DX handle

DI:Sl pointer

ES.BX arg pointer

CX arg length

Table 16-3. Card Services Register Interface (output)

Register Contents
AX status argument
CF passfail carry flag

All addresses must be in 16:16 form, and the caller must set DS to the DS value
returned from the AttachDD call before calling card services. Card services are
not reentrant, so a function request may be returned BUSY .

Callbacks

323

Client device drivers can be called by card services when certain events occur.

The action of calling the client device driver from card servicesiscalled a

callback. The callbacks that are supported or planned to be supported by OS2

Warp are described in Table 16-4.

Table 16-4. OS2 Warp Callbacks

Function Function Code
BATTERY_ DEAD 0x01
BATTERY LOW 0x02
CARD_LOCK 0x03
CARD READY 0x04
CARD REMOVAL 0x05
CARD UNLOCK 0x06
EJECTION COMPLETE 0x07
EJECTION REQUEST 0x08
INSERTION COMPLETE 0x09
INSERTION REQUEST Ox0a
EXCLUSIVE COMPLETE 0x0d
EXCLUSIVE REQUEST 0x0e
RESET PHYSICAL OxOf
RESET REQUEST 0x10
CARD RESET Ox11
MTD REQUEST 0x12
CLIENT INFO Ox14
SS UPDATED 0x16
CARD_INSERTION 0x40
RESET COMPLETE 0x80
ERASE COMPLETE 0x81
REGISTRATION COMPLETE 0x82

324

The callback interface is described in Table 16-5. The ClientData structureis
shown in Figure 16-2.

Table 16-5. Callback Register Interface (input)
Register Contents
AL function argument
CX socket argument
DL card status
DH socket status
Dl ClientVal from ClientData struct
DS ClientDS from ClientData struct
S| ClientOff from ClientData struct
ES.BX buffer argument
BX misc argument when no buffer argument

Table 16-6. Callback Register Interface (output)

Register Contents
AX status argument
CF passfail carry flag

325

#typedef struct _ClientData

USHORT ClientVal; // client specific data value
USHORT ClientDS; // clients DS value
USHORT ClientOff // client's callback offset
USHORT Reserved // for future use

} ClientData;

Figure 16-2. ClientData structure.

327

Chapter 18 - OS2 File System Device Drivers

File System Drivers are probably the most misunderstood and feared OS2
device drivers, yet depending on their functionality, they can be some of the
easest device driversto write. IBM has done aterrible job of supporting file
system drivers. First, there are no samples of FSDs other than the few samples
posted on the public bulletin boards. Second, the file system 1/O routines are
largely undocumented. IBM, it seems, did not bother documenting the calls
because they claimed they might change, and decided that no one needed to
write an FSD anyway. Third, there are only a handful of FSD experts, and
they’re usually not available to answer questions or help devel opers.

These three reasons combine to make the task of writing FSDs appear to be
nearly impossible. What I’ ve attempted to do in this chapter isto explain just
how an FSD works, how it interfaces to the rest of OS/2, and provide examples
of actual FSD routinesto aid in your FSD devel opment efforts. When you've
finished this chapter, I'm sure you'll agree that FSDs are no more difficult to
write than any other OS/2 device driver.

File System Overview

Thefile system directs requests for device I/0 viathe file system router. The
router receives requests from the kernd in response to API calls generated by
an application. The router directs the call to various types of device drivers. The
call can be routed to a network driver, a physical device driver, or afile system.
An extended file 1/0O API can be implemented to funnd file1/O requeststo
specific file systems such as HPFS. Thisis accomplished by placing afile
system-specific DLL between the application and the standard file /O AFI,
DosFsCtl. See Figure 18-2.

328

Figure 18-1. File1/0O Block Diagram

File system drivers are physical device drivers, therefore have access to the
physical DevHIps and an additional set of helper routines called FSD Helps.
They may belocal, that is, installed on the PC, or they might be remote. Their
primary purposeisto perform physical 1/0 with the device, and they have no
knowledege of the actual format of the information accessed by the device. The
FSD, however, must be able to create and maintain a volume label and a unique
32-hit volume serial number. The FSD supplies this unique information to the
kernd in the Volume Parameter Block, or VPB, when it calls an FSD helper.
The kernel compares this volume serial number with the one it maintains for the
device. If the serial number is different, the user is asked to insert the correct
media. The kernd obtains this unique number for the first time by calling the
FS MOUNT entry point of each FSD. If no FSD identifies afile system, the
current file system is defauled to FAT.

Each FSD must provide its own set of device management support utilities
which are called by OS2's FORMAT, CHKDSK, SYS, and RECOVER
utlities. The utlilitiesmust resdein a DLL with the reserved name of U<fsd
name>.DLL. <fsd name> must be the the exact name returned by the call to the
DosQFsAttach API. The file should follow the 8.3 naming convention if it will
exist on a FAT partition, limiting the <fsd name> to seven characters. The OS2
utility performs no special functions before calling the FSD’ s entry points,
allowing the FSD to selectively perform parts of the operation. The utilities
must support the standard command-line switches for these utlities, however.
The supplied functions (see Figure 18-2) are passed the command line and
number of parameters (argc, argv) and must parse the parameters. They must
also display the proper error messages and allow for recovery in the same way
existing FSDs do.

329

Figure 18-2. FSD-supplied Utility Entry Points

Eas, SEAS, FEAS, and GEAS

OS2 uses what are called Extended Attributes to hold additional information
associated with afile object. Thisinformation can be used to describe thefile
object in detail for use by applications, OS/2, or afile system driver. EA datais
expressed in ASCII, and stored in abinary format in ahidden file. Datain EAs
is accessed through a set of EA APIs. A standard set of EAs, or SEAS, have
been defined to allow access to common EA values by applications. Eas come
in two flavors - Full EAs (FEAS) and Get Eas (GEAS).

FEAs are pairs of names and values. The data in the value portion follows no
particular format, so the application must know the format of the data. The
structure of an FEA is shown in Figure 18-3. The maximum length of the EA
name is 255 characters, and it must be at least one character long. The EA
names are no case sensitive. FSDs should call FSH_CHECKEANAME to
check the EA name, and FSH_UPPERCASE to convert the characters to upper
case.

t ypedef struct _FEA

UCHAR f EA; [l flags
UCHAR cbNane; /'l length of EA nanme (not
i ncl uding null)
USHORT chVal ue; /1 length of val ue
UCHAR szNane; [l ASCI1Z EA nane
[l format val ue

UCHAR sVal ue;
} FEA

330

Figure 18-3. FEA Structure

The fEA flags variable determines whether or not the particular EA is necessary
for proper operation of thefileit is associated with. DOS programs cannot
access the EA data unless he EA bit is set in the program’s EXE header.
Applications should not alter the contents of the flags variable.

EAsarepacked in alist, called appropriately an FEA list. The FEA listis
nothing more than a structure containing a length and a variable number of Eas.
See Figure 18-4.

t ypedef struct _FEALI st

ULONG fl ength; /'l length of FEAs
struct FEA Flist[]; /'l FEA structure
} FEALI st ;

Figure 18-4. FEAList Structure

A GEA (See Figure 18-5) isa shortened version of an FEA, and contains only
an attribute name.

t ypedef struct _CGEA

ULONG | engt h; /'l length of GEA nane
UCHAR szNane; /1 ASClI | Z nane of GEA
b CGEA

Figure 18-5. GEA Structure

Like FEAs, GEAs are packed into a GEAlist structure (see Figure 18-6).
t ypedef struct _CEALI st
{
ULONG gl engt h; [l length of Iist
I

h
struct GEA dist; ASCl | Z nanme of GEA
} GEALI st ;

331

Figure 18-6. GEA Structure

Manipulation of EAsis performed by a structure containing pointersto both
lists (see Figure 18-7).

typedef struct _EAOP

struct CEAList far * fpGEAISst; [l pointer to GEALi st
struct FEAList far * fpFEALi st; /1 pointer to FEALi st
ULONG offError;

} EACP;

Figure 18-7. EAOP Structure

FSD Interfaces

FSD Exported Functions

The Bootable IFS

The Mini File System
The OS2 boot volume contains the boot record and the basic file system. In the
root of the boot volume, you' Il find the mini file sysem in OS2BOQT, the

kernd loader in OS2LDR, the OS2 kerndl in OS2KRNL, and CONFIG.SYS.
Thisis the minimum configuration necessasry to boot.

Mini File System Exported Functions

HPFS

332

A Sample File System Driver

333

Chapter 19- The OS2 SCSI Device Driver
Architecture

While developing OS/2 1.x, Microsoft and IBM realized that writing OS2
device drivers was not an easy task, especially if those drivers were for hard
disks or tape drives. These device drivers turned out to be monalithic in nature,
in which critical sections of code were scattered throughout the driver. There
was, however, agreat deal of commonality among these device drivers. Each
took commands in the form of request packets from the file system, and each
then in turn sent commands to their specific devices. Microsoft decided to
implement a layered approach to these device drivers, separating the software-
specific portion from the hardware-specific portion. They dubbed this new
architecture LADDR, for Layered Device Driver Architecture.

The LADDR modd was developed primarily for SCSI device drivers, but the
basi ¢ philosophy was applicable to almaost every type of device driver. The
LADDR architecture specified that the driver be broken up into two separate
sections, one that handled the software interface, and one that dealt with the
specific hardware. The top section or layer of the device driver was identical for
each SCSI device. It received commands in the form of request packets from
thefile system, converted them to SCSI commands, and then routed them to
the device-specific portion of the LADDR driver (see Figure 19-1) viaan 1/O
Request Block, or IORB. The device specific-portion of the device driver
performed the register 1/0, memory transfers, and interrupt handling specific to
the device. The device-specific portion then sent the result back to the top
layer, which in turn sent the result back to the kernd.

Figure 19-1. LADDR block diagram.

334

When Microsoft and IBM split over the responsibilities for OS2 2.0, IBM
decided to develop their own alternativeto LADDR. It was called it the
Adapter Device Driver, or ADD architecture, and was used for the floppy and
hard disk driversfor OS/2 2.1. Using the same general idea asthe LADDR
architectecture, IBM separated the software portion of the driver, the Device
Manager, from the hardware portion of the driver, the ADD. The Device
Manager, or DMD, receives commands from the OS2 kernd or file system,
and formats these commands into SCSI commands, placing them into IORBs.
The IORBs are then sent to the ADD for disposition. If the application
performs standard reads and writes (DosRead, DosWrite), the file system sends
the request packets to OS2SCSI.DMD, the IBM SCSI device manager. This
DMD converts the file system commands into SCSI-11 commands, then sends
the SCSI commands via the IORB to the specific ADD. This architecture
allows the same device manager to service one or more ADDs.

The ADD acrchitecture also allows for the commands from the DMD to be
massaged before being sent to the ADD, giving the ADD a new personality.
Thisis accomplished by another piece of code called afilter which fitslogically
in between the DMD and the ADD (see Figure 19-2).

Figure 19-2. The OS/2 ADD Architecture

TheOS2DMD

0OS/2 DMDs are 16-bit characater mode device drivers with the extension of
DMD that are loaded with the BASEDEV = statement in CONFIG.SYS. The
DMD extension isimportant because the extension causes the DMD to get

335

loaded as a base device driver, and last after other BASEDEV s with the .SY'S,
.BID, .VSD, .TSD, .ADD, .113, and .FLT (in that order) extenson. DMDs are
loaded last since they manage classes of devices which are controlled by
previoudy loaded adapter device drivers (ADDs) or filters (FLTSs). The Device
Manager determines which ADDs to call (and their entry point addresses) by
caling DevHIp GetDOSVar. The ADD driversregister their entry points with
OS2 by calling DevHIp RegisterDeviceClass.

DMDsin OS2 include OS2CDROM.DMD for CDROM devices,
0OS2SCSI.DMD for generic SCSI devices, OS2DASD.DMD for SCSI disks,
and OS2ASPI.DMD for applications which write to the ASPI specification.
DMDs are sometimes referred to as Class Drivers.

ASPI

The Advanced SCSI Programming Interface, or ASPI, was created by Adaptec
to create a standard, consistent interface to SCS| devices. Applications which
use the ASPI interface can be easily moved to other platforms such as DOS or
Windows with very little changes, while applications written to the standard
OS2 APIscan only berun on OS2. OS2 ASPI is actually a device manager
that converts application 1/0 APIsto SCSI Request Blocks (see Figure 19-3),
or SRBs, then passes them to the ADD for disposition. SRBs are passed to the
OS2 ADD viaastructure called an 1/0 Requesst Block, or IORB. Since ADD
drivers support SCSI commands through IORBs, they are not aware of which
device manager called them, thus the ADD driver can be written independent of
the particular device manager. A virtual ASPI device driver isalso provided to
allow DOS and Windows applications that use ASPI commands to access the
SCSI devices through the appropriate device manager.

336

typedef struct _SRBHEADER
{

}

UCHAR Conmand;
UCHAR St at us;
UCHAR Host Adapt er;
UCHAR FI ags

ULONG Reserved;

SRBHEADER,

typedef struct _SRB

}

SRBHEADER

Sr bHeader ;

SRBCMD Sr bCnd;

SRB;

/1
/1
/1
/1
/1

/1
/1

Command code

Status returned

Host adapter, 0 based

SCSI request flags, cnd specific
Reserved

SRB header
Command- specific structure

Figure 19-3. SCSI Request Block

Table 19-1. ASPI Command Codes

Command Description

0x00 Host adapter inquiry

0x01 Get device type

0x02 Execute SCSI 1/0

0x03 Abort SCS 1/0

0x04 Reset SCSI device

0x05 Set host adapter parameters
0x06-0x7f Reserved for future use
0x80-0xff Vendor specific

337

Table 19-2. ASPI Status Byte Returned

Byte Value M eaning

0x00 SCS| request in progress

0x01 SCSI request completed, no error
0x02 SCSI request aborted by host
0x03 Abort SCSI 1/0 command

0x04 Reset SCSI device

0x80 Set host adapter parameters
0x81 Invalid host adapter number
0x82 SCSI device not installed

Devicedrivers call directly into OS2ASPI.DMD by getting the 16:16 address of
the ASPI entry point from the AttachDD DevHIp call (see Figure 19-4). The
driver calls AttachDD with the ASCII name of the ASPlI manager, SCSIMGRS$.
If the call succeeds, it returns the 16:16 selector and offset of the ASPI entry
point. You should note that AttachDD uses a GDT selector to map the entry
point, so you cannot call the ASPI manager entry point during INIT using this
method. To alow you to call the ASPI manager duing INIT, the ASPI manager
provides an 10OCtl interface to perfrorm the operation (see Figure 19-5).

More detailed information about ASPI can be found in the Advanced SCSI
Programming Interface (ASPI) specification, available from Adaptec.

if (AttachDD("“SCSI MGR$”, pAttachArea))
error;

ptr = MAKEP(AttachArea.protCS, Attacharea. prot OFF);
call [ptr];

Figure 19-4. Calling The ASPI Manager

if ((rc = DosOpen(" SCSI MGR$",
&driver _handl e,
&Act i onTaken,
Fi |l eSi ze,
FileAttribute,

338

FI LE_OPEN,
OPEN_SHARE_DENYNONE | OPEN_FLAGS FAI L_ON_ERRCR |
OPEN_ACCESS_READWRI TE, Reserved))

error,

if (rc = DosDevl CCt| (&Dat al, &Dat a2, 0x01, OUR_CAT, dri ver _handl e))
error;

DosCl ose (driver_handle);

Figure 19-5. Calling ASPI During Init

339

typedef struct Aspi Command
{

UCHAR ACCommand; /'l header
UCHAR ACSt at us; /] status
UCHAR ACHost Adapt er Nunber ; /1 host adapter number
UCHAR ACFI ags; /1 command-specific flags
UCHAR ACReserved[4]; /1 set to O
uni on
{
UCHAR ACCndSpeci fic[??7]; /1 command-specific length

/'l host inquiry command

struct

{
UCHAR NumAdapt ers; /1 nunmber of host adapters
UCHAR Target!|D; /] target |ID of host adapter
UCHAR SCsSI Mgr| D] 16] ; /1 SCSI manager |D
UCHAR Host I D[16]; /1 host adapter ID
UCHAR Paraneters[16]; /1 host adapter paraneters

} Hostlnquiry;

/1 get device type command

struct
{
UCHAR Target!|D; // target ID
UCHAR LUN; /1 1logical unit
UCHAR PDT; /'l peripheral device type

} GetDeviceType;

/'l execute SCSI request

struct
{
UCHAR Target | D; /] target ID
UCHAR LUN; /1 1ogical unit
ULONG Dat aAl | ocLengt h; /1 nunber of bytes xferred
UCHAR SenseAl | ocLengt h; /1 num of sense data bytes in SRB
PHYSADDR Dat aBuf ferPtr; /1 ptr to data buffer
ULONG SRBLi nkPt r[4]; /1 link ptr to next SRB
UCHAR CDBLengt h; /1 length of SCSI CDB
UCHAR Host Adapter Status; // host adapter status
UCHAR Tar get St at us; /] target status
OFF Real MbdePost Of fset; // real npde post routine offset
SEL Real MbdePost CS; /1 real node post routine CS
SEL Real MbdePost DS; /1 real node post routine DS
OFF Pr ot ModePost Of fset; // protect npde post routine offset
SEL Pr ot MbdePost CS; /] protect npde post routine CS
SEL Pr ot MbdePost DS; /] protect npde post routine DS
PHYSADDR SRBPhysAddr ess; /'l physical address of SRB
UCHAR Reserved[16] ; /'l reserved
UCHAR SCSI _CDBJ 256] ; /1 variable length request bl ock
} ExecSCSlII G
struct

ULONG SRBPhysAddr;
} AbortSCSII O
struct

{

340

UCHAR Target| D,

UCHAR LUN;

UCHAR Reserved[14];
UCHAR Host Adapt er St at us;
UCHAR Tar get St at us;

OFF Real MbdePost O f set ;
SEL Real MbdePost CS;
SEL Real MbdePost DS;
OFF Pr ot ModePost O f set ;
SEL Pr ot MbdePost CS;
SEL Pr ot MbdePost DS;

UCHAR ReservedASPI [22];
} Reset SCSI Devi ce;
struct

UCHAR Host Par nms[16] ;
} Set Host Par ns;

}
}

Figure 19-6. OS2 ASPI Command Structures

ADD Driver Design

An ADD driver isan OS2 16-bit PDD, however, ADD drivers differ from
normal PDDsin severa ways.

ADD driversget initialized at ring O, not at ring 3. This creates a few problems
for the device driver writer, in that the ADD driver cannot call any OS2 APIs
druing Init. Add drivers cannot do file I/O, nor can they map physical addresses
toaprocess LDT. Unlike normal PDDs, however, they can access GDT-based
addresses.

An ADD cannot display a message using the conventional DosPutM essage AP,
sincethenit runsat ring 0. The ADD driver must call DevHIp SaveMessage
with the text to be output.

ADD driversreceive an Init packet that is different in structure from the
standard Init packet discussed in previous chapters. In addition, the Init request
packet code is 1Bh, not O (see Figure 19-7).

341

Figure 19-7. ADD Init Packet Structure

ADD drivers must have the correct bits set in the Device Attribute Word that
identifies the device driver asan ADD, and must also set bit 3 in the capabilities
bit strip. Setting this bit tells the OS/2 kernel to send the alternate Init packet.

ADD drivers must fail quielty when they do not complete initialization by
returning ERROR_QUIET_FAIL.

ADD driversreceive their commands and lists of work to do via a data
structure called the |ORB.

Since ADD drivers may be called in the interrupt context, ADD drivers must
never block.

ADD drivers must register their main entry points by calling DevHIp
RegisterDeviceClass, making the entry points accessible to other ADDs and
device managers. The ADD service entry point can be caled in either kernel
(task) mode or interrupt mode, so context cannot be assumed.

ADD drivers should read and parse parameters from the BASDEV = statement
in CONFIG.SY S, looking for SCSI-specific switches.

IORBs

The 1/0 Request Block, or IORB, isthe medium by which SCSI commands are
sent from the device manager to the ADD. IORBs may be modified on the way
to the ADD by aFilter (see Figure 19-8).

342

Figure 19-8. SCSI IORB

Filters

A Filter isanother variey of an ADD driver which allows the SCSI commands
being sent to the ADD driver (viaan IORB) to massaged or modified for a
custom device. When the ADD driver isloaded, it calls RegisterDeviceClass to
register its IORB entry point for later use by a device manager. The device
manager uses this entry point to call with the IORB for processing. Thefilter
driver locatesthe IORB in the classtable, and insertsitsef in the |IORB
chain.Thefilter'sentry point isinserted in the class table, and the filter usesthe
entry point that it found in the tableto call the ADD. Thisis analogousto the
way DOS interrupts were intercepted by replacing the interrupt vector with a
new one,, then chaining to the original vector. The filter receives the IORBs
from the device manager, who thinks the IORB is being sent to an ADD. The
filter modified the data for its requirements, then callsthe ADD for processing.
When the ADD has completed its work, it callsthe original post routine as
originally specified by the device manager.

343

Chapter 20 - CDROMs and Optical Disks

One of the most popular media to emerge for the personal computer has been
the CDROM. Once used only for high quality digital music recordings, the
CDROM is now the preferred media for the delivery of volume software. The
standard | SO 9660-formatted CDROM holds over 600 megabytes, a capacity
of more than 400 diskettes. CDROM mastering, the creation of the CD “mold”,
is expensive, and can run upwards of $1500-$2000. Once mastered, however,
the CDROM can be produced for less than one dollar in quantities. The
CDROM isadso lighter, and takes up less space than diskettes. The traditional
jewd case costs about a buck, more than the actual CDROM, so to keep costs
down, manufacturers have begun shipping CDROMSs in paper deeves. Because
of itslarge capacity, the CDROM has become the preferred media for the
storage of games that contain large amounts of video and audio clips.

CDROM drive manufactures have continued to push the performance envel ope.
Thefirss CDROMs with 500 millisecond access times and 150K bps transfer
rate seem like modd Ts compared with todays triple and quadruple speed
drives (at the time of thiswriting, several companies were developing CDROM
drivers with almost a megabyte per second throughput). Several manufacturers
have devel oped mini-CD drivesin several form factors, primarily for usein
notebook and subnotebook computers. It should not be long before we see
these mini CDROMsin aoneinch or less form factor, and with a capacity of
over one gigabyte.

The CDROM Device Manager
The CDROM ADD

Non-SCSI CDROMs

Many CDROMSs, especially the lower cost variety, use proprietary interfaces.
Some use a special adapter card that plugs into the system, while others use an
existing IDE interface.

CDROM Filters

345

Chapter 21 - Keyboard And Mouse Drivers

Keyboard and mouse drivers, usually referred to as pointer device drivers, are
some of the most obscure device drivers you’ [l encounter. One of the main
reasons for thisisthe limited number of device driversthat are written for this
class of device. For example, aslong as your keyboard is IBM-compatible, it
should plug into your I1BM-compatible system and work using the keyboard
device driversthat come with OS/2. It isnot likely you will ever haveto write a
keyboard device driver, but you may certainly wish to modify one of the
existing device drivers on the DDK for your application. This might include a
gpecial trackball or pointing device built in to the keyboard, or a special
keyboard type such as a point-of-sale device.

The same assumptions hold true for mouse driversin that there are only a few
mouse drivers actually written, and the ones that are should work fine with

most every mouse available. The most common requirement for a mouse-type
pointing device driver might be a special digitizer or touch screen device.

Keyboard Device Driver Architecture

Mouse Device Driver Architecture

347

Chapter 22 - OS2 Warp SMP Drivers

0S2 SMP was introduced in the middie of 1994 in response to the need for a
robust, high performance server operating system. Several vendors had
introduced systems with 2, 4, 8 and 16 processor configurations, and with
prices continuing to spiral downward, it made the wish of a low-cost
multiprocessor system areality. For under $10,000, users could now buy a
quad Pentium system with 4GB of disk.

Another reason for the introduction of OS2 SMP was clearly to compete with
Windows NT in the server market. While Windows NT was designed to handle
multiple processors, OS/2 originally was not. OS/2 carried an additional burden
in that if the OS/2 SMP platform were to be successful, it had to support all
existing applications and device drivers, while at the same time allowing MP-
exploitive applications and device drivers to take advantage of the
multiprocessor hardware.

OS2 SMP Architecture

The OS2 SMP architecture is actually quite ssmple. Only one copy of OS2 is
ever running at one time no matter how many processors are present, so there's
no need to synchronize multiple copies of the operating system. Access to the
operating system is synchronized and serialized using processor spinlocks.

A spinlock is nothing more than a small section of code that executesin atight
loop until avariableiscleared. If you' ve ever had a bug in your OS2 device
driver where your code executed in aloop at ring O, you know exactly what a
spinlock is. You couldn’t interrupt that loop with the debug kerndl, and you
usually had to power off and power on to reboot. OS2 SMP spinlocks work
the same way.

Transforming the OS/2 2.x uniprocessor (UP) code base into SMP was mostly

348

amatter of copying the vital system data structures for the number of
processors and adding support for spinlocks. During system initialization, OS/2
determines the number of processors present and generates the appropriate
number of data structures, including new control blocks and per-processor data
structures.

A singlekernd spinlock serializes access to the OS2 kerndl. All entry points
into the OS2 kernd obtain a single spinlock, and that spinlock is released when
the kernd is exited.

The interrupt manager was redesigned to handle interrupts from multiple
processors, and to synchronize non MP-exploitive device drivers and other
operating system code running at ring O.

The memory manager was modified to maintain cache consistency for the
Trandation Lookaside Buffer (TLB) across multiple processors.

The paging system was modified to update the Page Directory Entries (PDE)
across multiple processors that are running threads common to the process.

A Global Descriptor Table, or GDT, is created for each processor.

OS2 SMP isolates the underlying hardware platform using a new, 32-bit device
driver called a Platform Specific Driver, or PSD. PSDs are explained in detail
later in this chapter.

The OS2 kernel was modified to detect CLI/STI from ring 2 threads, and to
synchronize CLI/STI across multiple processors using a CLI/STI spinlock.

In OS2 2.x SMP, each processor hasits own akernel thread. Thisthread
belongs to the system process and will never execute at ring 3 or ring 2. This
same concept is used in MACH and Windows NT, and provides support for
bringing processors online and offline.

Many applications rely upon information from the Local Info Seg or LIS. Each
processor maintains a copy of the Local Info Seg (LIS). Thisisahard-coded

349

selector across processes. At context switch time, the LIS is updated with the
current process information. Sincethe LIS is contained in the PDE, the LISis
automatically updated across processors during a context switch.

Each processor maintains a processor-specific data area called the Processor
Control Block or PCB. A PCB is allocated during system initialization for each
processor that isonline.

0OS/2 contains a new Lock manager to handle mutual exclusion primitives.

On an MP system, it islikely that multiple floating point coprocessors are
present. OS2 SMP updates each floating point coprocessor’s context buffer at
context switch time to insure the coprocessor dataisvalid in the event the data
IS used by another processor.

OS2 SMP utilizes several different classes of spinlocks to accommodate MP-
safe kerndl operation. One of these classes of spinlocksis called the CLI/STI
spinlock.

Some applications use CLI/STI to synchronize access to global data or to
guarantee one particular thread runsin favor of any other thread in the process.
They may implement ssmple semaphores using the IN instruction to grant
accessto critical resources. Still other applications serialize I/0 to adapter ports
by issuing a CLI, performing the INs or OUTSs, then re-enabling the interrupts.
In a single-processor environment, the programmer is assured that no other
operation or 1/O will interrupt the I/O in progress with interrupts disabled.

In a single-processor environment, these operations work fine, but they fail in a
multiprocessor environment. Thisis because it is possible for multiple threads of
the same process to be running on different processors, unaware of the
operation of any related threads.

OS2 maintains the 1/0 permission bitmap in the Task State Segment, or TSS.
OS2 does not enforce this however, and grants access to all 1/0 portsfor ring
2 code. Thisiswhy you no longer have to call DosPortA ccess to gain access to
1/O ports.

350

OS2 implements the CLI/STI1 spinlock by not allowing CLI/STI instructions
from ring 2. An attempt to perform a CLI instruction from aring 2 thread will
generate a protection violation. OS/2 traps the protection fault, and if the
instruction that caused the fault isa CLI, the kernel acquires the CLI/STI
spinlock. When OS/2 detects the next CLI, it releases the CLI/STI spinlock.
While one processor has the CLI/STI spinlock, any other processor attempting
to acquire the CLI/STI spinlock will spin waiting for the spinlock. Thus only
one processor may be executing a CLI/STI ant any one given time on the
system. For thisreason, programs should limit use of CLI/STI whenever
possible.

One area of concern should be video and printer device drivers, which may
serialize access to adapter RAM using CLI/STI.

The OS2 SMP Scheduler

The OS2 SMP scheduler can operate on any processor, but only one copy of
the scheduler can be executing at any one given time. Each time athread enters
the ready list, OS2 compares the priority of the threads running in each
processor to the current candidate to be run.

If the candidate thread has a higher priority than the currently running thread,
the PCB of the associated processor is updated, and OS/2 sends that processor
an |PC message to dispatch the thread. Each thread is given atime dice, and
when itstime dice is exhausted, the scheduler checks to seeif there are any
other threads at the same priority waiting to run. If so, it dispatchesthem to a
processor. Thisallows OS/2 SMP to support compute bound threads of the
same priority across several processors.

Callsto DosEnterCritSec to request a critical section by athread cause OS/2
SMP tofirst purge any other threads of the same process from other processors
to insure that thread is the only one running.

351

Interrupts

The interrupt architecture for SMP machines varies by the manufacturer. The
majority of current SMP machines use a smplistic form of interrupt routing
using the 8259-compatible interrupt mechanism, where al interrupts are
reflected to thefirst configured processor. It turns out that for compatibility
reasons, thisisthe best choice because it allows existing device driversto run
unchanged. This method is commonly referred to as Asymmetric Interrupt
Digtribution, and is the current interrupt method used in OS/2 SMP.

Some machines use Static Interrupt Distribution. This method allows interrupt
to be statically assigned to the available processors. For instance, processor 1
could handleinterrupts O, 4, 5, 10, 12, and 15, while processor 2 could handle
interrupts 1, 2, 3, 6, 7, 8, 9, 11 and 14. Although this method allows
simultaneous interrupts to be handled on more than one processor, it would
cause problems with existing device drivers.

A third method will use Intd’s Advanced Programmable Interrupt Controller,
or APIC. This powerful interrupt architecture is capable of dynamic interrupt
distribution, allowing processors to handle s multaneous interrupts and have
them dynamically allocated to a particular processor. Thus processors which
handle a high volume of interrupts can have one or more of itsinterrupt levels
moved to another processor to increase performance. The APIC architectureis
an integral part of the Pentium processor. At thistime, existing device drivers
will not work because they can’t handle simultaneous interrupts on more than
one processor. A future version of OS/2 SMP that supports the APIC
architecture may be released by the time you read this.

352

Platform Specific Drivers

OS2 provides alevel of hardware abstraction via the Platform Specific Driver,
or PSD. Like adevice driver that shields an application from the specifics of a
particular device, the PSD isolates the OS/2 kernel from the specific processor
hardware. To provide this layer of abstraction, the PSD exports generic
functions which the kernd can call. These functions are trandated by the PSD
into operations which are specific to the hardware platform.

PSDs are special flat-mode device drivers, and are actually 32-bit DLLs loaded
with the DEVICE= statement in CONFIG.SY S. Like OS/2 ADDs, they must
conform to the 8.3 naming convention, and the name must not contain any drive
or path information.

OS2 will load each PSD listed in succession until the correct matching PSD is
found. CONFIG.SY S may include alist of 10 PSDs, and only the correct one
will be loaded.

Like other drivers, the DEVICE= statement may contain several parameters and
can be up to 1024 characters long. When the PSD’ s ingtall function is called,
OS2 passes the address of the parameters, just the same as OS/2 PDDs pass
the address of their parameters. PSD statements are processed before
BASEDEV, IFS, and DEVICE statements.

Platform Specific Driver Architecture

PSDs may contain multiple code and data objects. All objects are fixed (not-

swappable or movable) in low physical memory, with virtual addressesin the
system arena. Objects are loaded in low physical memory to allow the use of

real mode or bi-modal code.

The PSD must be capable of handling multiple requests smultaneoudy. This
means that global variables should be used only when necessary, and that local
variables should be used whenever possible.

353

OS2 does not preempt athread in the PSD, but it may block as aresult of
using a PSD help, or it may be interrupted by a hardware interrupt.

PSDsregister for a particular interrupt level using the SET_IRQ PSD help. The
PSD’sinterrupt handlers are guaranteed to be called before any device driver's
interrupt handler. If the PSD's interrupt handler returns NO_ERROR, the
interrupt manager assumes the interrupt has been handled, and will end the
interrupt. If a-1isreturned, the interrupt manager assumes that the interrupt
has not been handled, and will call each device driver which has aregistered
interrupt handler for that particular level until one claims the interrupt. If the
interrupt is unclaimed, the IRQ level will be masked off. Thisis the same was
the normal DevHIp SetlRQ works for normal OS2 PDDs.

All PSDs must usethe SET_IRQ PSD Helper to indicate which IRQ leve they
will be using for inter-processor interrupts (IP1). If the PSD's 1Pl IRQ leve is
shared, it must register a handler which detects if the IRQ isan IPI or another
interrupt. The handler must return NO_ERROR if the interrupt was caused by
an IPl, otherwise it should return a-1. If the IPl IRQ leve isunique, an
interrupt handler need not be installed but SET_IRQ must till be called to
notify OS/2 which IRQ leve will be used for the IPI.

The OS2 kernel savesthe state of al the registers (except EAX) around calls
to the PSD functions. All PSD functions run at Ring 0. Upon invocation, SS,
DS, and ESwill beflat. The PSD functions must conform to the C calling
convention. They receive parameters on the stack (4 bytes per parameter), and
must return an return codein EAX.

The PSD functions are classified into three distinct categories:

* Functions that the PSD must have for OS2 to operate (required functions)
* Functionsthat the PSD does not need to have (optional functions)

* Functions that the PSD must have for OS2 to use multiple processors (MP
functions).

354

The OS2 kernd provides default handling for some of the PSD functions. PSD
functions can also chain to akernd default handler by returning a -1 for areturn
code. If areturn code other than -1 isreturned by a PSD function, the default
handler will not get called. The PSD function glossary later in this chapter
details the categories of all the functions, aswell as any default handlers they
may have.

PSD function are exported by using the EXPORTS keyword in the PSD’s DEF
file. All functions must be exported in upper case. Theinitial CSand EIP in the
PSD's executable image is ignored. The image should also not contain a stack
object. OS/2 allocates a per-processor PSD stack and sets SS and ESP
correctly before invoking any of the PSD functions. OS2 invokes all PSD
functionsin protect mode, but thereis aso a PSD help which allows the PSD
developer to call aPSD function in real mode.

OS2 services are provided through the PSD help interface. Accessto these
services are obtained upon PSD ingtallation. All the definitions (e.g. defines,
structures, etc.) that are required for building a PSD are in the header file
PSD.H.

PSD Contexts (M odes)

The PSD operatesin three contexts or modes: Kernd, Interrupt and Init.

Init Mode

During Init, the kernel passesto the PSD a pointer to a small area of processor-
specific scratch memory kept in the Processor Local Memory Area or PLMA.
During Init, alimited set of PSD helpers are available for use.

OS2 SMP requires a PSD for system initialization. The system will display an

error message if avalid PSD for the current platform cannot be installed. The
following isalist of steps, in the order in which they occur, that are executed

355

after aPSD isinstalled. If any step does not compl ete successfully, the system
initialization process will stop, and an error message will be displayed.

1.

After aPSD is successfully ingtalled, its Init function isinvoked. This
function is used to allocate and initialize any resources that the PSD may
require, aswell asinitializing the state of the hardware.

The kernd determines the number of usable processors on the current
platform by using the PSD_GET_NUM_OF PROCS function. The kernd
allocates all resources required to support the additional processors. This
step determines what to allocate based on the results of the previous step.

The PSD's processor initialization function is invoked on the current
processor (CPUO).

An MP daemon is created for CPUO. An MP daemon is a thread that never
goes away, which is used for MP operations by a specific processor.

An MP daemon is created for the next logical processor.

The PSD's start processor call isinvoked to start the next logical
processor. The PSD should only start the specified processor, and then
return (seethe PSD_START_PROC function for more detail). The started
processor will spin in atight loop waiting for avariableto be cleared. This
variableis referred to as the processor initialization real mode spinlock.

Upon return from the PSD's start processor call, the processor initialization
real mode spinlock is cleared.

CPUO will spinin atight loop waiting for a variable to be cleared. This
variable isreferred to as the CPUO spinlock.

The started processor continues execution of the kernel's real
mode processor initialization code now that processor's initialization
real mode spinlock has been cleared.

356

10.

11.

12.

13.

14.

15.

16.

17.

18.

The started processor sets up all protect mode and paging information,
and switches into protect mode with paging enabled.

Up to this point, the started processor has been running on a small
processor initialization stack (It has not been running as an OS2 thread).
The current context is switched to that of this processors MP daemon.

OS2 callsthe PSD's processor initialization function for the current
processor.

The PSD indicates that the processor has been initialized.

The started processor will spin in atight loop waiting for avariableto be
cleared. Thisvariableisreferred to as the processor initialization

protect mode spinlock.

The CPUO spinlock is cleared.

System initialization continues on CPUO now that its spinlock has
been cleared.

Steps 6 through 17 are repeated until all processors have been started. The
rest of system initialization continues normally, on CPUO.

After the system isfully initialized, the processor initialization protect
mode spinlock is cleared. This allows CPU1 through CPU-N to start
executing code.

Kernel Mode

The OS2 kernd calls the PSD for task-time operations, that is, it will execute
as athread within a process. Kernel mode is also referred to as the task context.

357

Interrupt Mode
The OS2 kernd calls the PSD for interrupt-time operations. Interrupt timeisa

generic term that refers to executing code as a result of a hardware interrupt.
The code does not execute as a thread belonging to a process.

Terms

All addresses used in PSD functions must be 32-bit flat addresses.
Required means the function isrequired for OS/2, and can not be omitted
Optional means the function is not required, but can be implemented.

MP means the function is required to be supported in an MP environment.
Default meansthe kernd supplies a default handler for this function.

Can Block means that a call to the PSD can be blocked.

Can’'t Block means that the call to the PSD may not block.

Output mean that the PSD should return values in the specified field.

PSD Function Glossary

The following functions are exported by the PSD. All addresses are flat, and
functions return O for success and -1 for failure.

358

PSD_INSTALL Mode: Kernel, Init Can Block Required

Thisfunction isthefirst function called when the PSD isloaded, and it checks
to seeif this PSD supports the current hardware platform. No other operations
should be performed in this function. The Init function may be called after OS2
has finished initialization by the Dos32TestPSD API, so be careful not to use
any Init-mode-only PSD helpers. The Init section must save the information
passed in theingtall structure for later use. Theinstall structureis shown below.

Input: flat pointer to install structure.

t ypedef struct _INSTALL

P F 2 pPSDHel pRout er; /* pointer to PSD
Hel ps router */

char *pPar nStri ng; /* pointer to
par aneters */

voi d * pPSDPLIMA; /* linear addr to
PSD s PLMA */

ulong_t sizePLMA /* size of PLMA
*/
} I NSTALL,;

Output: None

Return: NO_ERROR or -1

359

PSD DEINSTALL Mode: Kernel, Init CanBlock Required
Thisfunction is called to release any resources that may been allocated for the
PSD during initialization. A PSD is never deinstalled after its Init routine has
been called. The deingtall function may be called after OS2 has finished
initialization by the Dos32TestPSD AP, so be careful not to use any Init-mode-
only PSD helpers.

Input: None

Output: None

Return: NO_ERROR or -1

360

PSD_INIT Mode: Init Can Block Required

Thisfunction is caled to initialize the PSD. The PSD should allocate any
resources in needsin this function, aswel asinitializing the state of the
hardware. CPUs should beinitialized in PROC_INIT. This function returns the
address of a structure, described below.

Input: Flat pointer to Init structure
Output: None
Return: NO_ERROR or -1

Theflag INIT_GLOBAL_IRQ _ACCESS indicated that the current platform
can support PIC masking on any processor. If the flag is omitted, the IRQ
functions will only be called on CPUOQ, otherwise they may called on any
professor other than CPUO If the flag is omitted, and an IRQ operation is
initiated on an processor other than CPUO, the OS/2 kernd will route the
request to CPUO.

Theflag INIT_USE FPERR _TRAP indicatesthe Trap 16 will be used to
report floating point errors instead of IRQ 13 (the kernd setsthe NE flag in the
CRO register of all processors). The PSD is responsible for all housekeeping
associated with the change.

Theflag INIT_EOI IRQ13 ON_CPUO specifiesthat the EQOI for afloating
point error using IRQ 13 should only be done by CPUO. On CPUs other than 0,
the hardwareisresponsible for resetting the interrupt.

The verson indicates the version of the PSD.

361

PSD PROC INIT Mode: Init Can Block MP

This function initializes the current processor. It is called in protect mode on a
per-processor basis. The PSD may initialize variables in the PSD’s PLMA in
addition to initializing the actual processor hardware.

Input: None

Output: None

Return: NO_ERROR or -1

PSD_START_PROC Mode: Init CanBlock MP

Thisfunction is used to start a particular processor. OS/2 fillsin address of the
started processor’sinitial real mode CS:IP in the warm reboot vector of the
BIOS data area (0x40:0x67). OS2 does not allow another processor to be
started until the current processor has finished its real-mode initialization and
has gone into protect mode. The processor started isheld in real mode until the
PSD_START_PROC function is completed. All processors are started before
thefirst device driver isloaded.

Input: Processor number (O-based)
Output: None

Return: NO_ERROR or -1

362

PSD GET_NUM_OF_PROCSMode: Init Can Block Required

This function detects and returns the number of usable x86 processors that exist
on the current hardware platform. If any of the processors are defective or not
operational, the PSD should insure that the processors are ordered logically.
Input: None

Output: None

Return : Number of working processors

PSD_GEN_IPI Mode: Kernel, Interrupt Can’t Block MP

This function generates an inter-processor interrupt. All inter-processor
initialization should be done before the first call to GEN_IPI. OS/2 insures that
aprocessor currently servicing an 1Pl is not interrupted by another 1PI.

Input: Processor number to interrupt (O-based)

Output: None

Return : NO_ERROR or -1

363

PSD_END _IPI Mode: Kernel, Interrupt Can’'t Block MP

This function ends an inter-processor interrupt that was previousy generated by
aGEN_IPI. The processor number must be the same as the current processor.

Input: Processor number to end interrupt on (O-based)
Output: None

Return : NO_ERROR or -1

364

PSD _PORT_IO Mode: Kernel, Interrupt Can’t Block Optional, Default

This function performslocal port I/O specific to the hardware platform. I/0O can
be routed to a specific processor to increase performance. Thisfunction is
invoked as aresult of adriver calling DevHIp_PortlO. Device drivers should
use DevHIp_PortlO (which invokes this function) to perform port 1/0, and not
doit directly.

Input: Flat pointer to PortlO structure

t ypedef struct _PORTIO
{

ul ong_t port; /* port to wite to or read
from?*/
ul ong_t data; /* data read or to wite
*/
ulong_t fl ags; /* operation, see bel ow
*/
} PORTI O
Operation Flags
| O READ BYTE Read byte from port
| O READ WORD Read word from port
| O READ_DWORD Read dword from port
| O WRI TE_BYTE Wite byte to port
| O VRl TE_WORD Wite word to port
| O VWRI TE_DWORD Wite dword to port

Output: None

Return : NO_ERROR or -1

365

PSD IRQ_MASK Mode: Kernel, Interrupt Can’t Block Optional, Default

This function masks and unmasks interrupt levels. | should save the state of the
interrupt flag, disable interrupts, perform the mask/unmask, then restore the
state of the interrupt flag. If thisfunction is not supplied, OS2 will perform
these operations based on a standard 8259 PIC architecture. If the
INIT_GLOBAL_IRQ _ACCESSisnot set or supplied (see PSD_INIT) the
operations will be performed on CPUO.

Input: Flat pointer to PSD_IRQ structure

typedef struct PSD IRQ
{

ul ong_t fl ags;

ul ong_t data;

ul ong_t procnum
} PSD | RQ

The flags variable states what operation to perform.

| RQ_MASK Mask an interrupt (disable it)
| RQ_UNMASK Unmask an interrupt (enable it)
| RQ_NEWWASK Speci fy a new mask

| RQ GETMVASK Retrieve mask for all IR

The data variable contains the logical IRQ levelsto mask or unmask.

The procnum variable contains the processor number where the operation isto
take place.

Output: None

Return : NO_ERROR or -1

366

PSD IRQ_REG Mode: Kernel, Interrupt Can’t Block Optional, Default

This function allows accessto IRQ registers. If this function is omitted, OS2
will assume an 8259 PIC architecture. If the INIT_GLOBAL_IRQ ACCESS
flag isnot set or omitted, the requests will be performed on CPUO.

Input: Flat pointer to PSD_IRQ structure
t ypedef struct _PSD I RQ
{

ulong_t fl ags;
ul ong_t data;
ul ong_t procnum
} PSD | RQ
The flags variable states what operation to perform.

| RQ READ IRR Read the interrupt request register
| RQ READ ISR Read the interrupt service register

The data variable contains the data read or the data to write.

The procnum variable contains the processor number where the operation isto
take place.

Output: None

Return : NO_ERROR or -1

367

PSD IRQ_EOI Mode: Kerndl, Interrupt Can’t Block Optional, Default

Thisfunction is used to issue an End-Of-Interrupt (EQI) to the interrupt
controller. Device drivers should always use DevHIp _EOI to perform an EOI,
and not attempt to perform the EOI directly to the interrupt controller. If this
function is omitted, OS/2 will assume an 8259 PIC architecture. If the
INIT_GLOBAL_IRQ_ACCESSflag isnot set or omitted, the requests will be
performed on CPUO.

Input: Flat pointer to PSD_IRQ structure
t ypedef struct _PSD | RQ
{

ul ong_t fl ags;

ul ong_t data;

ul ong_t procnum
} PSD | RQ

The flags variable states what operation to perform.

| RQ READ IRR Read the interrupt request register
| RQ READ ISR Read the interrupt service register

The data variable contains the interrupt leve to end.

The procnum variable contains the processor number where the operation isto
take place.

Output: None

Return : NO_ERROR or -1

368

PSD APP_COMM Mode: Kernel Can Block Optional

This function performs generic application-to-PSD communications. The
communications protocol is private, and not examined in any way be OS/2.

Input: Function number, argument
Output: None

Return : NO_ERROR or -1

PSD SET_ADV_INT_MODE Mode: Init Can’t Block Optional

This function enables the PSD to do its own checking and verification for
spurious interrupt. The PSD may register an interrupt handler for the interrupt
level and decide what to do with it. A NO_ERROR return from the PSD’s
interrupt handler informs the kernd that the interrupt has been handled by the
PSD. If the PSD’sinterrupt handler returns -1, the kerne assumes the PSD did
not own the interrupt, and passes it on to any device driver that had registered
for it.

Input: None
Output: None

Return : NO_ERROR or -1

369

PSD Helpers

OS2 provides system servicesto the PSD devel oper via PSD helpers. Smilar

to the DevHIp router address, the PSD Helper router addressis passed in the
install structure when the PSD’singtall function is called. OS2 preserves the
state of al registers and flags except the EAX register. Macros are provided in
the header file PSD.H to ssimply the calling of PSD helpers. May Block indicates
that the PSD Helper may block, and Can’t Block specifies that the function can
not block.

370

PSDHLP_VMALLOC Mode: Kernel, Init May Block
Thisfunction allocates virtual memory, or maps a physical adapter addressto a
linear address. This function works similar to DevHIp VMAIloc, except that all
addresses are allocated in the global address space.

Input: Pointer to aVMALLOC structure

typedef struct _VMALLOC

{
ul ong_t addr;
ul ong_t cbsi ze
ul ong_t fl ags;
} VMALLCC

The variable addr contains the physical address to be mapped or the linear
address returned.

If VMALLOC_PHY Sis specified in the flags variable, addr must contain the
32-it physical address to map.

The chsize variable contains the size of the mapping in bytes.

If VMALLOC_FIXED is specified in the flags variable, the allocated memory is
to be fixed in memory, not movable or swappable. If thisflag is omitted, the
memory will be swappable by default.

If VMALLOC_CONTIG is specified in the flags variable, the memory allocated
my bein physically contiguous memory. VMALLOC_LOCSPECIFIC must
also be sat.

If VMALLOC_LOCSPECIFIC is specified in the flags variable, it indicates that
therequest isto map a virtual address. The addr variable must contain the
virtual addressto map.

371

If VMALLOC _PHYSis specified in the flags variable, the physical address
passed in the addr field is mapped to a virtual address. This flag can be used
with the VMALLOC _LOCSPECIFIC flag to map memory where linear =
physical.

If VMALLOC_1M is specified in the flags variable, the request isfor memory
bel ow the 1IMB region.

Output: Linear addressin addr

Return: NO_ERROR or -1

PSDHLP_VMFREE Mode: Kernel, Init May Block

This function frees virtual memory previously allocated with
PSDHLP_VMALLOC.

Input: Linear addressto free
Output: None

Return: NO_ERROR or -1

372

PSDHLP_SET_IRQ Mode: Init Won't Block

Thisfunction sets up IRQ information. The PSD calls this function to register
for an interrupt handler at any IRQ. The PSD’sinterrupt handler is guaranteed
to be called before a device driver’s handler that has registered for the particular
interrupt. If the PSD’sinterrupt handler returns O, the kerndl assumes the
interrupt has been handled. If the PSD’ sinterrupt handler returns -1, the kernel
calls any interrupt handlers that have registered for that particular IRQ. If the
interrupt is not claimed, it is masked off.

The PSD must use this function to specify the IRQ it will be using for an Inter-
processor Interrupt, or IPI. If the PSD’s Pl interrupt handler is entered, and
the interrupt was not caused by an I, the interrupt handler should return -1. If
the Pl interrupt level isunique, i.e., not previoudy used by any other driver,
and interrupt handler does not have to beingtalled, but SET _IRQ must be
called anyway to indicate the IPI interrupt level.

Thisfunction can also be used to set or re-map a particular interrupt vector.

Input: Pointer to IRQ structure
t ypedef struct _|I RQ STRUCT

ushort _t irq;

ushort _t fl ags;

ulong_t vector;

P F 2 handl er;
} 1 RQ_STRUCT,

Theirq variable specifies the IRQ level.

If IRQf_IPI isspecified in the flags variable, the IRQ level isto be used for
I nter-Processor Interrupts.

If IRQf_LSl isspecified in the flags variable, the IRQ level isto beused asa
local software interrupt. (not currently used)

373

If IRQf_SPI is specified in the flags variable, the IRQ isto be used as a system
priority interrupt. (not currently used)

The vector variable specifies the interrupt vector the IRQ leve will use
The handler variable contains the address of an interrupt handler. If the PSD is

just specifying that a specific IRQ leve is of a specia type such as|Pl, it does
not need a handler, and the handler variable should be NULL.

PSDHLP_CALL_REAL_MODE Mode: Init Won't Block
This function is used by the PSD to call a PSD function in real mode.
Input: Pointer to CALLREALMODE structure.

t ypedef struct _CALLREALMODE

{ ul ong_t function;

ul ong_t pdata;
} CALLREALMODE;

The function variable contains the linear address of the function to becalled in
real mode.

The pdata variable contains the linear address of a parameter to be passed to the
real mode function. The pointer is mapped to DS:SI upon entry to the called
function. The real mode function may specify areturn codein EAX. No PSD
helpers can be called in real mode.

Output: None

Return: NO_ERROR or -1

374

PSDHLP_VMLINTOPHYSMode: Init, Kernel, Interrupt Won’t Block
Thisfunction converts alinear address to a physical address.

Input: Linear address to convert

Output: Physical address

Return: NO_ERROR or -1

PSD APIs

OS2 SMP provides two APIs to support PSDs.

375

DosCallPSD Perform Application-to-PSD Communications

Thisfunction calls directly into the PSD from an application. DosCallPSD must
be called is protect mode only. The protocol is private.

Input: Function number, argument
Output: None

Return: NO_ERROR or -1

Dos32T estPSD Determineif PSD isvalid for hardware
This function loads the specified PSD, callsthe PSD’singall and deingtall
functions, and removes the PSD from memory. It returns the code returned
from the PSD’singtall routine, or any other error it may have received. This
function is used primarily by OS2’ singall.

Input: Pointer to full-qualified path and PSD file name

Output: None

Return: NO_ERROR or -1

376

Device Drivers For OS2 SMP

0S/2 SMP was designed to allow existing device drivers and applications to run
unchanged. Like applications, device drivers should be designed to be MP-safe,
that is, they should serialize access to critical resources. Applications can use
system semaphores to serialize access to a chuck of global memory, but device
drivers have no such supported mechanism to do the same at ring 0. Remember
that like an application, a device driver blocked on one processor can be started
up on another processor. A section of device driver code can be executing on
more than one processor, so sections of code reading from or updating the
same global driver memory will certainly cause problems. Try to use a many
local variables as possible to minimize use of any global resources.

In OS/2 SMP, the device driver should, at a minimum, obey two basic rules.
Thefirst isthat the device driver should never issue an EOI directly, rather they
should call DevHIp EQI to perform the task. The second is that the device
driver should never mask or unmask interrupts directly. Following these two
rules should make the majority of device drivers safe. Of course, there are
exceptions and hardware race conditions that cause problems.

The device driver letsthe kernel know that it is MP-exploitive, that is, that it
can run on multiple processors, by a special bit set in the Capabilities Bit Strip.
OS/2 records this information during system boot.

If the device driver must serialize accessto a critical resource, it can do so by
calling DosCreatSpinLock. The driver should allocate as many spinlocks as
necessary in the Init routine where time is not a consideration. When the driver
is closed, the spinlocks should be freed up with a call to DosFreeSpinLock.
Spinlocks are very small data structures, 30 bytes or so, so they represent a
small memory overhead. OS/2 SMP contains several device helper routinesto
allow the device driver to utilize spinlocks.

377

OS2 SMP DevHIps

The following new DevHIps were introduced with OS2 SMP. Information on
how and when to call these helpers can be found in Appendix A.

Table 22-1. SMP Device Helper Functions

DevHIp Function Code Description

CreateSpinL ock Ox6f Create a subsystem spinlock
FreeSpinL ock 0x70 Free a subsystem spinlock
AcquireSpinLock Ox71 Acquireaspin lock

Rel easeSpinL ock 0x72 Release a spin lock

PortlO O0X76 Processor-independent port 1/0
SetlRQMask Oox77 Set/UnSet an IRQ mask
GetlRQMask 0x78 Get state of current IRQ mask
VDHPortl O VDH Perform port I/O from aVDD

0S/2 SMP Applications

Applications should, for the most part, run without problems on SMP. There
are afew things that can cause problems under SMP, however.

First, some programs use the clear interrupts/set interrupts, or CLI/STI
instruction combination to serialize access to a critical resource. On a
uniprocessor machine, performing a CLI disables interrupts as intended. On an
SMP system, however, the CLI disablesinterrupt only on the current processor.
Other processors continue to operate normally and are unaffected by the CLI.

To maintain compatibility with these applications, OS2 SMP implements a
CLI/STI spinlock. The kernel sets up the processor to generate a general
protection violation if an application attempts to perform port I/O. If a general
protection fault is generated, OS/2 checks to see if the instruction that caused it

378

wasaCLlI. If it was, the kernd requests ownership of the CLI/STI spinlock. If
itsavailable, the CLI is executed, and the application performs its operations.
When the application isfinished, it issues a CLI which is also trapped by the
kernd. The kernd releases the CLI/STI spinlock when the protection fault is
caused by an STI following a CLI. Other processors that needed to perform a
CLI/STI would spin waiting for the CLI/STI spinlock to become available.
Using this method, only one thread is allowed to perform CLI/STI at any one
given time.

Another technique that applications employ is access to global memory using a
RAM semaphore which failsin an MP environment. Applications which use this
technique must be modified to used the new spinlock APIs introduced with
OS2 SMP.

Applications must not use the INC instruction as a semaphore without the
LOCK prefi