
1

Tuesday, May 06, 1997
Writing OS/2 Warp Device Drivers in C

Third Edition

2

Disclaimer

This book and software are provided -as is.' The implied warranties of merchantability and fitness for a particular purpose
are expressly disclaimed. This book and software may contain programs that are furnished as examples. These examples
have not been thoroughly tested under all conditions. Therefore, the reliability, serviceability, or function of any program
or program code herein is not guaranteed.

The information presented in this book was valid at the time it was written and was conveyed as accurately as possible by
the author. However, some information may be incorrect or may have changed prior to publication. The author makes no
claims that the material contained in this book is entirely correct, and assumes no liability for use of the material contained
herein.

3

Trademarks and Copyrights

IBM, AT, OS/2, Personal System/2, PS/2, and Micro Channel are registered trademarks of the International Business
Machines Corporation.
C/2, XT, and Presentation Manager are trademarks of International Business Machines Corporation.
Intel is a registered trademark of the Intel Corporation.
Lotus 1-2-3 is a registered trademark of Lotus Development Corporation.
MS-DOS, CodeView and Microsoft are registered trademarks of Microsoft Corporation.
Microsoft and Microsoft Windows are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright 1993 by Van Nostrand Reinhold
Library of Congress Catalog Card Number 93-2264
ISBN 0-442-01729-4

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any
means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval
systems-without written permission of the publisher.

Van Nostrand Reinhold is an International Thomson Publishing company. ITP logo is a trademark under license.
Printed in the United States of America

Van Nostrand Reinhold International Thomson Publishing GmbH
115 Fifth Avenue KÜnigswinteror Str. 518
New York, NY 10003 5300 Bonn 3

International Thomson Publishing International Thomson Publishing Asia
Berkshire House, 168-=173 38 Kim Tian Road, #0105
High Holborn, London WC1V 7AA Kim Tian Plaza
England Singapore 0316

Thomas Nelson Australia International Thomson Publishing Japan 102 Dodds Street
South Melbourne 3205 2-2-1 Hirakawacho
Victoria, Australia Chiyada-Ku, Tokyo 102

Nelson Canada
1120 Birchmount Road
Scarborough, Ontario
M1K 5G4, Canada

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Mastrianni, Steven J., 1951-
Writing OS/2 2.x Device Drivers in C / Steven J. Mastrianni. - 3rd ed.

p. cm. -- (VNR's OS/2 series)
Includes index.
ISBN 0-442-01229-4

1. OS/2 device drivers (Computer programs) 2. OS/2 (Computer file) 3. C (Computer program language) I.
Title. II. Series. QA76.76.D49M371993

005.4'3--dc20 93-2264 CIP

4

Dedication

This book is dedicated to Bernard Engelson, who passed away on June 8, 1994.
His knowledge, compassion and understanding were an inspiration to everyone.
He will be sorely missed.

5

Acknowledgments

I would like to thank

7

Foreword

9

Table of Contents

Writing OS/2 Warp Device Drivers in C...1

Third Edition..1

Chapter 1 - The Evolution of PC Device Drivers ..33
Storage Devices..34
Interface Adapter Cards..35
The First Operating System For Personal Computers ..36
The First Bus..38

Chapter 2 - Understanding Device Drivers..41
Device Drivers Today...44
Device Drivers - A Summary ..46

Chapter 3 - The PC Hardware Architecture..49
The System Bus..49
The IBM PC - Beginnings...50
IBM PC XT..51
IBM PC AT..52
The AT Bus..53
The IBM PS/2 and Micro Channel ..54
Enhanced Industry Standard Architecture (EISA) ...56
Bus Wars..57
Real Mode..57
Protect Mode ...58
Using Addresses and Pointers ...61
The Ring Architecture ..61

Chapter 4 - An Overview of the OS/2 Operating System ..65
Roots ...66
Processes and Threads..69
OS/2 1.0 - OS/2 Arrives ...71
OS/2 1.1 - Presentation Manager Arrives..71

10

OS/2 1.2 - A Better File System..71
OS/2 1.3 – IBM’s First Solo Effort...73
OS/2 2.0- What OS/2 Was Really Meant to Be ...73
The OS/2 Application Programming Interface...75

Chapter 5 - The Anatomy of an OS/2 Device Driver...77
Application-to-Driver Interface...77
DOS Device Drivers and OS/2 Device Drivers..78
Designing an OS/2 Device Driver ...79
Tools Necessary For Driver Development...79
The Basics of Driver Design ...80
Request Packets ...81
OS/2 Device Driver Architecture ..82
Device Driver Modes..83
The Device Header ...85
Capabilities Bit Strip...87
Providing a Low-Level Interface...88
The Strategy Section ..94
Initialization..96
A Common Strategy ...98
Interrupt Section...99
The Timer Handler ...105
Context Hooks ...106

Chapter 6 - Device Driver Strategy Commands ..109
Summary of Device Driver Commands ...112
0h / Init...115
1H/ Media Check..120
2H / Build BPB ..122
4H, 8H, 9H / Read or Write..125
5H / Nondestructive Read No Wait...127
6H, AH / Input or Output Status...128
7H, BH / Input Flush or Output Flush...129
DH,EH / Open or Close..130
FH / Removable Media ...131
1OH / Generic IOCtl ..132

11

11H / Reset Media..134
12H, 13H / Get/Set Logical Drive...134
14H / Deinstall..136
16H / Partitionable Fixed Disks...137
17H / Get Fixed Disk/Logical Unit Map..138
1CH / Shutdown...139
1DH/ Get Driver Capabilities..140
1FH / CMDInitComplete ..141

Chapter 7 - A Simple OS/2 Physical Device Driver...143
Device Driver Specifications...143
Application Program Design ...144
Device Driver Operation...144
INIT...145
OPEN...146
CLOSE ..147
IOCtls ..148
CASE 0x01 ..149
CASE 0x02 ..150
CASE 0x03 ..152
READ and WRITE...153
Timer Handler ..154

Chapter 8 - The Micro Channel Bus ...157
Micro Channel Adapter Cards...157
Micro Channel Adapter ID ...158
Accessing the POS Register During Debug...164
Micro Channel Interrupts..164

Chapter 9 - OS/2 Warp Virtual Device Drivers...167
The Virtual DOS Machine ..168
VDD Architecture ..170
VDD Initialization ..171
DOS Settings..173
DOS Settings Registration ..174
The Virtual COM Device Driver...175
The Virtual Timer Device Driver ..177

12

The Virtual Disk Device Driver ..179
The Virtual Keyboard Device Driver...181
The Virtual Mouse Device Driver ...182
The Virtual Line Printer Device Driver ...183
The Virtual Video Device Driver ..183
Virtual DevHlp Services By Category...185
DOS Session Interrupts ..198
Sample Virtual Device Driver ...203
Establishing a VDD-PDD Link ...212

Chapter 10 - Memory-Mapped Adapters and IOPL ..215
High and Low Memory Maps ...215
Application Program Access To Adapter Memory ..216
Access to Adapter Memory In the Interrupt Handler...218
Input/Output Privilege Level (IOPL)...219
The IOPL Segment...220
IOPL From 32-bit Applications...223

Chapter 11 - Direct Memory Access (DMA) ..225
The DMA Controller ..225
Using DMA..230
DMA and Micro Channel..234

Chapter 12 - Extended Device Driver Interface ..237
Device Driver Capabilities ..237
Request Lists and Request Control ...241
Request Format ..243
Read/Write/Write Verify Request ...248
Read Prefetch Request..249
Request Control Functions..250
SetFSDInfo ..251
ChgPriority...252
SetRestPos ...252
GetBoundary ..252

Chapter 13 - Debugging OS/2 Device Drivers ..255
KDB Keywords ..257

13

KDB Operators ..259
KDB Command Reference..261
Internal Commands...264
External Commands..283

Chapter 14 - OS/2 Display Drivers ...295
Device Context...297
Data Types ...298
Instance Data..299
Program Stack..299
DLL Functions ...299
Presentation Driver Design Considerations ...300
Presentation Driver Errors ..301
Presentation Driver Error Codes...302
Additional Presentation Driver Functions..303

Chapter 15 - OS/2 Printer Drivers ..305

Chapter 16 - Working With Pointers ..307
C Set/2 and C Set++...307
Virtual Addresses ...310
Pointers In A VDM ..311

Chapter 17 - PCMCIA Device Drivers ...313
The PCMCIA Software Trilogy..314
OS/2 Warp PCMCIA Initialization..315
Client Device Driver Architecture ...317
OS/2 Warp Restrictions ..319
Card Services Functions ...319
Calling Card Services..322
Callbacks..323

Chapter 18 - OS/2 File System Device Drivers ...327
File System Overview ...327
Eas, SEAs, FEAs, and GEAs..329
FSD Interfaces..331
FSD Exported Functions ..331

14

The Bootable IFS ...331
The Mini File System..331
Mini File System Exported Functions..331
HPFS ...331
A Sample File System Driver ..332

Chapter 19 - The OS/2 SCSI Device Driver Architecture ...333
The OS/2 DMD..334
ASPI ..335
ADD Driver Design..340
IORBs ..341
Filters ...342

Chapter 20 - CDROMs and Optical Disks ..343
The CDROM Device Manager..343
The CDROM ADD ..343
Non-SCSI CDROMs ..343
CDROM Filters ..344

Chapter 21 - Keyboard And Mouse Drivers..345
Keyboard Device Driver Architecture ...345
Mouse Device Driver Architecture..345

Chapter 22 - OS/2 Warp SMP Drivers ...347
OS/2 SMP Architecture..347
The OS/2 SMP Scheduler ...350
Interrupts..351
Platform Specific Drivers..352
Platform Specific Driver Architecture ...352
PSD Contexts (Modes)...354
Terms...357
PSD Function Glossary...357
PSD Helpers...369
PSD APIs ...374
Device Drivers For OS/2 SMP..376
OS/2 SMP DevHlps..377
OS/2 SMP Applications..377

15

Avoiding Device Driver Deadlocks ...399
The Single Processor Utility Program ...402

Chapter 23 - Plug and Play...403
ISA PnP Hardware ...405
PnP BIOS...412
ISA PnP Isolation ...412
Resource Data ..417
PnP Configuration ..422
SCAM..423

Chapter 24 - Tips and Techniques ..425

Appendix A - Device Helper Reference ..431
Device Helper Functions...431
DevHlp Services and Device Contexts ..435
Device Helper Categories ...439
DevHlp Routines ..444

Appendix B - Reference Publications..561

Appendix C - Listings...563
Device Header, One Device ..563
Device Header, Two Devices..563
C Startup Routine, One Device...564
C Startup Routine, Four Devices ..566
Standard OS/2 Device Driver Include File...567
Skeleton Strategy Section...579
Sample IOCtl Call, 16-Bit...580
Sample IOCtl Call, 32-Bit...580
Sample Interrupt Handler..581
Sample Timer Handler ..583
Simple OS/2 Parallel Physical Device Driver ...584
C Startup Routine for Parallel Device Driver ..590
Parallel Device Driver Include File..591
Parallel Device Driver Make File...591
Parallel Device Driver DEF File ..591

16

Sample OS/2 Serial Device Driver ..592
Serial Device Driver Make File ...604
Serial Device Driver DEF File...604
Sample C Callable DevHlp Interface ...605
C Callable Debugger Breakpoint...606
Data Transfer Routine ..607
Sample DMA Routines ...609
Obtaining POS Register Contents ...617
ABIOS Specific Include File ...618
IOPL Routine For 16-Bit and 32-Bit Applications ..619
IOPL Routine Make File...620
IOPL Routine DEF File ..620
IOPL Test Program, 16-Bit ..620
IOPL Test Program Make File, 16-Bit ..621
IOPL Test Program DEF File, 16-Bit..621
IOPL Test Program, 32-Bit ..621
IOPL Test Program Make File, 32-Bit ..622
IOPL Test Program DEF File, 32-Bit..622
Device Driver For Memory-Mapped Adapters ..622
Memory-Mapped Device Driver DEF File ..631
Memory-Mapped Device Driver Make File ...631
Memory-Mapped Device Driver Header File...631
Memory-Mapped Device Driver Test Program - 16-Bit633
Memory-Mapped Test Program Header File - 16-Bit ..634
Memory-Mapped Test Program Def File - 16-Bit..634
Memory-Mapped Test Program Make File - 16-Bit ..634
Memory-Mapped Test Program - 32-Bit, 16-Bit Pointers635
Memory-Mapped Test Program DEF File - 32-Bit ..636
Memory-Mapped Test Program Make File - 32-Bit ..636
Memory-Mapped Test Program - 32-Bit, 32-Bit Pointers636
Memory-Mapped Test Program DEF File - 32-Bit ..638
Memory-Mapped Test Program Make File - 32-Bit ..638
Macros ...638

Appendix D - OEMHLP AND TESTCFG..657
TESTCFG..689

17

Appendix E - The OS/2 Resource Manager ..695
Making Your Device Driver Resource Manager Aware720
The RMVIEW Utility ...722
RESERVE.SYS ...725

Index..727

Library Order Form..729

19

Tables
Table 4-1. OS/2 Priority Structure..70
Table 5-1. Device Attribute Word ..87
Table 5-2. Capabilities Bit Strip..88
Table 5-3. Device Driver Strategy Calls..96
Table 6-1 Device Driver Strategy Commands ...113
Table 6-2. API Routines Available During Init..119
Table 6-3. Media Descriptor Bytes ...121
Table 6-4. Boot Sector Format...123
Table 9-1. DOS Settings ..173
Table 9-2. DOS Settings Information ...174
Table 9-3. Virtualized 8250/16450 Registers ..176
Table 9-4. Virtualized Timer Registers ...178
Table 9-5. Supported Virtualized Timer Registers ..179
Table 9-6. Virtualized INT 13 Functions ..180
Table 9-7. Virtualized Floppy Disk Ports..181
Table 9-8. Virtualized DOS Interrupts..198
Table 9-9. Virtualized BIOS Interrupts...199
Table 9-10. Virtualized DOS Software Interrupts ...202
Table 11-1. DMA Channel Assignments ...226
Table 11-2. DMA Controller Port Assignments ..228
Table 11-3. DMA Channel Addressing ...229
Table 11-4. DMA Mask Register..231
Table 11-5 DMA Mode Register ..232
Table 11-6. DMA Command Register ..233
Table 12-1. Capabilities Bits...238
Table 12-2. Volume Descriptor Word ..240
Table 12-3. LstRequestControl Word Bits..242
Table 12-4. LstStatus Byte, Lower Nibble..243
Table 12-5. LstStatus Byte, Upper Nibble ..243
Table 12-6. RequestCtl Byte ..245
Table 12-7. Request Priority...245
Table 12-8. Request Status, Lower Nibble (Completion Status)....................................246
Table 12-9. Request Status, Upper Nibble (Error Status)..246
Table 12-10. Request Unrecoverable Error Codes ..247

20

Table 12-11. Request Recoverable Error Codes ...247
Table 12-12. Request Control Functions...251
Table 13-1. KDB Keywords...258
Table 13-2. KDB Binary Operators ..259
Table 13-3. KDB Unary Operators...260
Table 13-4. KDB Parameter Definitions ...262
Table 13-5. Page Bit Definitions (bit set/clear)..269
Table 13-6. KDB Register Definitions ..277
Table 13-7. KDB Flag Register Definitions...278
Table 13-8. KDB Machine Status Word ...278
Table 13-9. KDB Recognized Structures..285
Table 14-1. Presentation driver flag bits..296
Table 14-2. Device Context Types ...298
Table 14-3. Data Types for Queued Date ...299
Table 14-4. Graphics Engine Exports ...300
Table 14-5. Presentation Driver Errors ...302
Table 14-6. Presentation Driver Error Codes..303
Table 14-7. Job Error Returns ..304
Table 16-1. OS/2 PCMCIA Card Services..320
Table 16-2. Card Services Register Interface (input)...322
Table 16-3. Card Services Register Interface (output) ..322
Table 16-4. OS/2 Warp Callbacks ..323
Table 16-5. Callback Register Interface (input)...324
Table 16-6. Callback Register Interface (output) ..324
Table 19-1. ASPI Command Codes..336
Table 19-2. ASPI Status Byte Returned ...337
Table 22-1. SMP Device Helper Functions ...377
Table 22-1. Spinlock APIs..379
Table 23-1. Plug and Play I/O Port Assignments...407
Table 23-2. Plug and Play Control Registers...408
Table 23-2. Plug and Play Control Registers (cont’d) ...409
Table 23-2. Plug and Play Control Registers (cont’d) ...410
Table 23-2. Plug and Play Control Registers (cont’d) ...411
Table 23-3. PnP Small Item Names ..420
Table A-1. Device Helper Functions...431
Table A-2. Device Helper Contexts ..436

21

Table A-4. Read Only System Variables ...475
Table A-5. Device Driver Events..531
Table D-1. OEMHLP$ Supported IOCtl Calls..659
Table D-2. Video Chip Set Information ..669
Table D-3. PCI Subfunctions..674
Table D-3. Error Return Codes ..674
Table D-3. TESTCFG IOCtls, Category 0x80. ...689
Table E-1. RMVIEW Parameters ...724

23

Figures
Figure 1-1. The Altair 8800..33
Figure 1-2. Floppy Disk. ..35
Figure 1-3. Role of the BIOS. ..37
Figure 2-1. Polled printer output. ...42
Figure 2-2. Interrupt printer output. ...44
Figure 2-3. The role of the device driver...45
Figure 3-1. The IBM PC. ...50
Figure 3-2. The IBM PC AT. ...51
Figure 3-3. Micro Channel adapter. ..55
Figure 3-4. IBM PS/2 Model 80...56
Figure 3-5. Real mode address calculation. ...58
Figure 3-6. 80286 protect mode addressing. ...59
Figure 3-7. 80386-486 flat mode addressing. ..60
Figure 3-8. The 80x86 ring architecture..63
Figure 4-1. Process and threads..69
Figure 4-2. OS/2 1.3 EE...73
Figure 4-3. OS/2 Warp tutorial...75
Figure 5-1. Application-to-device driver interface...80
Figure 5-2. Request Packet. ...82
Figure 5-3. OS/2 device driver header. ...83
Figure 5-4. OS/2 device driver memory map...85
Figure 5-5. Device driver header, multiple devices..86
Figure 5-6. Start-up routine, one device. ..89
Figure 5-7. Start-up routine, four devices. ..92
Figure 5-8. Start-up routine with timer and interrupt handler.94
Figure 5-9. Skeleton strategy section..95
Figure 5-10. Interrupt handler. ...102
Figure 5-11. TickCount timer handler...105
Figure 5-12. TickCount timer handler...106
Figure 6-1. Request Packet definition. ..109
Figure 6-2. Standard OS/2 device driver errors...110
Figure 6-3. MachineConfigurationInfo structure. ..117
Figure 7-1. Application call to open the driver. ...144
Figure 7-2. INIT section...146

24

Figure 7-3. OPEN section. ...147
Figure 7-4. CLOSE section. ...148
Figure 7-5. IOCtl 0x01, write port..150
Figure 7-6. IOCtl 0x02...152
Figure 7-7. IOCtl 0x03...152
Figure 7-8. READ and WRITE section. ...154
Figure 7-9. Timer handler...155
Figure 8-1. ISA and Micro Channel INIT section. ..164
Figure 8-2. Micro Channel vs. ISA bus interrupt handler. ...166
Figure 9-1. OS/2 Warp VDMs. ..167
Figure 9-2. VDD initialization section. ...205
Figure 9-3. VDD data segment...206
Figure 9-4. VDD input handler...207
Figure 9-5. VDD data port output handler..208
Figure 9-6. VDD user routines. ..210
Figure 9-7. VDD include file. ...211
Figure 9-8. VDD Make And DEF Files. ...212
Figure 9-9. Registering PDD for VDD-PDD communications.213
Figure 9-10. VDD-PDD communications structure. ...214
Figure 10-1. PhysToVirt call. ...218
Figure 10-2. Mapping a GDT selector during INIT. ...219
Figure 10-3. IOPL Segment. ..221
Figure 10-4. IOPL DEF file..222
Figure 11-1. DMA setup routine. ...234
Figure 12-1. Driver Capabilities structure. ..238
Figure 12-2. Volume Characteristics Structure. ..239
Figure 12-3. Request List Header structure. ...241
Figure 12-4. Request Header structure. ..244
Figure 12-5. Scatter Gather Descriptor structure. ...248
Figure 12-6. Read/Write Request structure...248
Figure 12-7. Read Prefetch Request structure...249
Figure 12-8. SetFSDInfo structure. ..251
Figure 15-1. VMGlobalToProcess and VMProcessToGlobal..309
Figure 15-2. Using VMAlloc..310
Figure 15-3. Calling VMLock ..311
Figure 16-1. PCMCIA software architecture. ...315

25

Figure 16-2. ClientData structure. ..325
Figure 18-1. File I/O Block Diagram ..328
Figure 18-2. FSD-supplied Utility Entry Points...329
Figure 18-3. FEA Structure..330
Figure 18-4. FEAList Structure..330
Figure 18-5. GEA Structure ...330
Figure 18-6. GEA Structure ...331
Figure 18-7. EAOP Structure...331
Figure 19-1. LADDR block diagram. ...333
Figure 19-2. The OS/2 ADD Architecture ..334
Figure 19-3. SCSI Request Block...336
Figure 19-4. Calling The ASPI Manager...337
Figure 19-5. Calling ASPI During Init ..338
Figure 19-6. OS/2 ASPI Command Structures..340
Figure 19-7. ADD Init Packet Structure ...341
Figure 19-8. SCSI IORB..342
Each processor maintains a processor-specific data area called the
Processor Control Block or PCB. A PCB is allocated during system
initialization for each processor that is online..349
Figure 22-1. Spinlocks Taken Out Of Order ...400
Figure 22-2. Correct Spinlock Usage..400
Figure 22-3. Another Spinlock Usage Error ...401
Figure 23-1. PnP Register Map ..406
Figure 23-2. PnP 72-Bit Identifier ..406
Figure 23-3. Issuing A Reset To The Config Control Register412
Figure 23-4. PnP State Diagram ...413
Figure 23-5. Initialization Key ..413
Figure 23-6. ISA PnP Isolation Sequence Block Diagram...414
Figure 23-7. PnP Isolation Code Example ..417
Figure A-1. ADD Device Class Table. ..515
Figure A-2. Retreiving an ADD's entry point using GetDOSVar.515
Figure D-1. Locating An EISA Bus Adapter Using OEMHLP......................................658

27

Introduction

OS/2 is dead!

Just kidding! How many times have I heard that? So many, I can’t remember.
Yet while OS/2 was declared dead by computer magazines, programmers, and
industry visionaries, IBM was quietly building support for it’s premier x86 PC
operating system. This was not an easy task. Many inside IBM still wanted to
do business the traditional IBM way, but a new generation of IBM employees
was emerging from within. Using the phrase “this is not your Father’s IBM”,
this group set about making some of the most sweeping changes in the way
IBM develops, markets, and supports PC software. They openly criticized
IBM’s OS/2 marketing efforts, and began to “educate” the marketing staff on
how to market and sell OS/2. They began showing OS/2 to friends, neighbors,
business associates, and computer user groups. They sported OS/2 shirts,
bumper stickers, and hats, and traveled to trade shows to promote OS/2, many
on their own time. They formed Team OS/2, a group of dedicated OS/2
enthusiasts, both IBMers and non-IBMers, who helped promote OS/2 at flea
markets, schools, churches, and retail stores. Working long hours without any
compensation whatsoever, Team OS/2 became instrumental to the success of
OS/2. They spread the OS/2 word on all of the major bulletin boards, most at
their own expense. But by far the most important thing they did was to get IBM
to really listen to it’s customers.

Of course, OS/2 is not dead, unless you call nearly eight million copies sold
dead! OS/2 Warp builds upon the success of OS/2 2.0 and OS/2 2.1, adding
new state-of-the-art features such as Plug and Play, support for the Intel PCI
bus, dynamically loadable device drivers, built-in tape support, enhanced
CDROM support, enhanced video and audio support, support for the Win32
APIs, symmetric multiprocessing, and the exciting new Taligent frameworks.

This is the third edition to Writing OS/2 2.x Device Drivers in C. Over 20,000
copies of the first two editions have been sold in over 30 countries. This is not a
testament of the book's popularity; rather, it is a statement of the tremendous

28

popularity of OS/2. With the help of this book, OS/2 driver writers have written
over 1,500 OS/2 device drivers!

Using the examples I give you in this book, you should be able to have a simple
OS/2 physical or virtual device driver up and running in less than one hour. Of
course, some types of device drivers are more difficult. If you follow the
guidelines I give you, however, you'll find that writing an OS/2 device driver
can be an easy and rewarding experience.

As an independent software developer and consultant, I don't have time to read
volumes of reference materials to get up to speed quickly at a new assignment.
Reference materials have never been good about telling you how to do
something anyway, since they're only references. Sometimes, a few source code
examples are all that I really need to get started, and I've kept that in mind when
writing this book. To help you get going quickly, I've included enough code so
that you can begin writing OS/2 Warp device drivers immediately. By the time
you finish this book, you will have enough background and sample source code
to easily develop your own OS/2 device drivers. You are free to use the code
described in the listings section or on the companion disk for your device
drivers. The code in this book relies upon a library of C-callable functions for
the Device Helper, or DevHlp routines. The DevHlp routines are the driver
writer's API, and perform such functions as hooking interrupts, timers and
converting addresses. This library is not supplied with the book. At the back of
the book, you'll find an order form for the C-callable library, or you can write
your own providing you have a good knowledge of assembler programming and
the parameter passing mechanisms. The cost of the library is $149, and it
includes the library source code. This is not inexpensive, but its cheaper than
writing more than 100 assembly language routines yourself from scratch. If
your time is worth more, or you need to get going immediately, I recommend
you buy the library. I provide free support via Compuserve, and offer free
updates to the library for one year.

This text does not contain a complete discussion or reference for OS/2 Warp,
nor is it a complete reference for device driver function calls or prototypes;
readers should have a general understanding of OS/2 Warp and the OS/2
religion, along with some OS/2 Warp programming experience. See the

29

Reference Section for a list of recommended reading. A complete reference for
OS/2 1.3 device drivers can be found in I/O Subsystems and Device Support,
Volume 1 and Volume 2 from IBM, which is part of the OS/2 1.3 Programming
Tools and Information package. Complete documentation for OS/2 Warp
Physical Device Drivers and Virtual Device Drivers can be found in the IBM
Operating System/2 Version 3.0 Physical Device Driver Reference, the IBM
Operating System/2 Version 3.0 Virtual Device Driver Reference and the IBM
Operating System/2 Version 3.0 Presentation Driver Reference which are part
of the IBM OS/2 Warp Technical Library. In this book, I will discuss the issues,
both hardware and software, that will directly affect your OS/2 device driver
development. Some type of hardware background is helpful, but not necessary.

Generally, you can write all of your OS/2 device drivers, including interrupt
handlers, in C. A device driver written in C can be completed in approximately
half the time it would take to write the same device driver in assembly language.
Most device drivers will work fine when written in C. Programmers who have
written device drivers for other multitasking operating systems, such as UNIX
or VMS, should find OS/2 device driver design concepts similar. Programmers
not familiar with multitasking device driver design will find OS/2 device driver
development somewhat more difficult. Your first OS/2 device driver could take
about two to four months to complete, and subsequent device drivers should
take slightly less time. Block and Presentation Manager device drivers are
significantly more complex, and may take upwards of six months or more to
complete.

To use the examples in the text or on the companion disk, you will need a
compiler, assembler, and compatible linker. For OS/2 character mode and block
device drivers, the Microsoft C 5.1 or 6.0 compiler, the Microsoft 5.1 or 6.0
Assembler, and the Microsoft 5.13 or later linker will be sufficient. For OS/2
Virtual Device Drivers, you will need a 32-bit C compiler, such as the IBM C
Set++ compiler version 2.01 or greater, along with the corresponding 32-bit
linker and symbol file generator.

Debugging OS/2 device drivers requires the use of a kernel-level debugger. I
recommend the kernel debugger supplied with the IBM OS/2 Warp Toolkit.
Other third-party debuggers are available, but the IBM kernel debugger is the

30

only debugger which has knowledge of the internal kernel symbols. You may
also wish to look at ASDT32, a 32-bit kernel debugger supplied with the IBM
DDK. ASDT32 provides debugging output on the main display, eliminating the
need for a debugging terminal. ASDT32 is also available to members of the
IBM Developer Assistance Program via DAPTOOLS on Compuserve and
IBMLINK.

If you are developing or plan to develop an OS/2 product, I recommend that
you join the IBM Developer Assistance Program. This program, offered to
qualified software developers, provides up-to-date information on OS/2 Warp,
updates to the operating system and tools, and substantial discounts on IBM
hardware and software. Call the IBM Developer Assistance Program at area
code (407) 982-6408 and ask how to become a member. You may also join the
IBM Worldwide DAP program by entering GO OS2DAP from your
Compuserve account. Online support for developers is provide through the
OS2 BBS, 919-513-0001 and in the OS2DF1 and OS2DF2 forums on
Compuserve. Additonal, non-official support can be obtained from various
other online services including America Online, Delphi, Bix, Prodigy, FIDO,
and Prodigy.

For the developer, IBM offers the Developer Connection, a subscription
CDROM service that is used to introduce exciting new tools, betas, DDKs and
developer toolkits. Call 1-800-6DEVCON for information and ordering.

In Chapter 1, I describe how device drivers for personal computers evolved
from simple polling loops to the complex interrupt-driven device drivers found
in today's real-time PC operating systems. In Chapter 2, I describe what device
drivers are and how they fit into the total system picture. In Chapter 3, I
describe the relevant parts of the PC hardware architecture necessary for device
driver writers to be aware of. If you are already an experienced device driver
writer, you may wish to skip these three chapters and proceed directly to
Chapter 4. Chapter 4 begins with a historical look at OS/2 and provides a brief
outline of the OS/2 operating system. Programmers already familiar with O
S/2 will probably wish to skip this chapter and proceed directly to Chapter 5. In
Chapter 5, I discuss the anatomy of the OS/2 device driver by presenting
sample code fragments, listings, and various tables. Topics include the strategy

31

section, interrupt handlers, timer handlers, request packets and device headers.
Chapter 6 continues the architecture topic by describing, in detail, the strategy
commands that the device driver receives from OS/2 and how the device driver
should respond to them. In Chapter 7, I use actual code to show you how to
build an OS/2 8-bit parallel port device driver. I also describe, in detail, the
operation of the device driver for each request it receives from the OS/2 kernel.
Chapter 8 describes the special considerations necessary for writing OS/2
device drivers for Micro Channel bus machines, such as the IBM PS/2. Chapter
9 describes Virtual Device Drivers, or VDDs, and contains code for an actual
VDD. In Chapter 10, I show you how to handle memory-mapped adapters, and
how to perform direct port I/O without a device driver. Chapter 11 explains
how to use Direct Memory Access, or DMA, and includes several code listings
to illustrate how DMA is handled under OS/2. In Chapter 12, I describe the
Extended Disk Driver Interface, also known as the Strategy 2 or scatter/gather
entry point. Chapter 13 provides a handy reference for the OS/2 Warp Kernel
Debugger commands. Chapter 14 describes how to write a video device driver
for OS/2, and Chapter 15 describes who to write a printer driver. In Chapter
16, I describe various types of pointers and addressing modes you will need to
understand when writing your device drivers. Chapter 17 describes the
PCMCIA architecture and how OS/2 Warp supports PCMCIA device drivers.
Chapter 18 introduces a topic which appears for the first time, OS/2 File
System drivers, referred to as IFS drivers. Chapter 19 describes the OS/2 SCSI
device driver architecture. Chapter 20 discusses drivers for CDROMs and
optical disks.Chapter 21 describes keyboard and mouse drivers, and other
pointer device drivers. Chapter 22 outlines the changes necessary to for drivers
to be supported on the SMP version OS/2 Warp. Chapter 23 explains Plug and
Play and how it is implmented under OS/2, and finally, Chapter 24 contains
some helpful hints and suggestions, as well as a compendium of tips and
techniques I've used when writing my OS/2 device drivers.

In Appendix A, you'll find a detailed description of the OS/2 Device Helper
routines with their C calling sequence as provided by the C Callable DevHlp
library described in the diskette order form in this book. Appendix B includes a
recommended list of further reading. Appendix C contains source code listings
for the device drivers and support routines discussed in the book. All of this
code, without the library, is included on the free companion disk attached to the

32

back cover of this book. You are free to use the code for your own use but you
may not sell it or distribute it for profit without written permission of the
publisher. Finally, Appendix D contains documentation for the IBM OEMHLP
and TESTCFG Device Drivers

33

Chapter 1 - The Evolution of PC Device Drivers

In 1976, a small company in Albuquerque, New Mexico, called MITS, founded
by Ed Roberts, introduced a computer in kit form that could be assembled by a
novice electronic tinkerer. The computer, called the Altair 8800, delivered
technology into the home which had previously been confined to laboratories of
large companies and universities. Based on the Intel 8080 microprocessor, the
Altair provided much of the functionality of larger machines, but at a much
lower price. The user could enter a program through the front panel switches
and execute it. Later, a high-level language program called Beginner’s All-
purpose Symbolic Instruction Code, or BASIC as it’s more widely known, was
introduced for the Altair to make writing programs easier. BASIC was written
for MITS by Bill Gates and Paul Allen.

Figure 1-1. The Altair 8800.

The first personal computers were quite expensive by today’s standards. A kit
containing the computer, case and power supply, less any memory or storage,
sold for $2000.00, not a trivial sum in 1976. Four thousand characters of
memory was priced at over $1000.00. In addition, many circuits were based on
an electronic technology that was prone to interference from certain types of
radio frequencies and small variations in the AC input voltage. The collection of
electronic circuits and other equipment that comprise a computer system are

34

referred to as the computer hardware. The programs that run on the computer
are referred to as software.

A short time after the Altair was introduced, MITS introduced an audio
cassette interface, which allowed the use of a standard audio cassette
player/recorder for the storage of information. Using the audio cassette proved
cumbersome. Since the computer had no direct control over the cassette player,
it could not determine, for example, that the play and record buttons were
pressed while recording, or if the player was even attached to the computer.
Recording information on audio tape was also unreliable. In order to store a
program or data onto the tape, the data had to be converted into audio signals
before writing it to the tape. In order to read the data from the tape, the audio
signals from the tape had to be converted back into machine code. Since the
computer had to be programmed to read and write using the cassette tape unit,
the user had to manually enter a program to perform those operations using the
front panel switches.

A special integrated circuit, called an Erasable Programmable Read Only
Memory, or EPROM, was added to solve the problem of having to manually
enter the initial boot program. The EPROM was programmed to contain the
cassette loader, and retained its contents even if power was lost. The EPROM
contained only 256 characters or bytes of storage, so the loader program could
not be very complex. The user could select this EPROM using the computer’s
front panel switches and start the tape program by executing the code located in
the EPROM.

Storage Devices

Shortly thereafter, a floppy disk drive storage system was introduced, which
provided for the storage of 250,000 bytes on an 8 inch floppy disk, using the
same format that had been used by IBM on their larger computer systems (see
Figure 1-2). Again, the boot program, this time for floppy disk, was
programmed into an EPROM, so the user did not have to enter it manually. The
disk boot program turned out to be much more complicated, and would not fit
into the 256-character storage of the EPROM. This problem was solved by

35

placing a more complex loader onto the floppy disk. The small boot program in
the EPROM loaded the more complex disk loader, which in turn loaded the
selected program or data from the disk.

Figure 1-2. Floppy Disk.

Software for this new computer was poor to nonexistent. Programs had to be
written by hand on paper and entered manually. The person writing the program
had to be somewhat of a computer expert since the programs had to be entered
in a language of numbers called machine code. Machine code is the only type of
instruction that a Central Processing Unit, or CPU, can understand. Machine
code is a representation in the computer’s memory of an instruction or piece of
data, and is expressed in a pattern of ones and zeroes, called binary notation.
The CPU is capable of recognizing certain patterns of these ones and zeroes,
which are called bits, as instructions. Programming in machine code proved to
be time consuming and prone to error, and the slightest programming error
could be disastrous.

Interface Adapter Cards

Each device was connected to the CPU through an electronic circuit board
called an electrical interface card, commonly known today as an adapter. The
interface card plugged into the computer bus, which was connected to the CPU.
A program that had to access a device would instruct the CPU to read from or
write to the interface card, which would in turn issue the correct electrical

36

signals to the device to perform the requested operation. The interface acted as
a converter of sorts, converting CPU instructions into electrical signals to
control the particular device. A motor, for instance, could be turned on and off
using a program that commanded an interface to turn the motor on and off. The
motor was not aware of the computer’s presence or programming, but merely
acted upon the electrical signals generated by the interface card.

Because a very limited number of these adapters were available, programs
would control them by directing the CPU to directly access the adapter
hardware. Programs that used particular adapters were written specifically to
access those adapters. If the adapter was changed, the program would have to
be rewritten to accommodate the new adapter’s requirements. This was
unacceptable, since a software supplier could not afford to support multiple
versions of a program for each different type of adapter configuration.

The First Operating System For Personal Computers

With the introduction of the floppy disk for microcomputers, the first disk-
based personal computer operating system was born. Called the Control
Program for Microcomputers, or CP/M, it resided on a floppy disk. When
directed to, it would load itself into the computer’s memory to manage the
attached devices, including storage devices, keyboards, and terminals. Once
loaded into the computer’s memory, CP/M took responsibility for reading and
writing to floppy disks, tape drives, printers, terminals, and any other devices
attached to the computer. The CP/M operating system was a generic piece of
software, i.e., it could be used on any configuration of computer with the same
type of microprocessor. To allow this generic operating system to manage
different configurations of devices, CP/M accessed all devices through a
hardware-specific set of programs called the Basic Input/Output System, or
BIOS. By changing a small section of the BIOS program, users could add
different types of devices while the operating system program remained
unchanged (see Figure 1-3).

37

Figure 1-3. Role of the BIOS.

The CP/M BIOS code was an example of an early personal computer device
driver. The BIOS code isolated the CP/M operating system from the device
electronics and provided a consistent interface to the devices. Programs that
wished to read from or write to a particular device did so by calling CP/M
routines, which in turn called the BIOS. When reading a file from the disk, the
programmer did not have to keep track of where the file resided on the disk, or
command the disk unit to position itself where the file was located on the disk.
The disk geometry parameters, which defined the size of the disk, number of
tracks, number of heads, and the number of sectors per track, were handled by
the BIOS code. The developers of the CP/M operating system were free to
change the operating system without worrying about the many types of
hardware configurations that existed. Today, the BIOS code is still responsible
for defining the disk geometry.

Since that time, computer speed and storage have increased exponentially. The
amount of computer processing power previously requiring the space of a
normal living room can now fit on a small notebook-size computer. This
increased performance has allowed the computer to perform more and more
tasks for the user. In addition, the user’s needs have become more
sophisticated, and with them the software needed to provide a comparable level
of functionality has become increasingly complex.

The functionality of the operating system and its environment have changed
dramatically, yet the necessity for the device driver has only increased. The

38

basic job of the device driver remains the same, that is, it isolates an application
program from having to deal with the specific hardware constraints of a
particular device, and removes such responsibility from the programmer. Device
drivers allow for the expansion and addition of hardware adapters, while
allowing the operating system to remain intact. Thus device drivers remain the
vital link between the computer system’s electronics and the programs that
execute on it.

For CP/M, the BIOS software solved the device independence issues, but did
not solve all of the problems. The BIOS code resided on a floppy disk and was
loaded along with the operating system at boot time. Users could change the
BIOS code to reflect a new device configuration, but the BIOS code was in
assembly language which was difficult for novice programmers to learn. If the
BIOS code contained an error, the operating system might not load, or if it did
load, it would sometimes not work or work erratically. The BIOS was difficult
to debug, because the debugger used the BIOS code to perform its input and
output! A few years later, the BIOS code was relocated into Read Only
Memory, or ROM, and subsequently to Electrically Erasable Programmable
Read Only Memory, or EEPROM.

Using a special technique, the contents of EEPROM can be modified by a
special setup program. The contents of memory in EEPROM is retained even if
power is lost, so the device-specific contents of the BIOS is always retained.

The First Bus

The Altair introduced the idea of a common set of circuits that allowed all of
the devices in the system to communicate with the CPU. This common set of
circuits was called the bus, and the Altair computer introduced the first open-
architecture bus, called the S-100 bus. It was called the S-100 bus because it
contained 100 different electronic paths. Connectors were attached to the bus,
which allowed adapter cards to be plugged into them and connect to the bus.
The S-100 bus was the forerunner of today’s bus architectures.

39

Although prone to radio-frequency interference, the S-100 bus established itself
as the standard bus configuration for 8080 and Z-80-based personal computers,
and was the first attempt at standardizing personal computer hardware. The
IEEE actually drafted and published a standard for the S-100 bus, called IEEE-
696. Many S-100-bus computers are still in operation today.

It should be noted that several other computer systems appeared on the market
about the same time, including the IMSAI 8080, the Timex Sinclair, the
SWTPC 6800, The RCA Cosmac Elf, and various other microprocessor-based
systems. The 8080-bus systems, however, quickly became the industry
standard.

41

Chapter 2 - Understanding Device Drivers

The use of the BIOS code in CP/M to isolate the operating system from the
specifics of devices was not a new idea. Large computer systems and mid-range
computers, called minicomputers, had been using this technique for some time.
But, this was the first time they were applied to personal computers.

The first operating systems were single tasking, i.e., they were capable of
executing only one program at a time. Even though these early computers were
comparatively slow in their operation, they were faster than the devices they
needed to access. Most output information was printed on a line printer or
written to a magnetic tape, and most input information was read from a
punched card reader or keyboard. This meant that if a program was waiting for
input data, the computer system would be idle while waiting for the data to be
entered. This operation, called polling, was very inefficient. The computer was
capable of executing thousands of instructions in between each keystroke. Even
the fastest typist could not keep up with the computer’s input ability to process
each key.

If a program needed to print something on a printer, it would do so one
character at a time, waiting for the device to acknowledge that the character
was printed before sending the next character (see Figure 2-1). Since the
computer processed the data faster than it could be printed, it would sit idle for
much of the time waiting for the electromechanical printing device to do its job.
As technology progressed, faster input and output devices became available, all
well as faster computers. Still, the computer was at the mercy of the input and
output devices it needed. The configuration of these input and output (I/O)
devices was also different. Some line printers printed on 8 1/2 by 11-inch paper
and some on 8 1/2 by 14-inch paper. Magnetic tape storage devices used
different size tapes and formats, and disk storage devices differed in the amount
and method of storage.

42

Figure 2-1. Polled printer output.

The device driver solved the problems associated with the different types of
devices and with the computer remaining idle while performing input and
output operations. The device driver program was inserted between the
program doing the I/O and the actual hardware device, such as a printer or
magnetic tape drive. The device driver was programmed with the physical
characteristics of the device. In the case of a line printer, the device driver was
programmed with the number of characters per line it accepted or the size of
the paper that the device could handle. For a magnetic tape device driver, the
device driver was programmed with the physical characteristics of the tape
mechanism, such as the format used to read from and write to the drive, and its
storage capacity. The program performing the I/O did not require detailed
knowledge of the hardware device. The device driver also allowed the
programmer to direct a print operation with no knowledge of the type of printer
that was attached. Thus, a new printer could be added, with its corresponding

43

device driver, and the application program could run unmodified with the new
printer.

The polling issue was also addressed. Since the device driver had intimate
knowledge of how to talk to the I/O device, there was no reason why the
application program had to wait around for each character to be printed (see
Figure 2-2). It could send the device driver a block of, say, 256 characters and
return to processing the application program. The device driver would take the
characters one at a time and send them out to the printer. When the device
driver had exhausted all of its work, it would notify the application program of
that fact. The application program would then send the device driver more data
to print, if necessary. The application program was now free to utilize the CPU
to perform tasks that demanded more processing, thus reducing the idle time of
the computer.

The device driver became even more important when operating systems
appeared that could run more than one program at a time. It was now possible
for more than one program to use the same I/O device, and often at the same
time. The device driver was used to serialize access to the device, and protect
the device from errant programs that might try to perform an incorrect
operation or even cause a device failure.

44

Figure 2-2. Interrupt printer output.

Device Drivers Today

Today, device drivers remain an irreplaceable and critical link between the
operating system and the I/O device (see Figure 2-3). Many new I/O devices
have appeared, including color graphics printers, cameras, plotters, scanners,
music interfaces, and CDROM drives. The device driver remains a necessary
component to complete the interface from the operating system to the physical
device. Today’s computers can run dozens and even hundreds of programs at
one time. It is more important than ever for the device driver to free up the
CPU to do more important work, while handling the relatively mundane tasks
of reading and writing to the device.

Today, device drivers are more complex, as are the operating systems and
devices they interface with. Device drivers can interact more with the CPU and
operating system, and in some cases they can allow or block the execution of
programs. They can usually turn the interrupt system on and off, which is an
integral part of the performance of the system. Device drivers usually operate at
the most trusted level of system integrity, so the device driver writer must test

45

them thoroughly to assure bug-free operation. Failures at a device driver level
can be fatal, and cause the system to crash or experience a complete loss of
data.

Figure 2-3. The role of the device driver.

The use of computers for graphics processing has become widespread. It
would be impossible to support the many types of graphics devices without
device drivers. Today’s hardware offers dozens of different resolutions and
sizes. For instance, color graphics terminals can be had in CGA, EGA, VGA,
MCGA, SVGA, and XGA formats, each offering a different resolution and
number of supported simultaneous displayable colors. Printers vary in dots per
inch (DPI), Font selection, and interface type. Since all of these formats and
configurations are still in use, the supplier of a graphics design package needs to
support all of them to offer a marketable software package. The solution is for
the graphical design program to read and write to these graphics devices using a
standard set of programs, called APIs (Application Programming Interfaces),
which in turn call the device driver specific to the hardware installed.

The device driver has an in-depth knowledge of the device, such as the physical
size of the output area, the resolution (number of dots or pixels per screen), and
the special control characters necessary for formatting. For instance, a graphics
application program might direct the output device to print a line of text in

46

Helvetica bold italic beginning at column 3, line 2. Each graphics output device,
however, might use a different command to print the line at column 3, line 2.
The device driver resolves these types of differences.

A user might wish to print a 256-color picture on a black and white printer in a
lower or higher resolution. The device driver would resolve the differences and
perform the proper translation, clipping and color-to-gray-scale mapping as
required. While this method allows the graphics program to remain generic for
any hardware configuration, it does require the software vendor to supply
device drivers for the many types of input and output devices. Some word
processors, for example, come with over 200 printer device drivers to support
all makes and models of printers, from daisy wheel to high-speed laser and
color printers.

Device Drivers - A Summary

In summary, the device driver:

• Contains the specific device characteristics and removes any
responsibility of the application program for having knowledge of the
particular device.

In the case of a disk device driver, the device driver might contain the
specific disk geometry, which is transparent to the program that calls
the device driver. The device driver maps logical disk sectors to their
physical equivalents. The application program need not be aware of the
size of the disk, the number of cylinders, the number of heads, or the
number of sectors per track. The device driver also controls the disk
seek, which is the motion necessary to position the read/write head over
the proper area of the disk. This simplifies the application code, by
allowing it to issue only reads and writes, and leaving the details of how
it is done to the device driver.

In the case of a video device driver, the driver might contain the size of
the screen, the number of pixels per screen, and the number of

47

simultaneous colors that can be displayed. Programs that need access to
the display call the display device driver, which performs several
functions. First, it maps the number of colors in the picture to those
supported by the video adapter. This is especially true if a color picture
is displayed on a black and white (monochrome) display. Second, if the
resolution of the target display is smaller than the original, the device
driver must adjust the size proportionally. Third, it might adjust the
aspect ratio, the ratio of vertical pixels to horizontal pixels. A circle, for
example, would appear egg-shaped without the correct aspect ratio.

In the case of a serial device, such as a modem, the device driver
handles the specifics of the electronics that perform the actual sending
and receiving of data, such as the transfer speed and data type.

• Allows for device independence by providing for a common program
interface, allowing the application program to read from or write to
generic devices. It also handles the necessary translation or conversion
which may be required by the specific device.

• Serializes access to the device, preventing other programs from
corrupting input or output data by attempting to access the device at
the same time.

• Protects the operating system and the devices owned by the operating
system from errant programs which may try to write to them, causing
the system to crash.

49

Chapter 3 - The PC Hardware Architecture

Writing device drivers requires you to have at least a limited understanding of
the personal computer hardware architecture. Device drivers are special pieces
of software because they “talk” directly to electronic circuits. Application
programs, or those programs that use device drivers to access devices, can be
written without a knowledge of the electronics. While you don’t have to be an
electrical engineer, you will need at least a basic knowledge of the hardware
you will be interacting with.

The System Bus

The CPU is connected to the rest of the computer through electrical circuits
called the bus. The bus contains the electrical paths common to different
devices, allowing them to access each other using a very specialized protocol.
The CPU is allowed read and write access to the computer’s memory (and
some devices) by means of the address bus. Data is moved to and from devices
(and memory) via the data bus. The computer bus is the center of
communications in the computer. To allow hardware interfaces or adapters to
gain access to the CPU, the computer system is fitted with connectors to allow
adapters to be plugged into the bus. The adapters must adhere to the electrical
standards of the bus. Certain restrictions, such as bus timing and switching must
be adhered to by the adapter manufacturers, or the entire system may
experience erratic behavior or possibly not function at all.

The width of the bus, or the number of bits that can be transferred to or from
memory or devices in parallel, directly affects system performance. Systems
with “wider” busses will, in general, offer greater performance because of their
ability to move more data in less time.

Today there are three primary bus architectures in the IBM-compatible
marketplace. They are called Industry Standard Architecture (ISA), Enhanced
Industry Standard Architecture (EISA) and Micro Channel Architecture

50

(MCA). Of course, there are other types of busses used for non-IBM
compatible computers, but they will not be covered in this book.

Figure 3-1. The IBM PC.

The IBM PC - Beginnings

In 1981, IBM released the IBM PC (see Figure 3-1), a personal computer based
on the Intel 8088 microprocessor. The 8088 was a 16-bit microprocessor, and
was IBM’s first entry into the personal computer market. IBM was known
worldwide as a supplier of large data processing systems, but this was their first
product for personal use. The IBM PC contained a new bus design called the
PC bus. The PC bus was fitted with adapter card slots for expansion, and to
make the bus popular, IBM released the specifications of the PC bus. This
encouraged third-party suppliers to release many different types of adapters to
be used in the IBM PC. This was a strategic move by IBM which led to the
standardization of the PC bus architecture for all personal computers.

Storage was limited to a single floppy disk, capable of storing approximately
180,000 bytes of information.

The IBM PC was not a relatively fast machine, but users could, for the first
time, have an IBM computer on their desks. Original sales projections for the
IBM PC were a few hundred thousand units, but demand quickly exceeded
availability. The personal computer revolution had begun.

51

Figure 3-2. The IBM PC AT.

IBM PC XT

In 1982, IBM introduced the IBM XT computer. The IBM XT contained a
built-in ten million byte (10MB) hard disk storage device, and the floppy disk
storage was doubled to 360,000 bytes (360KB). The IBM XT was based on the
IBM PC and retained the same basic design, except that users could now store
ten million characters of data on the hard disk.

Computer hardware can process instructions relatively fast. The execution of a
simple instruction may take less than one microsecond (.000001 seconds). The
computer input and output devices, however, are relatively slow. For example,
if the computer was receiving bytes of data from another computer over a
phone line, the time to receive just one byte of data would be approximately 4
milliseconds (.004 seconds). If the computer was just waiting for more bytes to
appear, it would be spending most of its time doing nothing but waiting. This
would be extremely inefficient, as the computer could have executed thousands
of instructions while waiting for another byte. This problem is solved by a
hardware mechanism called the interrupt system. The interrupt system allows an
external event, such as the reception of a character, to interrupt the program
currently being executed. A special program, called an interrupt handler,
interrupts the currently executing program, receives the character, processes it,
and returns to the program that was executing when the interrupt was received.

52

The program that was executing at the time of the interrupt resumes processing
at the exact point at which it was interrupted.

The IBM PC and PC XT had an eight-level Programmable Interrupt Controller
(PIC), which permitted up to eight interrupts on the PC bus. This represented
somewhat of a problem, as several interrupt levels were already dedicated to the
system. The system timer reserved an interrupt, as well as the hard disk, floppy
drive, printer port and serial port. This left only two unused interrupts, which
were reserved for a second printer and second serial communications port. If
you happened to have these devices installed, you could not install any other
adapter cards that utilized interrupts.

IBM PC AT

In 1984, IBM introduced the IBM PC AT personal computer. The IBM PC AT
computer utilized the Intel 80286, a more powerful 16-bit microprocessor. The
IBM PC AT utilized a newly designed bus, called the AT bus. The AT bus
added eight additional address and data lines, to enable the CPU to transfer
twice as much data in the same amount of time as the IBM PC. In another
brilliant engineering innovation, IBM made the AT bus downward compatible
with existing IBM PC adapter cards. The user did not have to give up a large
investment in adapter hardware to upgrade to the IBM PC AT. The AT could
use newly introduced 16-bit adapters as well as the existing eight bit adapters.
The newer bus could still accommodate the older PC and XT bus adapter cards.
Today, the AT bus remains the most popular IBM PC-compatible bus in
existence, with over 100 million installed, and is commonly called the ISA bus.

The processor speed of the PC AT was increased 25 percent, and the
combination of processor speed and greater bus width led to dramatic
performance increases over PC XT. The PC AT was equipped with a 20MB
hard disk, a 1.2MB floppy disk, and was fitted with a larger power supply to
handle the increased speed and capacity. The color display was becoming more
popular, but was limited in colors and resolution. IBM quickly introduced an
upgraded model of the IBM PC AT, called the model 339. The newer version
came with a 30MB hard disk and a 1.2MB floppy disk. To retain compatibility,

53

the AT’s floppy disk could also read and write to the smaller capacity 360K
byte floppies for the IBM PC XT. Processor speed was again bumped up 33
percent.

The AT bus, however, had limitations. The electrical design of the bus was
limited by the speed that data could be transferred on the bus. This was not a
problem for the IBM PC AT, but as processors became faster and users
demanded more power, the performance of the AT bus became a limiting
factor.

The AT Bus

When the IBM PC AT was introduced in 1984, the bus requirements changed
significantly. The IBM PC AT used the Intel 80286, which was also a 16-bit
processor. The processor speed was increased by thirty percent. Since the
memory address could be 16 bits wide, the processor could now issue only one
address command to the memory circuits, cutting the time necessary to address
memory in half. The data bus width was also increased to 16 bits, and 8 more
interrupts were added.

The AT bus has 24 address lines, which limits the amount of directly
addressable memory to 16MB, but recent IBM-compatibles have provided a
separate CPU-to-memory bus, which is 32 bits wide. The peripheral address
bus that the adapter cards plug into remains a 24 bit address bus.

The IBM PC AT was upgraded to run another thirty percent faster by raising
the processor clock speed to 8 megahertz (Mhz). Performance increased
dramatically, but a problem for future expansion now became apparent. The
electrical design characteristics of the AT bus prohibited it from reliably running
at speeds faster than 8 Mhz, with a maximum bus throughput of about 8MB per
second. Users were demanding more power, and CPU makers such as Intel
were producing faster and more powerful processors.

Adapter cards for the AT bus required the manual installation and/or removal of
small electrical jumpers to define the characteristics of the card. There were

54

jumper settings for the card address, interrupt level, adapter card port address,
timing, and a host of other options. This sometimes made installation
troublesome. An incorrectly placed jumper could cause the adapter not to work
or the system to hang. Novice computer users had a tough time understanding
all of the options and how to set them for various configurations. Boards were
often returned to manufacturers for repair when all that was wrong was an
incorrectly installed jumper.

The AT bus design allows for 15 interrupts, but adapters cannot share the same
interrupt, or IRQ level. Once a device driver claims an interrupt level, the
interrupt level cannot be used for another adapter.

The IBM PS/2 and Micro Channel

IBM’s answer to the limitations of the AT bus was to create, from scratch, an
entirely new bus architecture. This new architecture, called Micro Channel, was
(and is) vastly superior to the AT bus architecture. Since IBM decided that the
bus did not have to support existing adapter cards and memory, they were free
to design the new bus without restrictions. The Micro Channel bus was a
proprietary bus (which has since been made public) that was designed to solve
all of the existing problems with the AT bus, and to provide for an architecture
that would support multiple processors and bus-masters on the same bus using
a bus arbitration scheme. In addition, the Micro Channel bus provided greater
noise immunity from Radio Frequency Interference (RFI), 32 address lines, 24
DMA address lines, and 16 data lines with increased speed (bandwidth). The
first Micro Channel bus computer was twice as fast as the IBM PC AT, and had
a maximum bus transfer rate of 20MB per second. Some Micro Channel
adapters can manage as much as 160MB per second.

The Micro Channel bus supports multiple bus masters. Bus mastering allows an
adapter to obtain control of the system bus to perform I/O at higher rates than if
the CPU was used. The Micro Channel design supports up to 15 bus masters.
The Micro Channel bus also has better grounding and more interrupt capability.

55

IBM introduced a brand new line of computers, called the Personal System/2,
or PS/2 (see Figure 3-4), which utilized the Micro Channel technology. The
new computers offered several new features, such as built-in support for VGA
color and larger-capacity Enhanced Small Disk Interface, or ESDI, hard disk
drives. In the area of hardware, IBM made three major design changes. First,
they designed the Micro Channel bus to be slot dependent. That is, each slot
was addressable by the CPU. This differed from the IBM PC and PC AT bus
machines, where adapter boards could be placed in any slot.

Figure 3-3. Micro Channel adapter.

Second, they specified that each adapter (see Figure 3-3) that was plugged into
the Micro Channel bus would need its own unique identifier assigned by IBM.
The ID was stored in EEPROMs located on each adapter card. In addition, the
EEPROMs would hold card configuration data, such as the memory-mapped
address, interrupt level, and port address of the adapter. These special registers
were called Programmable Option Select registers, or POS registers. These
registers, addressable only in a special mode, eliminated the need for
configuration jumpers required for AT bus adapters. The user would load a
special configuration program, which would set the adapter configuration and
program the EEPROMs and each adapter.

Third, they included 64 bytes of Non-volatile Random Access Memory, or
NVRAM, which would hold the current configuration information for each slot.
The contents of the NVRAM is retained by a low-voltage battery. When the

56

computer was powered on, a Read Only Memory, or ROM, resident program
would compare, slot by slot, the configuration of each adapter to the current
configuration stored in NVRAM. If it found a difference, it would stop and
force the user to run the setup program to reconfigure the system. This Power
On Self Test or POST, also checks the size of memory and compares it to the
amount configured in NVRAM.

Figure 3-4. IBM PS/2 Model 80.

Enhanced Industry Standard Architecture (EISA)

The third major innovation in bus technology was the introduction of the
Enhanced Industry Standard Architecture bus, or EISA bus. The EISA bus was
introduced in September of 1988 in response to IBM’s introduction of the
Micro Channel bus. Some of the motivation for the EISA bus was the same as
for the Micro Channel. EISA was designed for high throughput and bus
mastering, and is capable of 33MB per second throughput. The developers of
the EISA bus maintained compatibility with existing ISA bus adapters by
designing a connector that would accept either type of adapter card. It should
be noted, however, that using an ISA bus adapter in an EISA bus system
provides no increased performance.

The EISA bus, like the Micro Channel bus, supports multiple bus masters, but
only six compared to Micro Channel’s 15. This is still better than the ISA bus,
which supports only one bus master. Throughput of the ISA bus machine is

57

limited by the processor speed, as more work has to be done by the CPU. In a
multiple bus master architecture like EISA or Micro Channel, the adapter card
relieves the CPU of the responsibility of handling the high-speed data transfers,
and thus is more efficient.

Bus Wars

Many benchmarks have been performed pitting the three buses against each
other. With a few exceptions, the casual user will not notice much difference
between them. However, increasing demands for higher transfer rates and
increased CPU performance will soon make the traditional AT bus obsolete.
The AT bus is handicapped by its 24-bit address bus and 16-bit data bus, which
limits performance by permitting the system to transfer data only half as fast as
EISA and Micro Channel bus systems. It is also limited by its interrupt support
and bus-mastering capabilities. Without another alternative, this leaves EISA
and Micro Channel as the natural successors to the ISA bus. IBM is gearing up
for the challenge, and has recently specified a new mode of Micro Channel
operation that will run on all IBM Micro Channel machines. The new
specification, called Micro Channel II, allows for transfer rates of 40, 80, and
160MB per second, leaving the EISA machines in the dust. IBM is also
beginning to price their Micro Channel systems at equal to or less than their
ISA equivalents in an attempt to make the Micro Channel bus more popular.
The EISA bus, however, maintains compatibility with the wide variety of
inexpensive ISA adapters, and is not likely to be upstaged in the near future by
the Micro Channel bus.

EISA promises to remain popular because of the large investment in ISA bus
adapters and the reluctance of many users to embrace the Micro Channel bus.

Real Mode

The Intel processors are capable of operating in one of two modes. These are
called real mode and protect mode. The most popular computer operating
system, DOS, runs in real mode. In real mode, the processor is capable of

58

addressing up to one megabyte of physical memory. This is due to the
addressing structure, which allows for a 20-bit address in the form of a segment
and offset (see Figure 3-5).

Figure 3-5. Real mode address calculation.

Real mode allows a program to access any location within the one megabyte
address space. There are no protection mechanisms to prevent programs from
accidentally (or purposely) writing into another program’s memory area. There
is also no protection from a program writing directly to a device, say the disk,
and causing data loss or corruption. DOS applications that fail generally hang
the system and call for a <ctrl-alt-del> reboot, or in some cases, a power-off
and a power-on reboot (POR). The real mode environment is also ripe for
viruses or other types of sabotage programs to run freely. Since no protection
mechanisms are in place, these types of “Trojan horses” are free to infect
programs and data with ease.

Protect Mode

The protect mode of the Intel 80286 processor permits direct addressing of
memory up to 16MB, while the Intel 80386 and 80486 processors support the
direct addressing of up to four gigabytes (4,000,000,000 bytes). The 80286

59

processor uses a 16-bit selector and 16-bit offset to address memory (see Figure
3-6). A selector is an index into a table that holds the actual address of the
memory location. The offset portion is the same as the offset in real mode
addressing. This mode of addressing is commonly referred to as the 16:16
addressing. Under OS/2 Warp, the 80386 and 80486 processors address
memory using a selector:offset, but the value of the selector is always 0, and the
offset is always 32 bits long (see Figure 3-7). This mode of addressing is
referred to as the 0:32 or flat addressing. The protect mode provides hardware
memory protection, prohibiting a program from accessing memory owned by
another program. While a defective program in real mode can bring down the
entire system (a problem frequently encountered by systems running DOS). A
protect mode program that fails in a multitasking operating system merely
reports the error and is terminated. Other programs running at the time continue
to run uninterrupted.

Figure 3-6. 80286 protect mode addressing.

To accomplish this memory protection, the processor keeps a list of memory
belonging to a program in the program’s Local Descriptor Table, or LDT.
When a program attempts to access a memory address, the processor hardware
verifies that the address of the memory is within the memory bounds defined by

60

the program’s LDT. If it is not, the processor generates an exception and the
program is terminated.

Figure 3-7. 80386-486 flat mode addressing.

The processor also keeps a second list of memory called the Global Descriptor
Table, or GDT. The GDT usually contains a list of the memory owned by the
operating system, and is only accessible by the operating system and device
drivers. Application programs have no direct access to the GDT except through
a device driver.

OS/2 1.x uses the protect mode of the Intel processor to run native OS/2
programs, and provides a single DOS “compatibility box” for running DOS
applications. If a DOS session is selected while the system is running an OS/2
application, the processor stops running in protect mode and switches to the
real mode to accommodate the DOS application. A poorly programmed DOS
application can bring down the entire system.

OS/2 Warp runs DOS programs in the protect mode, using the virtual 8086
mode of the 80386 and 80486 processors. This special mode allows each DOS
application to run in its own protected one megabyte of memory space, without
being aware of any other applications running on the system. Each Virtual DOS

61

Machine, or VDM, thinks that it’s the only application running. Errant DOS
programs are free to destroy their own one megabyte environment, but cannot
crash the rest of the system. If a DOS application fails in a VDM, a new copy of
DOS can be booted into the VDM and restarted. For a more complete
description of the Intel processors and their architecture, please refer to
Appendix B for a list of recommended reading.

Using Addresses and Pointers

Writing an OS/2 Warp device driver requires a thorough understanding of
addresses, pointers, and the OS/2 Warp memory management DevHlp routines.
Since OS/2 Warp is a hybrid operating system composed of 16-bit and 32-bit
code, many of your device driver functions will involve pointer conversion and
manipulation. Specifically, pointers might have to be converted from 16-bit to
32-bit, and from 32-bit back to 16-bit. Addresses might be expressed as virtual,
physical or linear address. Several DevHlp functions require flat pointers to
items in the driver’s data segment, which is normally a 16:16 pointer. If you
don’t have a good understanding of 16-bit and 32-bit addresses or pointers,
please go back and reread the previous sections. Refer to Chapter 15 for more
information.

The Ring Architecture

In the protect mode, the processor operates in a Ring architecture. The ring
architecture protects the operating system by allowing minimum access to the
system and hardware.

Normal application programs run at Ring 3, which is the least trusted ring (see
Figure 3-8). Programs that run in Ring 3 have no direct access to the operating
system or hardware, and must adhere to very strict guidelines for accessing
OS/2 or its supported devices.

Ring 2 is reserved for Input/Output Privilege Level (IOPL) programs (see
Chapter 10) and 16-bit Dynamic Link Libraries, or DLLs. With OS/2 Warp, 32-

62

bit DLLs run in Ring 3. Refer to Chapter 4 for a more detailed discussion of
DLLs.

Ring 1 is currently reserved.

Ring 0 is the most trusted level of the processor, and is where physical and
virtual device drivers run. Device drivers need, and are granted, full access to
the processor and system hardware as well as the interrupt system and OS/2
internals.

Most application programs will run in Ring 3. Occasionally, for performance
reasons, an application may need to write directly to adapter hardware and will
do so through an IOPL routine at Ring 2, but will quickly return to Ring 3 to
continue running. An example of such a program is the CodeView debugger.
As an additional protection method, OS/2 can refuse input and output by a Ring
2 program if the user modifies the CONFIG.SYS file to contain the line
IOPL=NO. Programs attempting to perform Ring 2 I/O will generate a General
Protection, or GP fault if IOPL=NO appears in the CONFIG.SYS file. Users
may also permit only selected programs to perform IOPL by entering the
program names in CONFIG.SYS. See Chapter 10 for a discussion of IOPL.

63

Figure 3-8. The 80x86 ring architecture.

65

Chapter 4 - An Overview of the OS/2 Operating
System

OS/2, introduced in late 1987, was billed as the successor to DOS. In fact, it
was going to be called DOS before IBM got into the act. Over 500
programmers at IBM and Microsoft worked night and day to get OS/2 out the
door on schedule. Both IBM and Microsoft trumpeted OS/2 as the replacement
for DOS, and Bill Gates himself predicted that OS/2 would replace DOS on the
desktop by 1989. This, of course, never happened. The reasons why OS/2 never
caught on can be debated forever, but probably can be summarized in a few key
statements.

First, when IBM announced OS/2, there were only a handful of applications
ready to run on it. The few that were ready were just warmed-over DOS
versions, which were recompiled and relinked under OS/2. They also ran
considerably slower than their DOS counterparts.

Second, the graphical user interface for OS/2, called Presentation Manager, was
missing. As a result, most application programs were written with dull,
character-based user interfaces.

Third, the DOS compatibility box, or penalty box as it was sometimes referred
to as, crashed frequently when DOS applications were run under it. It simply
wasn’t compatible with DOS. Some DOS applications would run, but most
wouldn’t. This was largely a result of the small amount of memory available to
a DOS application, which was only approximately 500K bytes. Users were
reluctant to replace DOS with an operating system that wouldn’t run all of their
favorite DOS applications.

Fourth, IBM made a big mistake by attempting to tie the OS/2 name to their
recently introduced family of PS/2 computers. Users believed that OS/2 would
run only on PS/2 machines. IBM also bungled the marketing of OS/2. IBM
authorized dealers didn’t know what OS/2 was, how to sell it or how to order
it. No advertisements appeared for OS/2, and it wasn’t actively shown at trade

66

shows or in technical publications. OS/2 was virtually ignored until sometime in
1990, just following the introduction and huge success of Microsoft Windows
3.0.

Lastly, the timing was bad. OS/2 needed four megabytes or more of memory,
and memory was selling for approximately $400 per megabyte. The high
memory prices were due in part to high tariffs placed on the Japanese for
dumping memory chips and to increased demand. Most systems had one
megabyte of memory or less, so upgrading was very expensive. OS/2 was not
cheap, about $350 for the Standard Edition, which, combined with the cost of
extra memory, represented a substantial upgrade cost.

Spurred on by the huge success of Windows 3.0, Microsoft decided that it
would abandon OS/2 and concentrate on the Windows platform, which is
based on DOS. IBM, left without a multitasking solution for its PC-to-
mainframe connection, had been counting on OS/2 to replace DOS. IBM finally
woke up and realized that without some major changes in the way OS/2 was
designed and marketed, that OS/2 would die an untimely death. The result of
IBM’s rude awakening was the introduction of OS/2 Warp early in 1992.

Roots

OS/2 was originally called MS-DOS version 4.0. MS-DOS 4.0 was designed
for preemptive multitasking, but was still crippled by the 640KB memory space
restriction of real mode operation. A new product, called MS-DOS 5.0 was
conceived, and IBM and Microsoft signed a Joint Development Agreement to
develop it. MS-DOS 5.0 was later renamed OS/2. OS/2 was designed to break
the 640KB memory barrier by utilizing the protect mode of the 80286
processor. The protect mode provided direct addressing of up to 16 megabytes
of memory and a protected environment where badly written programs could
not affect the integrity of other programs or the operating system.

When Gordon Letwin, Ed Iaccobuci, and the developers at IBM and Microsoft
first designed OS/2 1.0, they had several goals in mind. First, OS/2 had to
provide a graphical device interface that was hardware independent. The

67

concept was that each device would be supplied with a device driver containing
the specific characteristics of the device. Graphics applications could be written
without regard to the type of graphics input or output device. This concept is
referred to as virtualization. However, virtualization comes at a cost. When an
application sends a request to the OS/2 kernel for access to a device, the kernel
has to build a request and send it to the device driver. The device driver has to
break it down, perform the operation, format the data, and transfer it back to
the application.

Second, OS/2 had to allow direct hardware access to some peripherals for
performance reasons. Peripherals such as video adapters require high-speed
access to devices, and the normal device driver mechanism was just not fast
enough. To solve this problem, OS/2 allows applications or Dynamic Link
Libraries (DLLs) to perform direct I/O to adapter hardware. The video device
driver, which resides in a DLL, can access the device directly without calling a
device driver to perform the I/O. Dynamic linking also allows programs to be
linked with undefined external references, which are resolved at run time by the
OS/2 system loader. The unresolved entry points exist in DLLs on the OS/2
system disk, and are loaded into memory and linked with the executable
program at run time. The use of DLLs allows system services that exist in the
DLLs to be modified by changing a DLL and not the entire system. A display
adapter, for example, could be added simply by a adding a new DLL.
Additional system functions and processes can be implemented as DLLs.

Third, OS/2 had to provide an efficient, preemptive multitasking kernel. The
kernel had to run several programs at once, yet provide an environment where
critical programs could get access to the CPU when necessary. OS/2 uses a
priority-based preemptive scheduler. The preemptive nature of the OS/2
scheduler allows it to “take away” the CPU from a currently running application
and assign it to another application. If two programs of equal priority are
competing for the CPU, the scheduler will run each program in turn for a short
period of time, called a time slice. This ensures that every program will have
access to the CPU, and that no one program can monopolize the CPU.

Fourth, OS/2 had to provide a robust, protected environment. OS/2 uses the
protect mode of the 80286 and above processors, which has a built-in memory

68

protection scheme. Applications that attempt to read or to write from memory
that is not in their specific address space are terminated without compromising
the operating system integrity. OS/2 had to run applications that were larger
than the physical installed memory. OS/2 accomplishes this with swapping. If a
program asks for more memory than exists, a special fault is generated, which
causes the existing contents of memory to be swapped out to a disk file, thereby
freeing up the required memory. When the program accesses a function that has
been swapped out to disk, a special fault is generated to cause the required
functions to be swapped back into physical memory. Swapping allows large
programs to be run with less memory than the application requires, but
swapping can cause a considerable degradation in speed.

Fifth, OS/2 had to run on the 80286 processor. At the time that OS/2 was
designed, the 80286 was the only CPU that could run a multitasking protect
mode operating system. The 80386 machines were not available, so IBM and
Microsoft committed to a version of OS/2 which would run on the 80286
platform. This was purely a marketing decision, based on the number of 80286
machines installed at the time. The implementation of OS/2 on the 80286
proved to be clumsy and slow. The operating system had to be designed for the
16-bit architecture of the 80286, but really required a 32-bit architecture to
perform well. The 80286 could operate in the protect mode and real mode, but
could not switch back and forth gracefully. It could switch from the real mode
to the protect mode easily, but not back. The processor was designed to run in
only one mode, not both. Because OS/2 had to support OS/2 applications and
DOS applications all at one time, a way had to be found to change the
processor mode on the fly. Gordon Letwin came up with the patented idea of
how to do this with what has been referred to as “turning the car off and on at
60 MPH.”

Lastly, OS/2 had to run existing “well-behaved” DOS applications. Well-
behaved DOS programs were those programs that did not directly access the
hardware or use shortcuts to improve performance. Unfortunately, most DOS
programs used some type of shortcut to improve performance and make up for
the relatively slow 8088 processor they were originally written for.

69

Processes and Threads

OS/2 introduced the notion of threads. A thread is defined as an instance of
execution or path of execution through a piece of code. OS/2’s multitasking is
thread-based. A program always has at least one thread, called the main thread,
and may have many more threads, each executing at the same time (see Figure
4-1). The additional threads are created by the main thread, and act as smaller
“children” of the main thread. Threads inherit the environment of their creator,
usually a process, and can be started or suspended by the main thread. A thread
can only be destroyed by committing suicide.

To aid in multitasking, OS/2 offers four classes of priorities (see Table 4-1).
They are Real-Time-Critical, Normal, Fixed-High, and Idle-Time. Real-Time-
Critical is the highest priority, while Idle-Time is the lowest. Within each
priority class, there are 32 separate and distinct priorities, numbered from 0 to
31. Most applications will run in the Normal mode, while time critical
applications (such as a cardiac monitor) might run in the Real-Time-Critical
class. The Fixed-High mode operates between Real-Time-Critical and Normal
modes, and offers real time response but at priorities that can be dynamically
modified by OS/2. The Idle-Time priority is reserved for slower background
programs such as spoolers.

Figure 4-1. Process and threads.

One of OS/2’s major advantages is its time-sliced, priority-based preemptive
scheduler. This feature allows a critical or higher priority thread to preempt a
currently running thread. This preemptive feature is what sets OS/2 apart from

70

other multitasking systems such as UNIX. OS/2 runs the highest priority thread
until it completes or gives up the CPU by blocking on an I/O request or system
service. If a thread is currently executing and a higher priority thread needs to
run, the lower priority thread will be preempted and the higher priority thread
allowed to run. When the higher priority thread finishes or blocks waiting on a
system service, the lower priority thread will get a chance to run again. If two
threads with the same priority are competing for the CPU, each thread will
alternate for one time slice worth of time.

Table 4-1. OS/2 Priority Structure

Priority Use Modified by OS/2
Idle Spoolers, batch

processors
Yes

Regular Normal applications Yes
Fixed-High
(Foreground
Server)

Special applications Yes

Real-Time-Critical Real time
applications

No

Most UNIX systems do not use threads, so priorities in a UNIX system are per
process-based, rather than thread-based. Since most UNIX kernels are not
preemptive, a UNIX application will run until it blocks on I/O or system
resource, or exhausts its time slice. Currently running processes cannot be
preempted, thus a critical program needing CPU time has to wait until the CPU
is free. The UNIX scheduler is a round-robin scheduler, that is, the system
allocates equal time to every process in a round-robin fashion. If three
processes are running, process A gets a time slice, process B gets a time slice,
then process C gets a time slice, and then the whole operation begins again with
process A.

71

OS/2 1.0 - OS/2 Arrives

OS/2 1.0 was introduced in the fourth quarter of 1987. The first release did not
contain a graphical user interface, but instead contained two side-by-side list
boxes with names of programs to execute. The Application Programming
Interface, or API, was incomplete and unstable. Device support was virtually
nonexistent, and OS/2 1.0 was only guaranteed to run on the IBM PC AT and
IBM PS/2 line of computers. Many DOS applications did not run in the DOS
compatibility box, and only a few thousand copies of OS/2 1.0 were sold.

OS/2 1.1 - Presentation Manager Arrives

The next major release of OS/2 contained the graphical user interface, dubbed
Presentation Manager. OS/2 was beginning to take shape. It contained a better
DOS compatibility box, which caused fewer DOS programs to crash, and had a
consistent, more bug-free set of API routines. Documentation, in the form of
manuals and books, was beginning to appear, and a few more DOS applications
were recompiled and relinked under OS/2. None of these programs used the
Presentation Manager, as they were not redesigned for OS/2. As a result, the
applications were dull, character-based programs that didn’t take advantage of
any of OS/2’s multitasking abilities or Presentation Manager. The lack of
applications, together with the cost of a hardware upgrade, kept most users
away from OS/2.

OS/2 1.2 - A Better File System

OS/2 had been using the file system known as FAT, named after the DOS File
Allocation Table. The FAT was where DOS (and OS/2) kept a running
“picture” of the hard disk, including the utilization and amount of free space.
The DOS FAT file system was limited by design to filenames with a maximum
length of 11 characters, and was inefficient in storing and retrieving files. The
High Performance File System, or HPFS, was introduced in OS/2 1.2 to
provide more efficient handling of large files and volumes, and to remove the
11-character filename restriction. HPFS can handle filenames with up to 254

72

characters, files as large as two gigabytes, and provides a very fast searching
algorithm for storing and locating files. Unlike the FAT file system, HPFS is an
installable file system, and a special device driver must be loaded before using it.

The DOS compatibility box was improved, but OS/2 still could not run many
DOS applications. This was due, in part, to the fact that the compatibility box
did not offer the full amount of memory usually available to DOS applications.
The size of the DOS compatibility box memory was reduced when device
drivers were loaded, and often would only offer 500K bytes or less for running
DOS programs. OS/2 was used primarily by companies that had real-time
multitasking requirements for their systems, but not for running DOS
applications. For DOS applications which would not run in the OS/2 1.2
compatibility box, OS/2 had a built-in dual-boot facility which allowed the user
to selectively boot up DOS or OS/2. While OS/2 was running, however, the
compatibility box was virtually useless.

Printers did not work correctly. OS/2 did not work with the most popular laser
printers, such as the Hewlett Packard Laserjets. The future of OS/2 was bleak.

When Microsoft announced that they would be abandoning OS/2 in favor of
Windows 3.0, OS/2 faced an uncertain future. Microsoft had been stating that
OS/2 was the PC operating system platform of the future, and now had
reversed that statement. Many large companies had previously begun
conversion of their flagship programs, such as Lotus 1-2-3, to run under OS/2,
and were taken by surprise by Microsoft’s change in direction. IBM was forced
to take over the development of OS/2, and Microsoft could free up its
programming resources to concentrate on Windows software. Microsoft and
IBM did agree to cross-license each other’s products, and together they agreed
that IBM would assume complete responsibility for OS/2.

73

OS/2 1.3 – IBM’s First Solo Effort

Figure 4-2. OS/2 1.3 EE.

Although OS/2 1.0, 1.1, and 1.2 were developed jointly by IBM and Microsoft,
OS/2 Version 1.3 (dubbed OS/2 Lite) was the first version of OS/2 to be done
entirely by IBM (see Figure 4-2). It took IBM a while to get up to speed with
OS/2, but when OS/2 1.3 was released, many features that had never worked
correctly had been fixed. Version 1.3 had better networking, communications,
and graphics support and could finally print correctly. The OS/2 kernel was
slimmed down and ran considerably faster than its predecessors. IBM produced
detailed documentation and began to actively support developers through the
IBM Developer’s Assistance Program. However, OS/2 was used primarily by
IBM installations for their PC-to-mainframe connection, and by OEMs for
specialized applications.

IBM was still not actively marketing OS/2. Information was difficult to come
by, and it was almost impossible to buy OS/2. Most IBM dealers didn’t even
know what OS/2 was, or how to order it. IBM failed to inform their resellers
how to demonstrate and sell OS/2. OS/2 was going nowhere fast.

OS/2 2.0- What OS/2 Was Really Meant to Be

74

Before deciding to scrap its OS/2 development, Microsoft had been working on
a new version of OS/2, called OS/2 2.0. Microsoft first displayed early running
versions of OS/2 2.0 in the middle of 1990, and had released the infamous
System Developer’s Kit, or SDK, with a whopping $2600 price tag. The OS/2
2.0 SDK included early releases of the OS/2 kernel, 32-bit compiler, assembler,
and linker. Many developers, however, balked at the price. The software
contained several serious bugs, and for most developers, proved to be unusable.

IBM realized that, unless it made a radical change in the way OS/2 was
designed and marketed, OS/2 would eventually become a proprietary internal
operating system used only by IBM. IBM formed a team to assume the
development responsibilities of OS/2 2.0. They mounted an enormous effort,
and the commercial release of OS/2 2.0 was the culmination of that effort.

OS/2 Warp represents a new direction for personal computer operating
environments. Instead of having to deal with the 16-bit architecture of the
80286 processors, OS/2 Warp was developed around the 32-bit architecture of
the 80386 microprocessor. OS/2 Warp will not run on an 80286 processor-
based machine. This decision comes at a time when the 16-bit 80286 machines
are obsolete, and the standard choice for personal computers is an 80486
machine with 8MB of RAM as a minimum configuration. With memory prices
at $35 per megabyte of RAM, memory configurations of 8 and 16MB are
becoming commonplace. Hard disk storage has decreased significantly in price,
and most systems are sold with 100MB or more of disk storage as minimum.

OS/2 Warp allows DOS programs to run in their own one megabyte of memory
space without knowledge of other programs in the system. Even the most ill-
behaved DOS applications, such as games, run flawlessly in their own protected
area. In addition, users can boot any version of DOS they choose into a DOS
session. The number of DOS sessions that can be started is unlimited in OS/2
Warp. DOS programs have access to 48MB of extended memory. OS/2 Warp
also supports DOS programs designed to use the DOS Protect Mode Interface,
or DPMI Version 0.9. OS/2 Warp runs Windows 3.0 and 3.1 applications in the
real or standard mode. OS/2 Warp allows Dynamic Data Exchange, or DDE,
between DOS/Windows and OS/2 applications, providing up to 512MB of
DPMI memory per DOS session.

75

OS/2 Warp uses a desktop metaphor called the Workplace Shell for its user
interface. The Workplace Shell represents an actual desktop using icons
representing the actual items the user might find on his or her desk. It contains
such items as a file folder, printer, network connection, and other icons that
reflect the current configuration of the system. Printing a document, for
example, is as simple as opening a folder, clicking on the document and
dragging it over to the printer icon.

Figure 4-3. OS/2 Warp tutorial.

OS/2 Warp represents a common platform for supporting many different types
of applications. It runs DOS applications, Windows 3.0 and 3.1 applications
and, of course, native OS/2 applications, all seamlessly. There is no longer a
need to dual-boot DOS or to load three different operating environments; OS/2
Warp runs them all.

The OS/2 Application Programming Interface

OS/2 Warp offers a rich set of Application Program Interfaces (APIs) to allow
programs to access system services. The OS/2 APIs are classified into eight
major categories. They are:

1. File System

76

File Systems (FAT, Super FAT, HPFS)
Network Access (LAN Server, NetBIOS)
Permissions
DASD Media Management

2. Graphics Interface
Graphics Programming Interface
Video Input and Output

3. Inter Process Communications
Shared Memory
Semaphores
Named Pipes
Queues
Dynamic Data Exchange (DDE)

4. System Services
Device Monitors
Timer Services

5. Process Management
Threads
Processes
Child Processes
Scheduler/Priorities

6. Memory Management

7. Signals

8. Dynamic Linking

77

Chapter 5 - The Anatomy of an OS/2 Device
Driver

OS/2 device drivers, like other multitasking device drivers, shield the
application code that performs I/O from device-specific hardware requirements.
The application program need not concern itself with the physical constraints of
a particular I/O device, such as timing or I/O port addressing, as these are
handled entirely by the device driver. If an I/O card address is moved or a
different interrupt selected, the device driver can be recompiled (notice I did not
say reassembled) without modifying or recompiling the application code.

It should be noted that OS/2 device drivers can be configured during boot-up
operation by placing adapter-specific parameters in the DEVICE= entry in
CONFIG.SYS. The driver can retrieve the parameters and configure itself
during the INIT section.

Conceptually, OS/2 device drivers are similar to device drivers in other
multitasking systems, but they have the added responsibility of handling
processor-specific anomalies such as the segmented architecture and operating
modes of the Intel processors.

Application-to-Driver Interface

OS/2 device drivers are called by the kernel on behalf of the application needing
I/O service. The application program makes an I/O request call to the kernel,
specifying the type of operation needed. The kernel verifies the request,
translates the request into a valid device driver Request Packet and calls the
device driver for service. The device driver handles all of the hardware details,
such as register setup, interrupt handling, and error checking. When the request
is complete, the device driver massages the data into a format recognizable by
the application. It sends the data or status to the application and notifies the
kernel that the request is complete. If the request cannot be handled

78

immediately, the device driver may either block the requesting thread or return
a ‘request not done’ to the kernel. Either method causes the device driver to
relinquish the CPU, allowing other threads to run. If an error is detected, the
device driver returns this information to the kernel with a ‘request complete’
status. The OS/2 device driver may also “queue up” requests to be handled later
in a work queue. The OS/2 Device Helper (DevHlp) library contains several
DevHlps for manipulating the device driver’s work queue.

DOS Device Drivers and OS/2 Device Drivers

DOS device drivers have no direct OS/2 counterpart. DOS device drivers are
simple, single-task, polling device drivers. Even interrupt device drivers under
DOS poll until interrupt processing is complete. DOS device drivers support
only one request at a time, and simultaneous multiple requests from DOS will
cause the system to crash.

While the DOS device driver is a single-threaded polled routine, the OS/2
device driver must handle overlapping requests from different processes and
threads. Because of this, the OS/2 device driver must be reentrant. The OS/2
device driver must also handle interrupts from the device and optionally from a
timer handler. It must handle these operations in an efficient manner, allowing
other threads to gain access to the CPU. Most importantly, it must do all of
these reliably. The OS/2 device driver, because it operates at Ring 0, is the only
program that has direct access to critical system functions, such as the interrupt
system and system timer. The device driver, therefore, must be absolutely bug-
free, as any error in the device driver will cause a fatal system crash.

OS/2 Warp device drivers no longer have to deal with the real-protect mode
switching of OS/2 1.x, as all programs run in protect mode. OS/2 device drivers
must have the capability to deinstall when requested, releasing any memory
used by the device driver to the OS/2 kernel. OS/2 device drivers may also
support device monitors, programs that wish to monitor data as it is passed to
and from the device driver. OS/2 offers a wide range of device driver services
to provide this functionality.

79

Designing an OS/2 Device Driver

Designing an OS/2 device driver requires a thorough understanding of the role
of a device driver, as well as a solid working knowledge of the OS/2 operating
system and design philosophy. Debugging OS/2 device drivers can be difficult,
even with the proper tools. The OS/2 device driver operates at Ring 0 with full
access to the system hardware. However, it has almost no access to OS/2
support services, except for a handful of DevHlp routines. Many device driver
failures occur in a real time context, such as in the midst of interrupt handling.
It may be difficult or impossible to find a device driver problem using normal
debugging techniques. In such cases, it is necessary to visualize the operation of
the device driver and OS/2 at the time of the error to help locate the problem.

Tools Necessary For Driver Development

One of the most important tools for device driver development is the device
driver debugger. Generally, the best choice is the OS/2 Warp kernel debugger
or KDB. KDB uses a standard ASCII terminal attached to one of the serial
COM ports via a null-modem cable. When OS/2 is started, KDB looks for a
COM port to perform its I/O to the debugging terminal. For systems with only
one COM port, KDB will use COM1. For systems with two COM ports, KDB
will use COM2.

The KDB is not simply a debugger, but is a replacement kernel that replaces the
OS/2 standard system kernel called OS2KRNL. KDB has knowledge of internal
OS/2 data structures and provides a powerful command set for debugging OS/2
device drivers. Installing the debugging kernel is easy. The attributes of the
hidden file OS2KRNL are changed to non-hidden and non-system, and the file
is copied to OS2KRNL.OLD. The debug kernel is then copied to OS2KRNL,
and OS/2 is rebooted. KDB will issue a sign-on message to the debugging
terminal indicating that it is active. KDB can be entered by typing <cntl-c> on
the debug terminal, or if KDB encounters an INT 3 instruction. These
procedures are described in more detail in Chapter 13. The kernel debugger

80

comes with the IBM OS/2 Warp Toolkit, and is installed easily with the
installation program supplied with the Toolkit.

Figure 5-1. Application-to-device driver interface.

The Basics of Driver Design

The device driver receives two basic types of requests: requests that can be
completed immediately and those that cannot (see Figure 5-1). It receives these
requests via a standard data structure called a Request Packet (see Figure 5-2).

Requests that can be completed immediately are handled as they come in, and
sent back to the requestor. Requests that cannot be handled immediately (such
as disk seeks) are queued up for later dispatch by the device driver. The device
driver manipulates Request Packets using the DevHlp routines. To minimize
head movement, disk device drivers usually sort pending requests for disk seeks
in sector order.

81

The OS/2 device driver plays an additional role in system performance and
operation. When a device driver is called to perform a request that cannot be
completed immediately, the device driver Blocks the requesting thread. This
relinquishes the CPU and allows other threads to run. When the request is
complete, usually as the result of an interrupt or error occurring, the thread is
immediately UnBlocked and Run. The device driver then queries the request
queue for any pending requests that may have come in while the thread was
blocked. It is important to note that when an application calls a device driver,
the application program’s LDT is directly accessible by the device driver.

Request Packets

The first entry in the Request Packet Header (see Figure 5-2) is the Request
Packet length, filled in by the kernel. The second parameter is the unit code.
Applicable for block devices only, this field should be set by the device driver
writer to zero for the first unit, one for the second, etc. The third field is the
command code. The command code is filled in by the kernel. This is the code
used by the switch routine in the Strategy section to decode the type of request
from the kernel. The next field is the status word returned to the kernel. This
field will contain the result of the device driver operation, along with the
‘DONE’ bit to notify the kernel that the request is complete (this is not always
the case; the device driver may return without the ‘done’ bit set). To make
things easier, a C language union should be used to access specific types of
requests. The Request Packet structures are placed in an include file, which is
included by the device driver mainline. Refer to the Standard OS/2 Device
Driver Include File in Appendix C.

82

typedef struct ReqPacket {
 UCHAR RPlength; // Request Packet length
 UCHAR RPunit; // unit code for block DD only
 UCHAR RPcommand; // command code
 USHORT RPstatus; // status word
 UCHAR RPreserved[4]; // reserved bytes
 ULONG RPqlink; // queue linkage
 UCHAR avail[19]; // command specific data
 } REQPACKET;

Figure 5-2. Request Packet.

OS/2 Device Driver Architecture

OS/2 device drivers come in two flavors, block and character. Block device
drivers are used for mass storage devices such as disk and tape. Character
device drivers are used for devices that handle data one character at a time,
such as a modem. OS/2 device drivers are capable of supporting multiple
devices, such as a serial communications adapter with four channels or a disk
device driver which supports multiple drives.

OS/2 device drivers receive requests from the OS/2 kernel on behalf of an
application program thread. When the device driver is originally opened with a
DosOpen API call, the kernel returns a handle to the thread that requested
access to the device driver. This handle is used for subsequent access to the
device driver.

When an application makes a call to a device driver, the kernel intercepts the
call and formats the device driver request into a standard Request Packet. The
Request Packet contains data and pointers for use by the device driver to
complete the request. In the case of a DosRead or DosWrite, for example, the
Request Packet contains the verified and locked physical address of the caller’s
buffer. In the case of an IOCtl, the Request Packet contains the virtual address
of a Data and Parameter Buffer. Depending on the type of request, the data in
the Request Packet will change, but the Request Packet header length and
format remain fixed. The kernel sends the Request Packet to the driver by
passing it a 16:16 pointer to the Request Packet.

83

Device drivers are loaded by the OS/2 loader at boot time, and the kernel keeps
a linked list of the installed device drivers by name, using the link pointer in the
Device Header. Before a device driver is used, it must be “DosOpen”ed from
the application. The DosOpen specifies an ASCII-Z string with the device name
as a parameter, which is the eight character ASCII name located in the Device
Header (see Figure 5-3). The kernel compares this name with its list of installed
device drivers, and if it finds a match, it calls the OPEN section of the device
driver Strategy routine to open the device. If the open was successful, the
kernel returns to the application a handle to use for future device driver access.
The device handles are usually assigned sequentially, starting with 3 (0, 1, and 2
are claimed by OS/2). However, the handle value should never be assumed.

typedef struct DeviceHdr {
 struct DeviceHdr far *DHnext; // ptr to next header, or FFFF
 USHORT DHattribute; // device attribute word
 OFF DHstrategy; // offset of strategy routine
 OFF DHidc; // offset of IDC routine
 UCHAR DHname[8]; // dev name (char) or #units (blk)
 char reserved[8];
 } DEVICEHDR;

DEVICEHDR devhdr = {
(void far *) 0xFFFFFFFF, // link
(DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
(OFF) STRAT, // &strategy
(OFF) 0, // &IDCroutine
"DEVICE1 ", // device name
};

Figure 5-3. OS/2 device driver header.

Device Driver Modes

OS/2 Warp device drivers operate in three different modes. The first, INIT
mode, is a special mode entered at system boot time and executed at Ring 3.
When the OS/2 system loader encounters a “DEVICE=” statement in the
CONFIG.SYS file on boot-up, it loads the device driver .SYS file and calls the
INIT function of the device driver. What makes this mode special is that the
boot procedure is running in Ring 3 which normally has no I/O privileges, yet
OS/2 allows Ring 0-type operations. The device driver is free to do port I/O

84

and even turn interrupts off, but must ensure they are back on before exiting the
INIT routine. The INIT routine can be used to initialize a Universal
Asynchronous Receiver Transmitter (UART) or anything else necessary to
ready a device.

Ring 3 operation during INIT is necessary to protect the integrity of code that
has already been loaded up to that point, and to make sure that the device
driver itself does not corrupt the operating system during initialization. Ring 3
operation also allows the device driver initialization routine to call a limited
number of system API routines to aid in the initialization process. For example,
a device driver might use the API routines to read a disk file that contains data
to initialize an adapter. The device driver also uses the API routines to display
driver error and sign-on messages. The INIT code is only called once, during
system boot. For this reason, the INIT code is usually located at the end of the
code segment so it can be discarded after initialization.

Base device drivers and ADD drivers are intialized at Ring 0, not at Ring 3.

The second mode, called Kernel mode, is in effect when the device driver is
called by the kernel as a result of an I/O request.

The third mode, called Interrupt mode, is in effect when the device driver’s
interrupt handler is executing in response to an external interrupt, such as a
character being received from a serial port.

In general, the OS/2 device driver consists of a Strategy section, an INIT
section, and optional interrupt and timer sections. The Strategy section receives
requests from the kernel, in the form of Request Packet. The Strategy section
verifies the request, and if it can be completed immediately, completes the
request and sends the result back to the kernel. If the request cannot be
completed immediately, the device driver optionally queues up the request to be
completed at a later time and starts the I/O operation, if necessary. The kernel
calls the Strategy routine directly by finding its offset address in the Device
Header.

85

The Device Header

A simple OS/2 device driver consists of at least one code segment and one data
segment, although more memory can be allocated if necessary. The first item of
data that appears in the data segment must be the device driver header (see
Figure 5-4). The device driver header is a fixed length, linked list structure that
contains information for use by the kernel during INIT and normal operation.

Figure 5-4. OS/2 device driver memory map.

The first entry in the header is a link pointer to the next device that the device
driver supports. If no other devices are supported, the pointer is set to - 1L. A -
1L terminates the list of devices supported by this device driver. If the device
driver supports multiple devices, such as a four-port serial board or multiple
disk controller, the link is a far pointer to the next device header. When OS/2
loads device drivers at INIT time, it forms a linked list of all device driver
device headers. The last device driver header will have a link address of -1L.
When a DEVICE= statement is found in CONFIG.SYS, the last loaded device
driver’s link pointer is set to point to the new device driver’s device header, and
the new device driver’s link pointer now terminates the list.

The next entry in the device header is the Device Attribute Word (see Table 5-
1). The Device Attribute Word is used to define the operational characteristics
of the device driver.

86

The next entry is a one word offset to the device driver Strategy routine. Only
the offset is necessary, because the device driver is written in the small model
with a 64K code segment and a 64K data segment (this is not always true— in
special cases, the device driver can allocate more code and data space if needed,
and can even be written in the large model).

DEVICEHDR devhdr[2] = {
{ (void far *) &devhdr[1], // link to next dev
(DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
(OFF) STRAT1, // &strategy
(OFF) 0, // &IDCroutine
"DEVICE1 ",
},

{(void far *) 0xFFFFFFFF, // link(no more devs)
(DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
(OFF) STRAT2, // &strategy
(OFF) 0, // &IDCroutine
"DEVICE2 ",

 }
};

Figure 5-5. Device driver header, multiple devices.

The next entry is an offset address to an IDC routine, if the device driver
supports inter-device driver communications. (The DAW_IDC bit in the device
attribute word must also be set, otherwise the AttachDD call from the other
device driver will fail.) The last field is the device name, which must be eight
characters in length. Names with less than eight characters must be space-
padded. Remember, any mistake in coding the device driver header will cause
an immediate crash and burn when booting.

87

Table 5-1. Device Attribute Word

Bit(s) Description
15 set if character driver, 0 if block driver
14 set if driver supports inter-device communications

(IDC)
13 for block drivers, set if non-IBM format, for

character drivers, set if driver supports output-
until-busy.

12 if set, device supports sharing
11 set, if block device, supports removable media, if

character device, supports device open/close
10 reserved, must be 0
9-7 driver function level

001 = OS/2 device driver
010 = supports DosDevIOCtl2 and Shutdown
011 = capabilities bit strip in Device header

6 reserved, must be 0
5 reserved, must be 0
4 reserved, must be 0
3 set if this is the CLOCK device
2 set if this is a null device (character driver only)
1 set if this is the new stdout device
0 set if this is the new stdin device

Capabilities Bit Strip

The Capabilities Bit Strip word defines additional features supported on level 3
drivers only (see Table 5-2).

Note that if the device driver is an ADD device driver, and sets bit 7 and 8 in
the device attribute word as well as bit 3 in the capabilities bit strip, the Init
request packet sent by the kernel will be formatted differently than the standard

88

PDD Init request packet. Refer to the appropriate ADD documentation for a
description of the ADD Init request packet format.

Table 5-2. Capabilities Bit Strip

Bit(s) Description
0 set if driver supports DosDevIOCtl2 packets and

has Shutdown support.
1 for character drivers, set if driver supports 32-bit

memory addressing, for block drivers, this bit
must be 0

2 if set, the device driver supports parallel ports
3 if set, the device driver is an ADD device driver
4 if set, the kernel will issue the InitComplete

strategy command
5-31 reserved, must be 0

Providing a Low-Level Interface

The data segment, which contains the Device Header, must appear as the very
first data item. No data items or code can be placed before the Device Header.
An OS/2 device driver which does not adhere to this rule will not load. Since
our OS/2 device drivers are written in C, a mechanism must be provided for
putting the code and data segments in the proper order, as well as providing a
low-level interface to handle device and timer interrupts. Since the Device
Header must be the first item that appears in the data segment, the C compiler
must be prevented from inserting the normal C start-up code before the Device
Header. Additionally, a method of detecting which device is being requested
needs to be provided for device drivers that support multiple devices.

These requirements are handled with a small assembly language stub that is
linked in with the device driver (refer to Figure 5-6). The __acrtused entry point
prevents the C start-up code from being inserted before the device driver data

89

segment. The segment-ordering directives ensure that the data segment
precedes the code segment.

;
; C start-up routine, one device
;

EXTRN _main:near
PUBLIC _STRAT
PUBLIC __acrtused

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST,_BSS,_DATA

_TEXT segment word public 'CODE'
 assume cs:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING

.286P
;
_STRAT proc far
__acrtused: ;no start-up code
;

push 0
jmp start ;signal device 0

;
start:

push es ;send Request Packet address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3],ax ;send completion status
ret

;
_STRAT endp
;
_TEXT ends

end

Figure 5-6. Start-up routine, one device.

Note the _STRAT entry point. Remember that this is the address placed in the
device driver’s Device Header. The kernel, when making a request to the device
driver, looks up this address in the Device Header and makes a far call to it.

90

The assembly language routine then, in turn, calls the C mainline. Thus, the
linkage from the kernel to the device driver is established.

Note the “push 0” in the beginning of the _STRAT routine. This is to notify the
device driver which device is being requested. Each device supported by the
device driver requires its own separate Device Header. Note also that each
Device Header contains an offset address to its own Strategy routine. Using the
assembly language interface, the device number is pushed on the stack and
passed to the device driver Strategy section for service. The device driver
retrieves the parameter and determines which device was requested. One of the
parameters to main is the int dev (see Figure 5-9), the device number that was
passed from the assembly language start-up routine. The assembly language
start-up routine is modified to support multiple devices by adding entry points
for each device’s Strategy section. The modified source for this routine is
shown in Figure 5-7.

The assembly language routine in Figure 5-8 provides the interrupt handler and
timer handler entry points. The interrupt handler entry point provides a
convenient place to put a breakpoint before entering the C code of the main
interrupt handler. The timer handler entry point provides a place to save and
restore the CPU registers. Note that the interrupt handler does not need to save
the register contents, as this is done by the OS/2 kernel. The timer handler,
however, must save and restore register contents.

91

;
; C start-up routine, 4 devices
;

EXTRN _main:near
PUBLIC _STRAT1
PUBLIC _STRAT2
PUBLIC _STRAT3
PUBLIC _STRAT4
PUBLIC __acrtused

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING
 .286P
;
_STRAT1 proc far
__acrtused: ; satisfy EXTRN modules
;
 push 0
 jmp start ;signal device 0
;
_STRAT1 endp

_STRAT2 proc far
;
 push 1 ;signal second device
 jmp start
;
_STRAT2 endp

_STRAT3 proc far
;
 push 2 ;signal third device
 jmp start
;
_STRAT3 endp

_STRAT4 proc far
;
 push 3 ;signal fourth device
 jmp start
;
start:
 push es ;send address
 push bx
 call _main ;call driver mainline
 pop bx ;restore es:bx
 pop es

92

 add sp,2 ;clean up stack
 mov word ptr es:[bx+3],ax ;send completion status
 ret
;
_STRAT4 endp
;
_TEXT ends

end

Figure 5-7. Start-up routine, four devices.

93

;
; C start-up routine, one device, w/interrupt and timer
;

PUBLIC _STRAT
PUBLIC __acrtused
PUBLIC _INT_HNDLR
PUBLIC _TIM_HNDLR

EXTRN _interrupt_handler:near
EXTRN _timer_handler:near
EXTRN _main:near

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:NOTHING, ss:NOTHING
.286P

;
_STRAT proc far
__acrtused: ; no start-up code
;

push 0
jmp start ; signal device 0

;
start:

push es ;send Request Packet address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3],ax ;send completion status
ret

;
_STRAT endp
;
_INT_HNDLR proc far
;

call _interrupt_handler ;handle interrupts
ret ;bail out

;
_INT_HNDLR endp
;
_TIM_HNDLR proc far
;

pusha
push es
push ds
call _timer_handler

94

pop ds
pop es
popa
ret

;
_TIM_HNDLR endp
;
_TEXT ends
 end

Figure 5-8. Start-up routine with timer and interrupt handler.

The Strategy Section

The Strategy section is nothing more than a big switch statement (see Figure 5-
8). Common device driver requests, such as DosWrite and DosRead, have
predefined function codes assigned to them. The device driver may elect to
ignore any or all of these requests by returning a DONE status to the kernel.
This tells the kernel that the request has been completed. The status returned to
the kernel may optionally include error information that the kernel returns to the
calling program.

int main(PREQPACKET rp, int dev)
{
 switch(rp->RPcommand)
 {
 case RPINIT: // 0x00

 // init called by kernel in protected mode

 return Init(rp);

 case RPREAD: // 0x04

 return (RPDONE);

 case RPWRITE: // 0x08

 return (RPDONE);

 case RPINPUT_FLUSH: // 0x07

 return (RPDONE);

 case RPOUTPUT_FLUSH: // 0x0b

 return (RPDONE);

95

 case RPOPEN: // 0x0d

 return (RPDONE);

 case RPCLOSE: // 0x0e

 return (RPDONE);
 case RPIOCTL: // 0x10

 switch (rp->s.IOCtl.function)
 {
 case 0x00: // our function def #1

 return (RPDONE);

 case 0x01: // our function def #2

 return (RPDONE);
 }

 // deinstall request

 case RPDEINSTALL: // 0x14

 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 // all other commands are flagged

 default:
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 }
}

Figure 5-9. Skeleton strategy section.

Note, however, that in the case of one of the standard device driver functions,
the kernel will re-map the error value returned from the device driver to one of
the standard device driver return codes.

If the device driver must return special error codes, it should use an IOCtl
request. IOCtls are used for special types of operations, device driver-specific,
which do not fit into the architecture of the standard device driver functions. An
example might be such as port I/O or initialization of a UART. The IOCtl
section of the device driver is called when the application issues a DosDevIOCtl
call with the device driver’s handle. Using IOCtls, the device driver can return
specialized codes that might contain, for example, the contents of an I/O port

96

or the status of the device. This flexibility allows the device driver writer to
customize the device driver to fit any device.

Examine the skeleton Strategy section in Figure 5-8. Note the switch on the
Request Packet command. A number of standard device driver functions have
command codes predefined in OS/2 (see Table 5-3). It is up to the device driver
writer to act upon or ignore any of the requests to the device driver.

The Strategy section is entered when the kernel calls the device driver to
perform a particular operation. Refer to Table 5-3.

Table 5-3. Device Driver Strategy Calls

Event Strategy section called

DosOpen call RPOPEN
DosClose RPCLOSE
boot RPINIT
IOCtl RPIOCTL
<cntl-c> RPCLOSE
<cntl-break> RPCLOSE
DosRead RPREAD
DosWrite RPWRITE

Initialization

The first thing that must be done in the initialization section is to save the
DevHlp entry point address, passed in the Request Packet. This is the only time
that the address is made available to the device driver, and it must be saved in
the device driver’s data segment. The INIT code generally performs two other
functions. First, it issues the sign-on message to the screen that the device
driver is attempting to load. Second, it finds the address of the last data and last
code item, and sends them back to OS/2. OS/2 uses the code and data offset

97

values to size memory. Only the first code and data segment of the device
driver is re-sized by OS/2, so it may be desirable to place the INIT code and
data into another segment which is discarded after the device driver is loaded. If
a device driver fails installation, it must send back zero offsets for its code and
data segments so OS/2 can use the memory space that the device driver had
occupied during installation. Depending on the type of driver, you may wish to
use this section to initialize your device, hook an interrupt or start a timer.

It should be noted that for Micro Channel and EISA bus systems which share
interrupts, it is desirable to hook the interrupt in the OPEN section and release
it in the CLOSE section. This allows other adapters which use the same
interrupt to register for the interrupt without being refused. ISA bus interrupts
should be hooked during INIT, since the driver should fail initialization if the
interrupt cannot be given to the device driver.

If the device driver supports multiple devices, it will contain a Device Header
with an entry for each device, with the previous Device Header pointing to the
next Device Header. The last Device Header will contain a -1L, which
terminates the list. For each device, the OS/2 kernel will call the Strategy entry
point to initialize the device. If the driver supports, for example, four serial
ports that use a single interrupt level, only the last valid initialized device should
hook the interrupt. This will prevent previously installed devices from
generating interrupts before the initialization has been completed. The code and
data segment values returned to OS/2 to size memory should be exactly the
same each time the INIT section is called.

During INIT, a limited number of API functions may be called by the device
driver. This is possible because INIT runs as a single Ring 3 thread. Some of
the APIs, especially those that perform file I/O, are especially helpful for
initializing adapters using data that is resident in disk files. Refer to the INIT
Strategy Command in Chapter 6 for a more detailed description of device driver
initialization.

The driver should allocate necessary resources during initialization, such as
memory and GDT selectors. If the driver supports a memory mapped adapter,
the physical adapter address may be mapped to a GDT selector. However,

98

because INIT is performed as a Ring 3 thread, the GDT selector cannot be
accessed during initialization. Any function which creates or uses a GDT
selector during INIT, such as AttachDD, will not allow you to that GDT
selector during INIT. This is because INIT is run at Ring 3, and does not have
access to the GDT.

With IBM PS/2s, the device driver should search the system for an adapter card
with the correct ID and verify that it is configured correctly. The device driver
may call special PS/2 Advance BIOS (ABIOS) routines (see Chapter 8) to
verify the correct configuration of the adapter.

There is an important exception to drivers being initialized at Ring 3, base
device drivers and ADDs are initialized at Ring 0.

A Common Strategy

One of the most common techniques in OS/2 device driver design is for the
Strategy section to request service from the device and wait for a device or
timer interrupt to signal completion of the request. In this case, the Strategy
section starts the I/O and issues a Block DevHlp call, which blocks the calling
thread. When the device interrupt signals that the operation is done, the
interrupt section Runs the blocked thread, completing the request. To protect
against the request never being completed, such as with a down device, the
Block call can contain a time-out parameter. If the timeout expires before the
completion interrupt occurs, the Blocked thread is Run, allowing the Strategy
section to send the proper error message back to the kernel.

Another method of timing-out a device is the use of the SetTimer DevHlp
routine. A timer handler can be hooked into the OS/2 system clock, and ticks
counted down until a time-out occurs. The Blocked thread can then be Run by
the timer handler.

The number and type of commands supported by the Strategy section are up to
the device driver writer. The device driver can process only the commands it
needs to, and let the others simply pass through by sending a DONE status back

99

to the kernel. Illegal function calls may optionally be trapped, and
ERROR_BAD_COMMAND returned to the kernel.

Note that the OS/2 kernel periodically issues special requests to the device
driver which are not generated by the application which opened the driver. An
example of this would be the 5-48 Code Page IOCtl which the kernel sends to
every OS/2 device driver immediately following the open.

If the application that opened the device driver fails or is aborted with a <cntl-
c> or <cntl-break>, the device driver is UnBlocked by the kernel with an
unusual wake-up return code. The driver must return
ERROR_CHAR_CALL_INTERRUPTED to the kernel, which will in turn call
the CLOSE section of the driver.

In general, it’s a good practice to trap all unsupported requests by returning the
DONE and ERROR_BAD_COMMAND status to the kernel, but be aware you
may have to make some exceptions for the unsolicited calls.

In the simplest of device drivers, the Strategy section may only contain an
OPEN, CLOSE, and READ or WRITE section. In a complicated device driver,
such as a disk device driver, the Strategy section may contain over two dozen
standard device driver functions and dozens of additional IOCtl calls. IOCtl
calls are actually Strategy functions, but are broken down one step further to
provide more detailed or device-specific operations (see Chapter 6). For
instance, a device driver might send a list of parameters to be used in initializing
an I/O port, and return the status of that initialization operation. This type of
function would not be able to be done with one of the standard set of device
driver function calls because it is so device-specific. The IOCtl, however, is well
suited to this type of functionality.

Interrupt Section

The interrupt section handles interrupts from the device. Interrupts may be
caused by a character having been received, a character finished transmitting, or
any number of external events. Interrupt processing should be quick and

100

straightforward. The routine that handles the interrupt is appropriately called
the interrupt handler. The interrupt handler is a subroutine that is entered upon
the receipt of an interrupt for the IRQ level registered with the SetIRQ DevHlp
call. All interrupts in OS/2 are handled by the kernel. With DOS, all a program
had to do was to hook the interrupt vector that it wanted. OS/2, however, does
not allow interrupt vectors to be changed, and if an attempt is made to change
one, the application will immediately be kicked off the system.

To register for an OS/2 interrupt, the device driver must send the address of its
interrupt handler and the requested interrupt (IRQ) level to OS/2 via a SetIRQ
DevHlp call. If the SetIRQ is successful, OS/2 will call the interrupt handler
upon receipt of an interrupt on that IRQ.

OS/2 will call the interrupt handlers that registered for a particular IRQ until the
interrupt handler claims the interrupt by clearing the carry flag (CLC).

The interrupt handler must be located in the first code segment of the device
driver. A sample interrupt handler is shown in Figure 5-10.

void interrupt_handler ()
{
 int rupt_dev;
 int source;
 int cmd_b;
 int st_b;
 int port;
 int temp;
 int rxlevel;

 port=UART_PORT_ADDRESS;
 outp((port+2),0x20); // switch to bank 1
 source = getsrc (); // get vector
 switch (source)
 {

 // optional timer service routine

 case timer :

 st_b=inp (port+3); // dec transmit cnt
 if (ThisReadRP == 0) // nobody waiting
 break;
 ThisReadRP->RPstatus=(RPDONE | RPERR | ERROR_NOT_READY);
 Run ((ULONG) ThisWriteRP);// run thread
 ThisWriteRP=0;

101

 break;

 case txm :
 case txf :

 // spurious write interrupt

 if (ThisWriteRP == 0)
 {
 temp=inp(port+2);
 break;
 }

 // keep transmitting until no data left

 if (!(QueueRead(&tx_queue,&outchar)))
 {
 outp((port), outchar);
 tickcount=MIN_TIMEOUT;
 break;
 }

 // done writing, run blocked thread

 tickcount=MIN_TIMEOUT;
 disable_write();
 ThisWriteRP->RPstatus = (RPDONE);
 Run ((ULONG) ThisWriteRP);
 ThisWriteRP=0;
 break;

 case ccr :

 // control character, treat as normal

 inchar=inp(port+5);

 case rxf :

 // rx fifo service routine

 if (ThisReadRP == 0)
 inchar=inp (port); // get character
 else
 {
 temp=inp(port+4);
 rxlevel=(temp & 0x70) / 0x10;

 // empty out chip FIFO

 while (rxlevel !=0)
 {

 inchar=inp (port); // get character
 rxlevel--;
 tickcount=MIN_TIMEOUT;

 // write input data to queue

102

 if(QueueWrite(&rx_queue,inchar))

 // error, queue must be full

 {
 ThisReadRP->RPstatus = (RPDONE|RPERR|ERROR_GEN_FAILURE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0;
 break;
 }
 com_error_word |= inp(port+5);

 } // while rxlevel
 } // else
 } // switch (source)
 EOI (IRQnum); // send EOI
}

Figure 5-10. Interrupt handler.

If the device driver is running on an ISA bus machine, OS/2 calls the device
driver’s interrupt handler with interrupts disabled, since interrupts cannot be
shared. On an EISA or Micro Channel machine, interrupts remain enabled when
the interrupt handler is entered. Shared interrupts are one of the features of the
IBM Micro Channel and EISA bus architectures, which allow more than one
device to share a single interrupt level.

Device drivers which share interrupts must claim interrupts that belong to them
by clearing the carry flag. Interrupt handlers on EISA and Micro Channel
machines can refuse the interrupt by setting the carry flag before exiting the
interrupt handler. The OS/2 kernel will continue to call all of the interrupt
handlers registered for the particular IRQ until one of the handlers claims the
interrupt. Only the interrupt handler that claims the interrupt should issue an
EOI, which resets the interrupt so the interrupt handler can be entered again. If
you don’t issue the EOI, you’ll never get another interrupt. Only the interrupt
handler that owns the interrupt should issue the EOI.

Any extended time spent in the interrupt handler can cause performance
problems. The interrupt handler must quickly perform its functions and exit. In
the case of character devices, the OS/2 DevHlp library supports fast reads and
writes to circular character queues.

103

For block devices, interrupt handling is fast because the interrupt is usually
caused by a DMA completion or disk-seek complete. Data is usually transferred
to the user buffer using DMA, eliminating the need to transfer data during
interrupt processing. On a DMA transfer, the DMA controller is set-up, started,
and the device driver exited to allow other threads to run. When the DMA
completes, it will generate a DMA completion interrupt, causing the device
driver’s interrupt handler to be entered. The interrupt handler can then take the
appropriate action, such as starting a new DMA transfer. Note that the interrupt
handler is written in C. It could have written using assembly language, but it’s
much easier to write and debug when written in C.

Most UARTs and adapters contain some type of buffering, which allows a
device driver a little slack when servicing higher data rates. The example in
Figure 5-9 shows an interrupt handler for a serial I/O port utilizing the Intel
82050 UART. The UART has an internal 4-byte buffer and two internal timers.
When an interrupt occurs, the UART is examined to determine the type of
interrupt: transmit, receive, or clock.

The interrupt handler is not entered directly from OS/2, but is called from our
small assembly language start-up routine (see Figure 5-7). When the SetIRQ
call is made to register the interrupt handler, the address passed in the call is the
address of the interrupt handler entry point in the device driver start-up code.
The start-up code in turn calls the C language interrupt handler.

The interrupt handler routine is not difficult to write or understand. It can,
however, be difficult to debug. Errors that occur in the interrupt handler
frequently appear only in a real time context; that is, while the interrupt handler
is being entered as a result of a hardware interrupt. The C library function
printf, for example, cannot be called from within an interrupt handler.
Application debuggers, such as CodeView, cannot be used in an interrupt
handler. A debugger such as the OS/2 kernel debugger or similar must be used.
A breakpoint placed in the interrupt routine will cause the program to stop, and
further interrupts may pass undetected while the program is stopped. A problem
may not appear when breakpoints are inserted, but will reappear when the
program executes normally. It then becomes necessary for the device driver

104

writer to “visualize” the operation of the interrupt handler and begin applying
solutions until the problem is fixed.

The interrupt handler may receive unsolicited or spurious interrupts from the
hardware, and they should be handled accordingly by the OS/2 device driver. In
the sample interrupt handler, a check is made to see whether a valid read or
write request is pending. If not, the device is reset and the interrupt handler is
exited, effectively ignoring the interrupt. This is not a recommended practice.

Examine the case rxf section of the interrupt handler in Figure 5-9. This is
where a received character is detected. When the UART receives a complete
character, it sets the RX FIFO register bit which generates an interrupt. The
interrupt handler examines the interrupt source register to determine if the
interrupt was caused by a received character. If so, it checks to see whether a
valid request is pending. If not, the character is thrown away and the interrupt
handler exited. If a valid read request is pending, the UART is queried to see
how many characters are in its four-character FIFO. (At high data rates, it is
possible that a character had come in while we were handling an interrupt.)
Each character is taken out of the FIFO one by one and written to a circular
character queue. The OS/2 DevHlp library supports fast reads and writes to
these circular queues. To prevent collision, queue reads and writes are
protected by disabling interrupts around the queue accesses. The interrupt
handler continues to receive characters and place them into the receive queue
until the queue becomes full or a specified time period has elapsed.

In the sample interrupt handler, data is passed back to the Strategy section of
the device driver when the queue becomes full or when a specified time has
passed without the reception of a new character. If the sample device driver
was intended for use as a terminal device driver, the interrupt handler could
have sent the data back to the Strategy section upon receipt of an end character,
such as a carriage return. Optionally, the interrupt handler can return each
character to the Strategy section as it is received. This method is more CPU
intensive, however, and is generally not recommended. Data rates of 9600 baud
and below can generally use the single-character method, but speeds in excess
of 9600 baud may require external buffering, DMA, or a microprocessor-based
adapter card. Overall system configuration should play a part in the design of

105

your interrupt handler. A heavily loaded system may not be able to respond fast
enough to multiple, high-speed interrupts on a character-by-character basis,
especially if the driver is servicing several devices on the same interrupt level.

The Timer Handler

At 9600 baud, the time required to receive a character via a serial port is
approximately one millisecond. If we received several characters, and no more
characters were received within two or three hundred milliseconds, we could
assume that there was an interruption of data. This could be caused by the lack
of data, or because a terminal operator simply stopped typing. In any case, this
would be a perfect opportunity to send the received data back to the
application.

In OS/2, a device driver can “hook” the system timer interrupt with a call to the
DevHlp library SetTimer function. The device driver passes OS/2 a pointer to a
timer handler, and OS/2 calls the timer handler (see Figure 5-11) each time it
receives a system clock interrupt. OS/2 also calls any other timer handlers that
had been previously registered.

If your driver calls SetTimer, be sure to hook the timer as the last step in your
Init code. If your Init fails, the procedure is to return 0 for the code and data
segment offsets, releasing the memory occupied by the driver. If your timer
references a variable in the driver’s data segment, it is possible that the variable
will become dereferenced before the timer handler is destroyed, resulting in a
general protection fault in your timer handler.

void timer_handler()
{
 if (ThisReadRP == 0) // make sure we're waiting
 return;

 ThisReadRP->RPstatus=(RPDONE)// exceeded tick cnt,run thread
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0L; // insure no more entry here
}

Figure 5-11. TickCount timer handler.

106

The operation is simple. If no data appears within eight or ten 32-millisecond
system time ticks, the assumption can be made that the flow of input data has
stopped, or at least paused. The timer handler checks for a valid pending read
request. This is necessary because the timer handler will continue to be called
every 32 milliseconds, even if the device driver is idle. If a valid request is
pending, the DevHlp Run function is called to Run the Blocked thread and send
the data back to the requesting application. When the Strategy section becomes
unblocked, it retrieves the data from the receiver queue and sends it to the
application’s data buffer.

The TickCount DevHlp could also be used to set up a timer handler that gets
called every eight or ten ticks and checks if data has been read (see Figure 5-
12). The TickCount method is more efficient, as the timer handler is not called
until the count specified in the TickCount call is reached. The TickCount
DevHlp routine can be also used to reset the tick count for a previously
registered time handler.

void timer_handler()
{
 if (ThisReadRP == 0) // make sure we're waiting
 return;

 tickcount--; // decrement counter
 if(tickcount == 0) {
 ThisReadRP->RPstatus=(RPDONE); // run blocked thread
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0L; // keep us out of here
 tickcount=MIN_TIMEOUT; // reset tick-based cntr
 }
}

Figure 5-12. TickCount timer handler.

Context Hooks

A context hook is a small function that can be executed when your driver exits,
allowing you to call DevHlps that can’t be called in the interrupt context. The

107

most common use of a context hook is to clear a 32-bit shared event
semaphore. There are several DevHlps that deal with 16-bit semaphore (see
Appendix A) and several others that deal with 32-bit semaphores. One of the
most common uses of a semaphore is to have a thread blocked on the
semaphore, then wake up when another event occurs, such as an interrupt. For
example, a thread which processes a buffer of data can be blocked waiting for
the data buffer to be filled. When the buffer is filled by the device driver, the
device driver sends the data to the processing thread’s buffer and unblocks the
thread allowing the data to be processed.

If the application is 16-bit, the device driver can use the 16-bit semaphore
DevHlps to manipulate the semaphore. More specifically, the device driver can
clear the 16-bit semaphore, using DevHlp SemClear, while in the driver’s
interrupt routine. If the application 32-bit, and the semaphore is a 32-bit
semaphore, the device driver is not allowed to clear the semaphore in the
interrupt handler. The DevHlp to clear a 32-bit semaphore, ClearEventSem, is
not available in the interrupt context. It is, however, available at task time. The
solution is to place the call to CloseEventSem in the context hook, since the
context hook will get called at task time. The driver creates and arms the
context hook, and it runs when the driver exits. Refer to the documentation on
AllocCtxHook, ArmCtxHook and FreeCtxHook in Appendix A for more
detailed information.

109

Chapter 6 - Device Driver Strategy Commands

Strategy commands are the commands that the driver receives from the OS/2
kernel, usually in response to a driver request from an application thread. The
kernel uses the device driver Request Packet (see Figure 6-1) to communicate
with the device driver. The kernel sends a request to the device driver by filling
in the proper fields in the Request Packet, and sending the driver a pointer to
the Request Packet.

OS/2 does not guarantee the order that the Request Packets arrive at the device
driver are preserved in the same order that the API requests were issued from
the application threads. It is possible that Request Packets may arrive out of
order, and the OS/2 device driver is responsible for providing the
synchronization mechanism between itself and application thread requests.

A Request Packet consists of two main parts: the Request Header and the
command-specific data field.

typedef struct ReqPacket {
 UCHAR RPlength; // Request Packet length
 UCHAR RPunit; // unit code for block DD only
 UCHAR RPcommand; // command code
 USHORT RPstatus; // status word
 UCHAR RPreserved[4]; // reserved bytes
 ULONG RPqlink; // queue linkage
 UCHAR avail[19]; // command specific data
 } REQPACKET;

Figure 6-1. Request Packet definition.

RPlength contains the total length in bytes of the Request Packet (the length of
the Request Header plus the length of the command-specific data).

RPunit identifies the unit for which the request is intended. This field has no
meaning for character devices.

110

RPcommand indicates the requested device driver function.

RPStatus is defined only for OPEN and CLOSE Request Packets on entry to
the Strategy routine. For all other Request Packets, the status field is undefined
on entry.

#define RPERR 0x8000 // error occurred
#define RPDEV 0x4000 // error code
#define RPBUSY 0x0200 // device is busy
#define RPDONE 0x0100 // driver done bit

#define ERROR_WRITE_PROTECT 0x0000 // Write Prot
#define ERROR_BAD_UNIT 0x0001 // Unknown Unit
#define ERROR_NOT_READY 0x0002 // Device Not Ready
#define ERROR_BAD_COMMAND 0x0003 // Unknown Command
#define ERROR_CRC 0x0004 // CRC Error
#define ERROR_BAD_LENGTH 0x0005 // Bad Driver Req Len
#define ERROR_SEEK 0x0006 // Seek Error
#define ERROR_NOT_DOS_DISK 0x0007 // Unknown Media
#define ERROR_SECTOR_NOT_FOUND 0x0008 // Sector Not Found
#define ERROR_OUT_OF_PAPER 0x0009 // Out of Paper
#define ERROR_WRITE_FAULT 0x000A // Write Fault
#define ERROR_READ_FAULT 0x000B // Read Fault
#define ERROR_GEN_FAILURE 0x000C // General Failure
#define ERROR_DISK_CHANGE 0x000D // Change Disk
#define ERROR_UNCERTAIN_MEDIA 0x0010 // Uncertain Media
#define ERROR_CHAR_CALL_INTERRUPTED 0x0011 // Char Call Interrupt
#define ERROR_NO_MONITOR_SUPPORT 0x0012 // Mons Not supported
#define ERROR_INVALID_PARAMETER 0x0013 // Invalid Parameters
#define ERROR_DEVICE_IN_USE 0x0014 // Dev Already In Use
#define ERROR_QUIET_FAIL 0x0015 // Quiet faile bits

Figure 6-2. Standard OS/2 device driver errors.

For an OPEN Request Packet, bit 3 (MON_OPEN_STATUS,08H) of the
status field is set if the packet was generated from a DosMonOpen; otherwise it
was a DosOpen.

For a CLOSE Request Packet, bit 3 (MON_CLOSE_STATUS,08H) of the
status field is set if the packet was generated by a DosMonClose or a DosClose
of a handle that was generated by a DosMonOpen. Otherwise, it was a
DosClose on a non-monitor handle.

111

Upon exit from the Strategy routine, the status field describes the resulting state
of the request (see Figure 6-2).

Bit 15 (RPERR) is the Error bit. If this bit is set, the low 8 bits of the status
word (7-0) indicate the error code. The error code is processed by OS/2 in one
of the following ways:

• If the IOCtl category is ‘User Defined’ (greater than 127), FF00 is
INCLUSIVE OR’d with the byte-wide error code.

• If not ‘User Defined’ and Bit 14 (RPDEV - device driver defined error
code) is set, FE00 is INCLUSIVE OR’d with the byte-wide error code.

• Otherwise, the error code must be one of those shown and is mapped by the
kernel into one of the standard OS/2 API return codes before being returned
to the application.

Bit 14 (RPDEV) is a device-driver defined error if set in conjunction with bit
15.

Bits 13 - 10 are reserved.

Bit 9 (RPBUSY) is the Busy bit.

Bit 8 (RPDONE) is the Done bit. If it is set, it means that the operation is
complete. The driver normally sets the done when it exits.

Bits 7-0 are the low 8 bits of the status word. If bit 15 is set, bits 7-0 contain
the error code.

ERROR_UNCERTAIN_MEDIA (10H) should be returned when the state of
the media in the drive is uncertain. This response should NOT be returned to
the INIT command. For fixed disks, the device driver must begin in a media
uncertain state in order to have the media correctly labelled.

ERROR_CHAR_CALL_INTERRUPTED (11H) should be returned when the
thread performing the I/O was interrupted out of a DevHlp Block before
completing the requested operation.

112

ERROR_NO_MON_SUPPORT (12H) should be returned for monitor requests
(DosMonOpen, DosMonClose, DosMonRegister), if device monitors are not
supported by the device driver.

ERROR_INVALID_PARAMETER (13H) should be returned when one or
more fields of the Request Packet contain invalid values.

RPqlink is provided to maintain a linked list of Request Packets. It is a pointer
to the next packet in the chain, or -1L if this is the end of the chain. The device
driver may use the Request Packet management DevHlp services
PullReqPacket, PushReqPacket, FreeReqPacket, SortReqPacket, PullParticular,
and AllocReqPacket to manipulate the linked list of Request Packets.

Summary of Device Driver Commands

Table 6-1 contains a summary of device driver Strategy commands. The
commands are described in detail in the following subsections of this chapter.

113

Table 6-1 Device Driver Strategy Commands

Code Meaning Devices

0x00 Init Character, Block
0x01 Media Check Block Only
0x02 Build BIOS Parameter Block Block Only
0x03 Reserved N/A
0x04 Read Character, Block
0x05 Nondest. Read, no wait Character Only
0x06 Input Status Character Only
0x07 Flush Input Buffer Character Only
0x08 Write Character, Block
0x09 Write w/Verify Character, Block
0x0a Output Status Character Only
0x0b Flush Output Buffer Character Only
0x0c Reserved N/A
0x0d Open Device Character, Block
0x0e Close Device Character, Block
0x0f Removable Media Block Only
0x10 Generic IOCtl Character, Block
0x11 Reset Media Block Only
0x12 Get Logical Drive Map Block Only
0x13 Set Logical Drive Map Block Only
0x14 Deinstall Character Only
0x15 Reserved N/A
0x16 Partitionable Disk Block Only
0x17 Get Fixed Disk Map Block Only
0x18 Reserved N/A
0x19 Reserved N/A
0x1a Reserved N/A
0x1b Reserved N/A
0x1c Shutdown Character, Block
0x1d Get Driver Capabilities Block

114

Table 6-1. Device Driver Strategy Commands (cont'd)

0x1e Reserved
0x1f InitComplete Character, Block

115

0h / Init

Initialize the device.

Format Of Request Packet

union
 {
 struct { // init packet(one entry,exit)
 UCHAR units; // number of units
 FPFUNCTION DevHlp; // &DevHlp
 char far *args; // & init arg pointers
 UCHAR drive; // drive #
 }Init;
 struct {
 UCHAR units; // same as input
 OFF finalCS; // final code offset
 OFF finalDS; // final data offset
 FARPOINTER BPBarray; // &BPB
 } InitExit;
 }

Comments

The INIT function is called by the kernel during driver installation at boot time.
The INIT section should initialize the adapter and device. For example, if the
device was a serial port, the initialization section might set the baud rate, parity,
stop bits, etc. on a serial port or check to see if the device is installed correctly.
INIT is called in a special mode at Ring 3 with some Ring 0 capabilities. For
example, the driver may turn off interrupts during INIT, but they must be
turned back on before returning to the kernel. The INIT code may also perform
direct port I/O without generating protection violations. Usually, the driver will
allocate buffers and data storage during INIT, to ensure that the driver will
work when installed. Because the memory allocations are done at Ring 3, the
system can check to make sure the allocations are valid. If not, the driver can
remove itself from memory, freeing up any previously allocated space for other
system components. Since the INIT code is executed only once, and during
system boot, its not necessary to optimize the INIT code. Do all of the work
you can up front in the INIT section, as it may be time-prohibitive or even
impossible to do some initialization during normal kernel-mode driver
operation.

116

On entry, the INIT Request Packet contains the following fields as inputs to the
device driver:

• A pointer to the DevHlp entry point. (in OS/2 1.x, this is a bimodal pointer)
• a pointer to the initialization arguments from the DEVICE= line in

CONFIG.SYS.
• The drive number for the first block device unit.

The pointer to the initialization parameters allows a device driver to be
configured at boot time, based on arguments placed on the DEVICE= line in
CONFIG.SYS. See Chapter 8 for a discussion of how to do this, and a listing
of the INIT section of an actual driver that performs this function.

When a base block device driver or ADD gets initialized, the pointer to the
initialization arguments is actually a pointer to up to five pointers. In OS/2 1.x,
the list contains three pointers. In OS/2 2.0, the list contains four pointers. In
OS/2 Warp, the list contains five pointers. The first pointer points to the
InitCache parameter list. The second pointer points to the disk configuration
table. The third pointer points to the IRQ vector table. The fourth pointer
points to the argument list from the DEVICE= statement in CONFIG.SYS. The
fifth pointer points to the MachineConfigurationInfo structure, which contains
the information shown in Figure 6-3.

117

typedef _MachineConfigurationInfo
{

USHORTLength; // length of info
USHORTBusInfo; // 1=MCA, 2=EISA, 3=ISA, 4-

8=?
USHORTCPUInfo; // 1=386, 2=486
UCHAR Submodel; // system submodel
UCHAR Model; // system model
USHORTABIOSRevision; // revision of system ABIOS

(PS/2)
USHORTHardDriveCount; // number of hard drives
UCHAR Reserved; // reserved for future

} MachineConfigurationInfo;

Figure 6-3. MachineConfigurationInfo structure.

Upon the completion of initialization, the device driver must set certain fields in
the Request Packet as follows:

• The number of logical block devices or units the driver supports (block
devices only).

• The WORD offset to the end of the code segment.
• The WORD offset to the end of the data segment.
• A pointer to the BIOS Parameter Block or BPB (block devices only).

A block device driver must also return the number of logical devices or units
that are available. The kernel’s file system layer will assign sequential drive
letters to these units. A character device driver should set the number of devices
to 0.

As a final step in initialization, both block and character device drivers must
return the offsets to the end of the code and data segments. This allows the
device driver to release code and data needed only by the device driver’s
initialization routine. To facilitate this, the initialization code and data should be
located at the end of the appropriate segments. A device driver which fails
initialization should return 0 for both offset values.

118

A block device driver must return an array of BPBs for each of the logical units
that it supports. A character device driver should set the BPB pointer to 0.

If initialization is successful, the status field in the Request Header must be set
to indicate no errors and the done status (RPDONE).

If the device driver determines that it cannot initialize the device, it should
return with the error bit (RPERR) in the Request Header status field set. The
device driver should return RPERR | RPDONE | ERROR_GEN_FAILURE.
Whatever the reason for the failure, the status must always indicate that the
request is done (RPDONE).

The system loader records the last non-zero code and data segment offsets
returned for the devices which successfully completed initialization. These
offset values are used to re-size the device driver’s code and data segments.

If the device driver supports multiple devices or units, the kernel will call the
initialization section for each of the devices or units. If your device driver has a
single initialization section, the offset values returned to the kernel should be
the same for each device initialization that is successful.

A limited number of OS/2 system API routines are available to the device driver
during initialization. Those API routines are listed in Table 6-2.

119

Table 6-2. API Routines Available During Init

Routine Name Description

DosBeep Generate a beep from the speaker
DosCaseMap Perform case mapping
DosChgFilePtr Move a read/write file pointer
DosClose Close a file handle
DosDelete Delete a file
DosDevConfig Get a device's configuration
DosDevIOCtl Do an IOCtl request
DosFindClose Close a search directory handle
DosFindFirst Find the first matching file
DosFindNext Find next file
DosGetEnv Get address of process environment
DosGetMessage Get a system message
DosOpen Open a file
DosPutMessage Display message to handle
DosQCurDir Query current directory
DosQCurDisk Query current disk
DosQFileInfo Query file information
DosQFileMode Query file mode
DosRead Read from file
DosSMRegisterDD Register driver for SM events
DosWrite Write to file

For more information about these functions, refer to the IBM OS/2 Warp
Control Program Reference.

120

1H/ Media Check

Determine the state of the media.

Format Of Request Packet

 struct { // MEDIA_CHECK
 UCHAR media; // media descriptor
 UCHAR return_code; // see below
 FARPOINTER prev_volume; // &previous volume ID
 } MediaCheck;

Comments

On entry, the Request Packet will have the media descriptor field set for the
drive identified in the Request Header (see Table 6-3).

The device driver must perform the following actions for the MEDIA CHECK
request:

• Set the status word in the Request Header.
• Set the return code where:

-1 = Media has been changed
0 = Unsure if media has been changed

 1 = Media unchanged

To determine whether you are using a single-sided or a double-sided 8-inch
diskette (FEh), attempt to read the second side. If an error occurs, you can
assume the diskette is single-sided.

121

Table 6-3. Media Descriptor Bytes

Disk Type #Sides #Sectors/Track Media
Descriptor

Fixed Disk --------- ------- 0xF8
3.5 Inch 2 09 0xF9
3.5 Inch 2 18 0xF0
5.25 Inch 2 15 0xF9
5.25 Inch 1 09 0xFC
5.25 Inch 2 09 0xFD
5.25 Inch 1 08 0xFE
5.25 Inch 2 08 0xFF
8 Inch 1 26 0xFE
8 Inch 2 26 0xFD
8 Inch 2 08 0xFE

The Media Check function is called by the kernel prior to disk access, and is
therefore valid only for block devices. The kernel sends to the driver the media
ID byte for the type of disk that it expects to find in the selected drive.

122

2H / Build BPB

Build the BIOS Parameter Block (BPB). The driver receives this request when
the media has changed or when the media type is uncertain.

Format Of Request Packet

 struct { // BUILD_BPB
 UCHAR media; // media descriptor
 FARPOINTER buffer; // 1-sector buffer FAT
 FARPOINTER BPBarray; // &BPB array
 UCHAR drive; // drive #
 } BuildBPB;

Comments

On entry, the Request Packet will have the media descriptor set for the drive
identified in the Request Header. The transfer address is a virtual address to a
buffer containing the boot sector media, if the block device driver attribute field
has bit 13 (DAW_IBM) set; otherwise, the buffer contains the first sector of the
File Allocation Table (FAT).

The device driver must perform the following actions:

• Set the pointer to the BPB table.
• Update the media descriptor.
• Set the status word in the Request Header.

The device driver must determine the media type in the drive, in order to return
the pointer to the BPB table. Previously, the FAT ID byte determined the
structure and layout of the media. Because the FAT ID byte has only eight
possible values (F8 through FF), it is clear that, as new media types are
invented, the available values will soon be exhausted. With the varying media
layouts, OS/2 needs to be aware of the location of the FATs and directories
before it reads them.

123

The device driver should read the boot sector from the specified buffer. If the
boot sector is for DOS 3.00, 3.00, 3.00, 3.10, 3.20, or OS/2, the device driver
returns the BPB from the boot sector. If the boot sector is for DOS 1.00 or
1.10, the device driver reads the first sector of the FAT into the specified
buffer. The FAT ID is examined and the corresponding BPB is returned.

The information relating to the BPB for a particular media is kept in the boot
sector for the media (see Table 6-4).

Table 6-4. Boot Sector Format

Field Length

Short Jump (0xEB) followed by NOP 2 bytes
OEM Name and Version 8 bytes
Bytes Per Sector word
Sectors/Allocation Unit (base 2) byte
Reserved Sectors (starting at 0) word
Number of FATs byte
Number of Root Dir Entries (max) word
Number of Sectors Total word
Media Descriptor byte
Number of Sectors in a single FAT word
Sectors Per Track word
Number of Heads word
Number of Hidden Sectors word

The last three WORDs in Table 6-4 help the device driver understand the
media. The number of heads is useful for supporting different multiple head
drives that have the same storage capacity but a different number of surfaces.

124

The number of hidden sectors is useful for supporting drive partitioning
schemes.

For drivers that support volume identification and disk change, this call should
cause a new volume identification to be read off the disk. This call indicates that
the disk was properly changed.

125

4H, 8H, 9H / Read or Write

Read from or write to a device. Read (4H) / Write (8H) / Write with Verify
(9H)

Format Of Request Packet

 struct { // READ, WRITE, WRITE_VERIFY
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector #
 USHORT reserved;
 } ReadWrite;

Comments

On entry, the Request Packet will have the media descriptor set for the drive
identified in the Request Header. The transfer address is a 32-bit physical
address of the buffer for the data. The byte/sector count is set to the number of
bytes to transfer (for character device drivers) or the number of sectors to
transfer (for block device drivers). The starting sector number is set for block
device drivers. The System File Number is a unique number associated with an
open request.
The device driver must perform the following actions:

• Perform the requested function.
• Set the actual number of sectors or bytes transferred.
• Set the status word in the Request Packet.

The DWORD transfer address in the Request Packet is a locked 32-bit physical
address. The device driver can use it to call the DevHlp function PhysToVirt
and obtain a segment swapping address for the current mode. The device driver
does not need to unlock the address when the request is completed.

126

READ is a standard driver request. The application calls the READ Strategy
entry point by issuing a DosRead with the handle obtained during the DosOpen.
The READ routine may return one character at a time, but more often returns a
buffer full of data. How the READ function works is up to the driver writer.
The driver returns the count of characters read and stores the received data in
the data segment of the application. READ returns one of the standard driver
return codes.

Note: The functions IOCtl Read and IOCtl Write are not supported by the
standard base OS/2 device drivers.

WRITE is a standard driver request, called by the application as a result of a
DosWrite call. The application passes the address of data to write (usually in
the applications data segment) to the driver and the count of the characters to
write. The driver writes the data and returns the status to the application, along
with the number of characters that were actually written. WRITE returns a
standard driver return code.

127

5H / Nondestructive Read No Wait

Read a character from an input buffer without removing it.

Format Of Request Packet

 struct { // NON_DESTRUCT READ/NO WAIT
 UCHAR char_returned; // returned character
 } ReadNoWait;

Comments

The device driver must perform the following actions:

• Return a byte from the device.
• Set the status word in the Request Header.

For input on character devices with a buffer, the device driver should return
from this function with the busy bit (RPBUSY) clear, along with a copy of the
first character in the buffer. The busy bit is set to indicate that there are no
characters in the buffer. This function allows the operating system to look
ahead one input character without blocking in the device driver.

128

6H, AH / Input or Output Status

Determine the input or output status of a character device.

Format Of Request Packet

No Parameters

Comments

The device driver must perform the following actions:

• Perform the requested function.
• Set the busy bit.
• Set the status word in the Request Header.

For output status on character devices, if the busy bit (RPBUSY) is returned
set, an output request is currently pending. If the busy bit is returned set to 0,
there is no current request pending.

For input status on character devices with a buffer, if the busy bit is returned
set, there are no characters currently buffered in the device driver. If the busy
bit is returned clear, there is at least one character in the device driver buffer.
The effect of busy bit = 0 is that a read of one character will not need blocking.
Devices that do not have an input buffer in the device driver should always
return with the busy bit clear. This is a “peek” function, to determine the
presence of data.

129

7H, BH / Input Flush or Output Flush

Flush or terminate all pending requests.

Format Of Request Packet

No Parameters

Comments

The device driver must perform the following actions:

• Perform the requested function.
• Set the status word in the Request Header.

This call tells the device driver to flush (terminate) all known pending requests.
Its primary use is to flush the input or output queue on character devices. The
Input Buffer Flush should flush any receiver queues or buffers, and return
DONE to the kernel. The Output Buffer Flush should flush any transmitter
queues or buffers.

130

DH,EH / Open or Close

Open or Close a Device.

Format Of Request Packet

 struct { // OPEN/CLOSE
 USHORT sys_file_num ; // system file number
 } OpenClose;

Comments

The System File Number is a unique number associated with an open request.
The device driver must perform the following actions:

• Perform the requested function.
• Set the status word in the Request Header.

Character device drivers may use OPEN/CLOSE requests to correlate using
their devices with application activity. For instance, the device driver may
increase a reference count for every OPEN, and decrease the reference count
for every CLOSE. When the count goes to 0, the device driver can flush its
buffers. This can be thought of as a “last close causes flush.”

The OPEN function is called as a result of the application issuing a DosOpen
call. The kernel makes note of the DosOpen request, and if it is successful, the
kernel sends back a handle to the application to use for subsequent driver
service. The driver writer can use this section to initialize a device, flush any
buffers, reset any buffer pointers, initialize character queues, or anything
necessary for a clean starting operation.

The CLOSE is usually called as a result of the application doing a DosClose
with the correct driver handle, but it is also called when the application that
opened the driver terminates or is aborted with a <cntl-c> or <cntl-break>.

131

In most cases, its a good idea to make sure that the application closing the
driver is the same one that opened it. To ensure this, the device driver should
save the PID of the application that opened the driver, and make sure that the
closing PID is the same. If not, the device driver should reject it as a bogus
request. The driver can get the PID of the calling program using the
GetDOSVar DevHlp routine.

All devices associated with the device driver should be made quiescent at
CLOSE time.

FH / Removable Media

Check for removable media.

Format Of Request Packet

No Parameters

Comments

The device driver must perform the following actions:

• Set the busy bit to 1 if the media is non-removable.
• Set the busy bit to 0 if the media is removable.
• Set the status word in the Request Header.

The driver receives this request as a result of an application generating an IOCtl
call to Category 8, Function 0x20. Instead of calling the IOCtl section of the
device driver, the kernel issues this request. The driver must set the busy bit
(RPBUSY) of the Request Packet status if the media is non-removable, and
must clear it if the media is removable.

132

1OH / Generic IOCtl

Send I/O control commands to a device.

Format Of Request Packet (DosDevIOCtl)

 struct { // IOCtl
 UCHAR category; // category code
 UCHAR function; // function code
 FARPOINTER parameters; // ¶meters
 FARPOINTER buffer; // &buffer
 USHORT sys_file_num; // system file number
 } IOCtl;

Format of Request Packet (DosDevIOCtl2)

 struct { // IOCtl
 UCHAR category; // category code
 UCHAR function; // function code
 FARPOINTER parameters; // ¶meters
 FARPOINTER buffer; // &buffer
 USHORT sys_file_num; // system file number
 USHORT parm_buf_length;// length of parameter buffer
 USHORT data_buf_length // length of data buffer
 } IOCtl;

Comments

On entry, the request packet will have the IOCtl category code and function
code set. The parameter buffer and the data buffer addresses are passed as
virtual addresses. Note that some IOCtl functions do not require data and/or
parameters to be passed. For these IOCtls, the parameter and data buffer
addresses may contain NULL pointers. The System File Number is a unique
number associated with an OPEN request.

If the device driver indicates (in the function level of the device attribute field of
its Device Header) that it supports DosDevIOCtl2, the Generic IOCtl request
packets passed to the device driver will have two additional words, containing
the lengths of the Parameter Buffer and Data Buffer, respectively. If the device
driver indicates through the function level that it supports DosDevIOCtl2, but

133

the application issues DosDevIOCtl, the Parameter Buffer and Data Buffer
length fields will be set to zero.

The device driver must perform the following actions:

• Perform the requested function.
• Set the status word in the Request Header.

The device driver is responsible for locking the parameter and data buffer
segments, and converting the pointers to 32-bit physical addresses, if necessary.

Refer to the OS/2 Version 3.0 Programming Reference and the OS/2 Version
3.0 Application Programming Guide for more detailed information on the
generic IOCtl interface for applications.

The third and fourth command-specific parameters of an IOCtl are the address
of the application program’s data buffer and parameter buffer, respectively. The
format of the two buffers is entirely up to the driver writer. The parameter
buffer might contain a list of USHORTs, UCHARs, or pointers. However,
pointers are not recommended because, depending on the type of application
sending them (16:16 or 0:32), the pointers might require further translation,
affecting portability.

The data buffer parameter might be the address of a data buffer in the
application program where the driver would store data from the device. It
should also be noted that the IOCtl need not pass or receive any data.

Another feature of an IOCtl is its ability to send back device-specific
information to the application. A standard driver request, such as DosRead or
DosWrite, returns a value to the application which is used to determine whether
or not the operation was successful. For something like a terminal driver, a
simple pass/fail indication might be sufficient. Suppose, however, that the driver
needed to tell the application that the data was in ASCII or binary format, or
that a parity error was detected while receiving it. Here an IOCtl would be a
better choice because the kernel ‘massages’ return codes from standard function

134

calls to fit within the standard error definitions. The IOCtl, however, will pass
back special error codes to the application exactly as they were set in the driver.

11H / Reset Media

Reset the Uncertain Media error condition and allow OS/2 to identify the
media.

Format Of Request Packet

No Parameters

Comments

On entry, the unit code identifies the drive number to be reset.
The device driver must perform the following actions:

• Set the status word in the Request Header.
• Reset the error condition for the drive.

Before this command, the driver had returned ERROR_UNCERTAIN_MEDIA
for the drive. This action informs the device driver that it no longer needs to
return the error for the drive.

12H, 13H / Get/Set Logical Drive

Get/Set Logical Drive Mapping

Format Of Request Packet

No Parameters

Comments

135

On entry, the unit code contains the unit number of the drive on which this
operation is to be performed.

The device driver must perform the following actions:

• For GET, it must return the logical drive that is mapped onto the physical
drive indicated by the unit number in the Request Header.

• For SET, it must map the logical drive represented by the unit number onto
the physical drive that has the mapping of logical drives.

• The logical drive is returned in the unit code field. This field is set to 0 if
there is only one logical drive mapped onto the physical drive.

• Set the status word in the Request Header.

136

14H / Deinstall

Request deinstall of driver.

Format Of Request Packet

No Parameters

Comments

When a device driver is loaded, the attribute field and name in its header are
used to determine if the new device driver is attempting to replace a driver
(device) already installed. If so, the previously installed device driver is
requested by the operating system to DEINSTALL. If the installed device
driver refuses the DEINSTALL command, the new device driver is not allowed
to be loaded. If the installed device driver performs the DEINSTALL, the new
device driver is loaded.

If a character device driver honors the DEINSTALL request, it must perform
the following actions:

• Release any allocated physical memory.
• UnSet any hardware interrupt vectors that it had claimed.
• Remove any timers.
• Clear the error bit in the status word to indicate a successful DEINSTALL.

If the character device driver determines that it cannot or will not deinstall, it
should set the error bit (RPERR) in the status field and set the error code to
ERROR_BAD_COMMAND (03H).
Deinstall Considerations

An ABIOS device driver maps its device name to a unit within a Logical ID
(LID). It receives a DEINSTALL request for its device name, which implies a
single unit of a LID. To honor the DEINSTALL request, it must relinquish the
LID by calling DevHlp FreeLIDEntry at DEINSTALL time.

137

In honoring a DEINSTALL command, a device driver must remove its claim on
the interrupt level by issuing an UnSetIRQ DevHlp call.

If the device driver’s device is ill-behaved (that is, it cannot be told to stop
generating interrupts), the device driver must not remove its interrupt handler,
and must refuse the DEINSTALL request.

16H / Partitionable Fixed Disks

This call is used by the system to ask the device driver how many physical
partitionable fixed disks the device driver supports.

Format Of Request Packet

 struct { // PARTITIONABLE fixed disks
 UCHAR count; // number of disks supported
 ULONG reserved;
 } Partitionable;

Comments

This is done to allow the Category 9 Generic IOCtls to be routed appropriately
to the correct device driver. This call is not tied to a particular unit that the
device driver owns, but is directed to the device driver as a general query of its
device support.

The device driver must perform the following actions:

• Set the count (1- based).
• Set the status word in the Request Header.

138

17H / Get Fixed Disk/Logical Unit Map

Get Fixed Disk/LU Map.

Format Of Request Packet

 struct { // Get Fixed Disk/Log Unit Map
 ULONG units; // units supported
 ULONG reserved;
 } GetFixedMap;

Comments

This call is used by the system to determine which logical units supported by the
device driver exist on the physical partitionable fixed disk.

On entry, the request packet header unit field identifies a physical disk number
(0-based) instead of a logical unit number. The device driver returns a bitmap of
which logical units exist on the physical drive. The physical drive relates to the
partitionable fixed disks reported to the system by way of the
PARTITIONABLE FIXED DISKS command. It is possible that no logical
units exist on a given physical disk because it has not yet been initialized.

The device driver must perform the following actions:

• Set the 4-byte bit mask to indicate which logical units it owns. The logical
units must exist on the physical partitionable fixed disk for which the
information is being requested.

• Set the status word in the Request Packet header.

The bit mask is set up as follows: A 0 means that the logical unit does not exist,
and a 1 means it does. The first logical unit that the device driver supports is the
low-order bit of the first byte. The bits are used from right to left, starting at the
low-order bit of each following byte. It is possible that all of the bits will be 0.

139

1CH / Shutdown

Begin shutdown procedure.

Format Of Request Packet

 struct { // Shutdown
 UCHAR func; // shutdown function code
 ULONG reserved;
 } Shutdown;

Comments

This call is used by the system to notify a device driver to flush any data to the
device and prepare to shutdown.

The driver is called twice, once for a Start Shutdown and then again for an End
Shutdown. The function code is 0 for the Start Shutdown call and 1 for the End
Shutdown call.

Level 2 device drivers are called with the Shutdown request. Level 3 drivers are
only called if the shutdown flag of the Capabilities field is set in the Device
Header.

140

1DH/ Get Driver Capabilities

Get a disk device driver’s capabilities.

Format Of Request Packet

 struct { // Get Driver Capabilities
 UCHAR res[3]; // reserved, must be 0
 FARPOINTER CapStruct; // 16:16 pointer to DCS
 FARPOINTER VolCharStruct; // 16:16 pointer to VCS
 } GetDriverCaps;

Comments

This command returns the functional capabilities of the driver for device drivers
supporting the Extended Device Driver Interface.

This command is issued by the system to see whether the driver supports the
scatter/gather protocol. The driver must initialize this structure. The first
pointer is a 16:16 pointer to the Driver Capabilities Structure, and the second
pointer is 1 16:16 pointer to the Volume Characteristics Structure. Refer to
Chapter 12 for more detailed information on this command and its associated
data structures.

141

1FH / CMDInitComplete

Notify device driver that all PDDs and IFS drivers have been loaded.

Format of Request Packet

No Parameters

Comments

This command notifies the device driver that all drivers have been loaded,
allowing the device driver to initiate any driver-to-driver communications or
initialization. This command removes any problems associated with the order in
which device drivers appear in the CONFIG.SYS file.

This command is issued by the system only if the device driver is a level 3 driver
and has set bit 4 in the Capabilities Bit Strip word in the device header.

143

Chapter 7 - A Simple OS/2 Physical Device
Driver

This chapter outlines the operation of an actual OS/2 Physical Device Driver
(PDD). PDDs are the only type of drivers that can interface directly with
adapter or system hardware. Chapter 5 discussed the various parts and design
of an OS/2 PDD. This chapter will bring the parts together to form a PDD that
can be loaded and tested under OS/2.

Device Driver Specifications

The requirement for this device driver is to perform I/O to an 8-bit parallel port,
a common requirement. Although this device driver is designed for the 8255
parallel chip, it can easily be modified for any other type of 8-bit parallel
adapter. This driver performs the I/O using the standard DosRead and
DosWrite, and also shows how to perform the I/O using IOCtls. It is a good
example of handling the differences between standard device driver request and
IOCtls.

Parallel adapters are frequently used for reading switches or other pieces of
hardware which cause single bits to be set or clear. I’ve added an additional
function to this device driver to show how an OS/2 device driver can be written
to wait for a single bit to be set or clear without using interrupts or
compromising system performance. Writing a similar device driver under DOS
would be simple. Since DOS runs only one program at a time, the program
could wait around forever for the particular bit to be set. OS/2, however, runs
many programs at the same time, and cannot afford to wait around for a bit to
be set while keeping all other programs dormant. To accomplish this without
polling, the OS/2 device driver hooks a timer interrupt, and reads the port at
every tick of the OS/2 system clock (31.25 milliseconds). Between each clock
tick, the driver is either idle or blocked by an application request, so other
threads continue to run.

144

It is important to note that the amount of memory available for the stack in a
device driver is extremely small, approximately 4K bytes, so it is important to
keep the amount of local variables at a minimum.

The complete listing of this device driver can be found in the Appendix C.

Application Program Design

When the application is first started, it opens the device driver with a DosOpen
API call described in Figure 7-1.

.

.
if ((RetCode=DosOpen("DIGIO$",
 &digio_handle,
 &ActionTaken,
 FileSize,
 FileAttribute,
 FILE_OPEN,
 OPEN_SHARE_DENYNONE | OPEN_FLAGS_FAIL_ON_ERROR
 | OPEN_ACCESS_READWRITE,Reserved)) !=0)
 printf("\nopen error = %d",RetCode);
.
.

Figure 7-1. Application call to open the driver.

If successful, the DosOpen call returns a handle to the application which it can
use for subsequent access to the device driver. A handle is nothing more than a
special cookie that OS/2 uses to allow access to a particular driver.

Device Driver Operation

Refer to the device driver source code in Appendix C. Note the Device Header
and the name assigned to the driver. For this example, the driver name has been
assigned DIGIO$. The name must be eight characters in length, and must be

145

space-padded for up to eight character positions. The ‘$’ character was used in
case a file or directory had the same name as the driver, for instance
\drivers\digio.

INIT

In the INIT section in Figure 7-2, the DevHlp routine SetTimer is called to
register the timer handler we will use to periodically check a bit from the
parallel port. If the SetTimer call fails, the driver returns a failure to the kernel
and gives up the memory it had occupied during initialization. If the call was
successful, the driver displays a sign-on message and returns the DONE status
to the kernel. The INIT section also initializes the 8255 parallel chip to setup
port address base'0 as the read-port address, and base'1 as the write-port
address.

As soon as the timer handler is registered, the timer handler begins receiving
timer interrupts every 31.25 milliseconds. The ReadID variable is used to ignore
timer interrupts when no driver requests are pending.

146

int Init(PREQPACKET rp)
{
 // store DevHlp entry point

 DevHlp = rp->s.Init.DevHlp;

 // install timer handler

 if(SetTimer((PFUNCTION)TIMER_HANDLER)) {

 // if we failed, effectively deinstall driver with cs+ds=0

 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(FailMessage),FailMessage);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

 // configure 8255 parallel chip

 outp (DIGIO_CONFIG,0x91);

 // output initialization message

 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1, strlen(InitMessage1), InitMessage1);
 DosPutMessage(1, strlen(InitMessage2), InitMessage2);

 // send back our code and data end values to os/2

 if (SegLimit(HIUSHORT((void far *) Init),
 &rp->s.InitExit.finalCS) || SegLimit(HIUSHORT((void far *)
 InitMessage2), &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

Figure 7-2. INIT section.

OPEN

When the application program is started, it issues a DosOpen call to the kernel,
which routes it to the driver via an OPEN Request Packet. If the DosOpen is
successful, the kernel returns a handle to the application for subsequent driver
access. When the driver receives the OPEN Request Packet (see Figure 7-3), it
checks to see whether the driver had been opened prior to this call. This might
happen if more than one thread of an application opened the driver. If the driver
had not been opened, it gets the PID of the opening program and saves it for

147

later use. It then bumps the open counter and returns DONE to the kernel. The
DONE status with no errors is mapped to the standard “no error” return to the
DosOpen call, and returned to the application. If the open count was greater
than zero, the PID of the opening program is compared to the previously saved
PID to see if they are the same. If the new PID is not the same as the old PID,
the request is rejected by sending the BUSY status back to the kernel. The
kernel maps the return to a standard return code and sends that code to the
application as a failure. In all cases, whether errors occurred or not, the driver
must return with the DONE status.

case RPOPEN: // 0x0d open driver

 // get current processes' id

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // get process info

 liptr = *((PLINFOSEG far *) ptr);

 // if this device never opened, can be opened by anyone

 if (opencount == 0) // first time this dev opened
 {
 opencount=1; // bump open counter
 savepid = liptr->pidCurrent; // save current PID
 }
 else
 {
 if (savepid != liptr->pidCurrent) // another proc
 return (RPDONE | RPERR | ERROR_NOT_READY);//err
 ++opencount; // bump counter, same pid
 }
 return (RPDONE);

Figure 7-3. OPEN section.

CLOSE

The driver will receive a close Request Packet as a result of a DosClose API
call from the application, or from the kernel in the event that the application
was terminated by a <cntl-c>, <cntl-break> or other fault. In the CLOSE
section (see Figure 7-4), the driver checks the PID of the closing application to

148

make sure that it has the same PID as the program that opened it. If not, the
request is rejected by returning an error to the kernel. If it is the same, it was a
valid close request, so the driver decrements the open counter and returns the
DONE status to the kernel.

case RPCLOSE: // 0x0e DosClose,ctl-C, kill

 // get process info of caller

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // get process info from os/2

 liptr= *((PLINFOSEG far *) ptr); // ptr to linfoseg

 //
 make sure that the process attempting to close this device
 is the one that originally opened it and the device was
 open in the first place.

 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 --opencount; // close counts down open cntr
 return (RPDONE); // return 'done' status

Figure 7-4. CLOSE section.

IOCtls

The IOCtl Request Packets are received as a result of a DosDevIOCtl API call
from the application. In this example, the driver supports three IOCtls. They are
read a byte from a port, write a byte to a port, and read a port with wait.

The IOCtl section first checks to make sure that the category is correct for this
driver. Each device driver should have its own category, assigned by the driver
writer. Categories from 0 to 127 are reserved for OS/2, and categories 128-255
are available for use by special drivers. You should avoid using category 128,
however, as this category is sometimes used by OS/2 for drivers such as
VDISK.SYS or OEMHLP. There are some cases where the category of a
device driver might be the same as the category for an existing OS/2 device

149

driver. An example would be a driver that replaced the COM01.SYS or
COM02.SYS serial driver, or one that augmented an existing device driver. An
example of this might be a device driver that adds support for COM5-COM12.
Since certain IOCtls of a particular category are used to perform operations
such as setting parity, changing the baud rate or the character length, the
replacement driver should support the same number and type of IOCtl requests.

If the category is not valid, the driver returns the DONE status to the kernel
without performing any operations. It is generally acceptable to ignore
unrecognized IOCtl requests, because the kernel will, from time to time, issue
IOCtls to your driver which your driver does not support.

If the category is valid, the driver checks the IOCtl function code.

CASE 0x01

If the IOCtl request is a 1, the write-port function has been requested (see
Figure 7-5). The driver calls the DevHlp routine VerifyAccess with the virtual
address of the IOCtl parameter buffer to verify that the caller owns the memory
that it points to. It also checks to see that the application has the correct read
and write privileges. If the address is valid, the driver copies the byte to be
output from the application, using a simple virtual-to-virtual copy. Using the
standard run-time library routine outp, the driver writes the byte to the
particular port. The driver then sends the DONE status back to the kernel and
exits.

150

 case 0x01: // write byte to digio port

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters), // selector
 OFFSETOF(rp->s.IOCtl.parameters), // offset
 1, // 1 byte
 0)) // read only
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if(MoveBytes(rp->s.IOCtl.parameters,(FARPOINTER)&output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 outp(DIGIO_OUTPUT,output_char); //send to digio

 return (RPDONE);

Figure 7-5. IOCtl 0x01, write port.

CASE 0x02

If the IOCtl code was 2, read with wait, the driver performs the identical
operations to the previous IOCtl (see Figure 7-6). In this IOCtl, the application
sends the driver a bit to wait for, and the driver will not return until that
particular bit becomes set.

First, the driver verifies the IOCtl virtual buffer pointer to make sure that the
application owns the memory. Note that in this particular IOCtl, the data buffer
pointer was used and not the parameter buffer pointer. The data buffer contains
not only the port address to read from, but the space for the data read by the
driver. Either buffer area can be used for reading or writing data. In this case,
the data buffer was used for read IOCtls and the parameter buffer was used for
write IOCtls. Which buffers are used and how they are interpreted is entirely up
to the driver writer.

Since the driver will Block until completion, it must lock down the applications
buffer to ensure it is still there when the driver is UnBlocked. Otherwise, the
buffer addresses previously UnBlocked might not be valid due to swapping.
Once the memory has been verified and locked, the data is transferred from the
application to the driver. In this driver, the data is only one byte in size, which
contains the bit to wait for. Next, the variable ReadID is cast to a ULONG of

151

the Request Packet pointer to be used as an ID for the DevHlp Block call. The
driver then Blocks with a -1L for a time-out, which indicates that the driver will
wait forever (no timeout). When the Block returns, it was either the result of a
signal, such as <cntl-c>, or a call to the DevHlp Run routine with the same 32-
bit ID used for the Block. The driver checks the return code from the Block. If
the error code is a 2, which means a <cntl-c> caused the return from the Block,
the driver returns ERROR_CHAR_CALL_INTERRUPTED to the kernel. If
the error code was not a 2, the driver assumes that it was a valid Run call that
caused the driver to become UnBlocked. The driver copies the result of the port
read to the application, UnBlocked the caller’s memory and returns the DONE
status to the kernel. How the data is actually read from the I/O port is detailed
in the Timer Handler section in Figure 7-9. The driver copies the result of the
port read to the application.

Note that, in this IOCtl, the device driver locked the application’s buffer to
prevent it from being swapped out. This is necessary when the device driver
issues a DevHlp Block request, but is not necessary in the other two IOCtls,
where no Blocking occurs.

case 0x02: // read byte w/wait from port

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 1, // 1 bytes)
 0)) // read only
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 1, // lock forever
 0, // wait for seg loc
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if(MoveBytes(rp->s.IOCtl.parameters,(FARPOINTER)&input_mask,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // wait for bit to be set

 ReadID = (ULONG)rp;
 if (Block(ReadID,-1L,0,&err))

152

 if (err == 2)
 return(RPDONE | RPERR | ERROR_CHAR_CALL_INTERRUPTED);

 // move result to users buffer

 if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

Figure 7-6. IOCtl 0x02.

CASE 0x03

The purpose of this case is to provide a read without wait (see Figure 7-7).
Instead of waiting for a bit to be set as in IOCtl 0x02, this IOCtl returns
immediately with the value of a port. Instead of Blocking, the driver calls the
run-time library routine inp to get the contents of the port and sends the data
back to the application.

case 0x03: // read byte immed digio port

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 1, // 1 byte
 0)) // read only
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 input_char = inp(DIGIO_INPUT); // get data

 if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

Figure 7-7. IOCtl 0x03.

153

READ and WRITE

The READ and WRITE sections are entered as the result of a DosRead or
DosWrite standard driver request from the application. The use of the standard
read and write requests in Figure 7-8 is shown as an example to contrast the
differences of the standard READ and WRITE functions with the IOCtl read
and write functions. The READ section performs the exact same operation as
the IOCtl function 0x03, read without wait, and the WRITE section does the
same for IOCtl function 0x01, write a byte. Either call will perform the same
operation. Instead of issuing an IOCtl request to write a byte to a port, the
application can issue a DosWrite with the byte to be written. Instead of issuing
an IOCtl function 0x03, the application can issue a DosRead.

The standard READ and WRITE sections are slightly different than their IOCtl
counterparts. First, the application’s buffer address in the Request Packet is the
physical address, not the virtual address, and second, OS/2 verifies and locks
the buffer segment prior to calling the device driver. Since our data transfer
routine requires virtual pointers, the device driver calls the PhysToVirt DevHlp
to convert the physical address to a virtual address and the data is transferred.

case RPREAD: // 0x04

 rp->s.ReadWrite.count = 0; // in case we fail

 input_char = inp(DIGIO_INPUT);// get data

 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if (MoveBytes((FARPOINTER)&input_char,appl_ptr,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 rp->s.ReadWrite.count = 1; // one byte read
 return (RPDONE);

 case RPWRITE: // 0x08

 rp->s.ReadWrite.count = 0;

 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if (MoveBytes(appl_ptr,(FARPOINTER)&output_char,1))

154

 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 outp (DIGIO_OUTPUT,output_char); // send byte

 rp->s.ReadWrite.count = 1; // one byte written
 return (RPDONE);

Figure 7-8. READ and WRITE section.

Timer Handler

In CASE 0x02, the driver blocks waiting for a particular bit to be set before
returning to the caller. Other threads in the system will run only when the driver
completes its job and returns DONE to the kernel, or when the driver becomes
Blocked. Recall earlier that SetTimer was called to hook the OS/2 timer
interrupt, and that access to the timer handler was controlled by the variable
ReadID. In CASE 0x02, the ReadID was set to a ULONG cast of the Request
Packet pointer. Since the ReadID is no longer zero, each time that the timer
handler (see Figure 7-9) is entered, the driver can do an inp of the parallel port,
“and” it to the bit mask, and if non-zero, run the Blocked driver thread. The
input port value is checked every tick of the OS/2 system clock, or every 31.25
milliseconds. If the bit is not set, the driver will block forever until a <cntl-c> or
<cntl-break> is detected, or the bit finally becomes set. If set, the driver clears
the timer handler entry flag, ReadID. It then calls the Run DevHlp to UnBlock
the driver Strategy thread, which set the DONE status in the Request Packet
and returns to the OS/2 kernel.

timr_handler()
{

 if (ReadID != 0) {

 // read data from port

 input_char = inp(DIGIO_INPUT);// get data

155

 if ((input_char && input_mask) !=0) {
 Run (ReadID);
 ReadID=0L;
 }
 }
}

Figure 7-9. Timer handler.

157

Chapter 8 - The Micro Channel Bus

The Micro Channel bus is found on most IBM PS/2 machines and on Micro
Channel machines supplied by other manufacturers such as Reply and NCR.
The Micro Channel bus provides increased speeds, interrupt sharing, full 32-bit
data path and increased noise immunity. Current specifications for Micro
Channel II provide for transfers at speeds of 160MB per second.

Micro Channel Adapter Cards

Micro Channel adapters have no interrupt or address jumpers. Information
about the adapter, such as interrupt level and memory-mapped address, is
stored on the board in a set of nonvolatile registers called the Programmable
Option Select, or POS, registers. The information stored in the POS registers is
either factory-set or configured by a setup disk supplied by the manufacturer.
On an IBM PS/2, this is usually done with the IBM PS/2 Reference Diskette.

The POS registers are not directly accessible to a program, so the driver can’t
get at them by doing simple “IN” and “OUT” instructions. A special
programmable switch must be set to allow direct register access to the
configuration program. The driver must, however, get the contents of the POS
registers in order to configure itself properly. Once the POS registers are
“visible”, they can be accessed starting at I/O port address 0x100.

Normally, the driver accesses the POS registers using the PS/2 Advanced
BIOS, or ABIOS, routines. ABIOS is a set of BIOS routines that are
executable in the protect mode. ABIOS routines provide a device-independent
access to supported devices through a logical ID, or LID. The driver obtains a
LID from the ABIOS by a call to the GetLIDEntry DevHlp routine. Once the
driver has the LID, it can use the LID to access the board registers.

The Micro Channel bus is unique in that the position of each adapter in the
motherboard or planar is important. Unlike the ISA bus where boards can be

158

placed in any slot, each slot in the Micro Channel machine is addressable. For
this reason, calls to the ABIOS routines to read the POS registers of a
particular adapter must contain an argument specifying the slot number of that
adapter. Slot 0 is the planar, and the remaining slots are numbered starting at 1.
Some of the largest PS/2 models, such as the IBM PS/2 Model 80, contain 8
slots.

Micro Channel Adapter ID

Each I/O card has a unique ID number, assigned by the manufacturer. IBM
reserves IDs 8000-FFFF for its own use. These device ID numbers can be
found in the first two POS registers, 0 and 1. The low byte is in POS register 0,
the high byte in POS register 1. The rest of the POS register data is in POS
registers 2-5. Thus POS register 0 can be read with an input from port address
0x100, and POS register 1 can be read from address 0x101.

Beware of conflicting definitions. Since the card ID can’t be changed, the first
available POS register, which is actually POS register 2, is sometimes referred
to as POS register 0.

During driver INIT, it is a good idea to search the planar for a card with the
correct ID for the device driver before trying to initialize the driver. Once an
adapter is found, the POS registers of the adapter can be accessed. ABIOS
requests must be formatted into a special structure called an ABIOS Request
Block. Refer to the IBM Personal System/2 BIOS Interface Technical
Reference for more detailed information on ABIOS Request Blocks and the
various types of ABIOS requests.

Since device drivers for the Micro Channel bus differ slightly from their ISA bus
counterparts, it is sometimes advantageous to write one device driver that will
handle both a Micro Channel and ISA version of a particular adapter. The
driver can check to see if the machine has a Micro Channel bus, and if so, read
the required driver configuration information from the POS registers. If the
machine has an ISA bus, the driver can set hard-coded values for the driver
configuration parameters, or can read them from the DEVICE= statement in the

159

CONFIG.SYS entry for the driver. Recall from Chapter 6 that one of the
pointers sent in the INIT request packet is the address of the parameters from
the DEVICE= line in CONFIG.SYS. This allows the user with an ISA bus
system to enter a line such as “DEVICE=DRIVER.SYS 3E8 D8000” in the
CONFIG.SYS file, where 3E8 is the base port address and D8000 is the
memory-mapped adapter address. The driver can parse the parameters, convert
them to numeric values, and use them in the driver as actual configuration
parameters.

The code shown in Figure 8-1 shows how to determine whether the system has
a Micro Channel or ISA bus, and if Micro Channel, how to search the bus for a
particular device ID and read its POS registers. If the system has an ISA bus,
the parameters are read from the DEVICE= line in CONFIG.SYS.

Note that the ABIOS command used to read the POS registers from the card is
READ_POS_REGS_CARD. This command specifies that the POS register
contents be read directly from the adapter. PS/2 computers keep a copy of the
current adapter configuration in NVRAM. When the system is powered up, the
Power On Self Test routine, or POST, checks the installed adapter IDs against
the current NVRAM configuration. If a difference is found, the POST issues an
error message on the screen directing the user to run the setup program.

Occasionally, a device driver may reprogram a Micro Channel adapter “on the
fly”. For example, assume the device driver had to perform Binary Synchronous
(BiSync) communications using a modem that could only dial using the High
level Data Link Control (HDLC) protocol. The IBM Multiprotocol Adapter, or
MPA is an example of an adapter that supports several modes of operation. It
supports asynchronous, BiSync and HDLC protocols, but its POS registers can
only be configured for one type of protocol at one time. The MPA adapter’s
mode of operation is determined by the POS register settings, which are
normally be changed only with the PS/2 Reference Diskette.

The device driver for this application rewrites the POS registers on the fly. The
device driver configures the adapter for normal BiSync operation and waits for
a command to dial a number. When a dial command is received, the driver saves
the contents of the MPA’s POS registers and writes the HDLC configuration

160

data to the POS registers. It initializes the HDLC controller, sends the dial
information to the modem using the HDLC protocol and waits for a connection.
When the modem is connected, the device driver rewrites the POS registers
with the previously saved POS register data, initializing it back to BiSync
operation. The result? Two adapters for the price of one.

// Ex.INIT section, combination ISA and MicroChannel bus driver

// This driver is loaded in the config.sys file with the DEVICE=
// statement. For ISA configuration, the first parameter to the
// "DEVICE=" is the base port address. The next parameter is the
// board base address. All numbers are in hex. For Micro Channel
// configuration, the board address and port address are read
// from the board POS regs.
//

PHYSADDR board_address; // base board address
USHORT port_address; // base port address
USHORT bus = 0; // default ISA bus
REQBLK ABIOS_r_blk; // ABIOS request block
LIDBLK ABIOS_l_blk; // ABIOS LID block
USHORT lid_blk_size; // size of LID block
CARD card[MAX_NUM_SLOTS+1];// array for IDs and POS reg
CARD *pcard; // pointer to card array
USHORT matches = 0; // match flag for card ID
USHORT port1,port2; // temp variables for addr calc

char NoMatchMsg[] = " no match for DESIRED card ID found.\r\n";
char MainMsgMCA[] = "\r\nOS/2 Micro Channel (tm) Device
Driver installed.\r\n";
char MainMsg[] = "\r\nOS/2 ISA Device Driver installed.\r\n";

// prototypes

int hex2bin(char);
USHORT get_POS();
UCHAR get_pos_data();
.
.
* Device Driver Strategy Section Here *
.
.
int hex2bin(char c)
{

if(c < 0x3a)
return (c - 48);

else
return ((c & 0xdf) - 55);

161

}

USHORT get_POS(USHORT slot_num,USHORT far *card_ID,
 UCHAR far *pos_regs)
{
USHORT rc, i, lid;

 // get a POS LID

 if (GetLIDEntry(0x10, 0, 1, &lid))
 return (1);

 // Get the size of the LID request block

 ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
 ABIOS_l_blk.f_parms.LID = lid;
 ABIOS_l_blk.f_parms.unit = 0;;
 ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
 ABIOS_l_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_l_blk.f_parms.time_out = 0;

 // make the actual ABIOS call

 if (ABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
 return (1);

 lid_blk_size = ABIOS_l_blk.s_parms.blk_size;

 // Fill POS regs with 0 and card ID with FF

 *card_ID = 0xFFFF;
 for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] = 0x00; };

 // Get the POS registers and card ID for the commanded slot

 ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
 ABIOS_r_blk.f_parms.LID = lid;
 ABIOS_r_blk.f_parms.unit = 0;;
 ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
 ABIOS_r_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_r_blk.f_parms.time_out = 0;

 ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & 0x0F;
 ABIOS_r_blk.s_parms.pos_buf = (void far *)pos_regs;
 ABIOS_r_blk.s_parms.card_ID = 0xFFFF;

 if (ABIOSCall(lid,0,(void far *)&ABIOS_r_blk))
 rc = 1;
 else {
 *card_ID = ABIOS_r_blk.s_parms.card_ID;// fill in ID
 rc = 0;
 }

162

 // give back the LID

 FreeLIDEntry(lid);
 return(rc);

}

UCHAR get_pos_data (int slot, int reg)
{
 UCHAR pos;
 CARD *cptr;

 cptr = &card[slot-1]; // set ptr to beg of array
 if (reg == 0) // card ID
 pos = LOUSHORT(cptr->card_ID);
 else
 if (reg == 1)
 pos = HIUSHORT(cptr->card_ID);
 else
 pos = cptr->pos_regs[reg-2]; // POS data register
 return (pos);
}

// Device Initialization Routine

int Init(PREQPACKET rp)
{
 USHORT lid;

 register char far *p;

 // store DevHlp entry point

 DevHlp = rp->s.Init.DevHlp;// save DevHlp entry point

 if (!(GetLIDEntry(0x10, 0, 1, &lid))){// get LID for POS
 FreeLIDEntry(lid);

 // Micro Channel (tm) setup section

 bus = 1; // Micro Channel bus

 // Get the POS data and card ID for each of 8 slots

 for (i=0;i <= MAX_NUM_SLOTS; i++)
 get_POS(i+1,(FARPOINTER)&card[i].card_ID,
 (FARPOINTER)card[i].pos_regs);

 matches = 0;
 for (i=0, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++){
 if (pcard->card_ID == DESIRED_ID) {

163

 matches = 1;
 break;
 }
 }

 if (matches == 0) { // no matches found
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(NoMatchMsg),NoMatchMsg);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

 // calculate the board address from the POS regs

 board_address = ((unsigned long) get_pos_data(i+1, 4)
 << 16) | ((unsigned long)(get_pos_data(i+1, 3) & 1) << 15);

 // calculate the port address from the POS regs data

 port1 = (get_pos_data(i+1, 3) << 8) & 0xf800;
 port2 = (get_pos_data(i+1, 2) << 3) & 0x07e0;
 port_address = (port1 | port2);

 }
 else
 {
 // ISA bus setup
 bus = 0; // ISA bus

 // get parameters, port addr and base mem addr

 for (p = rp->s.Init.args; *p && *p != ' ';++p);
 for (; *p == ' '; ++p); // skip blanks after name
 if (*p)
 {
 port_address = 0;
 board_address=0; // i/o port address
 for (; *p != ' '; ++p) // get port address
 port_address = (port_address << 4) + (hex2bin(*p));
 for (; *p == ' '; ++p); // skip blanks after address
 for (; *p != '\0'; ++p) // get board address
 board_address = (board_address << 4) + (hex2bin(*p));
 }
 }

 if (bus)
 DosPutMessage(1,strlen(MainMsgMCA),MainMsgMCA);
 else
 DosPutMessage(1,strlen(MainMsg),MainMsg);

 // send back our end values to os/2

164

 if (SegLimit(HIUSHORT((void far *) Init),
 &rp->s.InitExit.finalCS) ||
 SegLimit(HIUSHORT((void far *) MainMsg),
 &rp->s.InitExit.finalDS))
 Abort();

 return (RPDONE);
}

Figure 8-1. ISA and Micro Channel INIT section.

Accessing the POS Register During Debug

While debugging an OS/2 Micro Channel device driver, it is sometimes
necessary to access the POS registers directly without using the ABIOS
routines. Under OS/2, the driver should always use the ABIOS routines to
access the POS registers, as they serialize access to the adapter. During debug,
however, the POS register contents can be checked by using simple IN and
OUT instruction from the kernel debugger.

The -CD SETUP line, which enables the POS registers, is controlled by a
register at I/O port address 96h. The POS registers for a particular card are
enabled by performing an OUT 96h,(slot+7), where the slot is 0 for the
motherboard and 1-8 for one of up to eight slots. Once a particular slot is
enabled, the POS registers are visible with simple IN instructions. The POS
registers are at the base address of 100h. POS register 0, which is the least
significant bit of the adapter ID, can be read by an IN 100 command issued by
the kernel debugger (see Chapter 13). POS register 1, the most significant byte
of the adapter ID, can be found at address 101h. Other POS register data,
which might contain such things as the adapter interrupt level, DMA arbitration
level, or memory map, begins at address 102h. Only one slot can be enabled at a
time. The -CD SETUP line is disabled by performing an OUT 96h,0.

Micro Channel Interrupts

165

Interrupts on ISA bus machines are edge-triggered and cannot be shared. Once
an ISA bus adapter registers for a particular interrupt level, another driver
cannot gain access to the same interrupt level. Device drivers that run on ISA
bus machines must own their interrupt or interrupts exclusively, which severely
limits the extendibility of ISA bus systems. With over half of the interrupts
already assigned to system components such as the timer, hard disk, and floppy
disk, not many interrupts are left over for other adapters.

Under OS/2, the Micro Channel bus supports interrupt sharing of up to four
adapters on the same interrupt level. Micro Channel device drivers can register
for an interrupt level even if another device driver had previously signed up for
it. This requires some minor changes in device driver design for the two
different bus architectures. In a Micro Channel device driver, when registering
the interrupt level with the SetIRQ call, the nonexclusive option is used so the
interrupt may be shared. In an ISA bus device driver, the exclusive option is
used because interrupts cannot be shared. In addition, the interrupt handler
needs to be modified slightly to claim or “pass on” the interrupt to the next
interrupt handler. A flowchart showing the differences between an ISA bus
interrupt handler and a Micro Channel interrupt handler is shown in Figure 8-2.

166

Figure 8-2. Micro Channel vs. ISA bus interrupt handler.

Since any one the four adapters on a single interrupt level can cause an
interrupt, the device driver’s interrupt handler must have a way to tell the kernel
that it accepts or denies responsibility for the interrupt. If the interrupt does not
belong to this particular interrupt handler’s device, the interrupt handler must
set the carry flag (STC), and return to the kernel. If the interrupt belongs to the
particular device, the interrupt handler must claim the interrupt by clearing the
carry flag before returning to the kernel. If the kernel finds the carry flag set, it
will call each of the interrupt handlers that have registered for that particular
interrupt until one of the handlers claims the interrupt by clearing the carry flag.
If the interrupt is not claimed, OS/2 will continue to call the registered interrupt
handlers until one of them claims the interrupt by clearing the carry flag.

167

Chapter 9 - OS/2 Warp Virtual Device Drivers

One of the shortcomings of OS/2 1.x was its inability to run DOS applications.
Many of these DOS applications were written for the IBM PC and IBM XT
computers, which were, by today’s standards, fairly slow machines. To provide
acceptable performance, these programs frequently accessed the system
hardware and peripherals directly without using the BIOS or DOS system
services. For example, instead of writing to the display with a DOS int system
call, most programs wrote directly to video memory. Game programs frequently
used processor-speed-dependent timing loops for making sounds or pausing
between messages and screens. Other DOS programs reprogrammed the system
timer circuit to generate voice-like sounds from the computer’s speaker.

Figure 9-1. OS/2 Warp VDMs.

DOS programs can write to any memory location without checking to see if
that location is valid or being used by another program. A programming error
under DOS will, at the worst, cause the system to crash and have to be
rebooted. This is not generally a problem, as only one program can be running
at one time. With OS/2, however, a system crash could represent a major
problem, as many programs could be running at the time of the crash. The result
could be a loss of data, corrupt files, and a host of other problems.

168

To accommodate DOS applications, OS/2 1.x used a real mode session,
referred to as the compatibility box, to run well-behaved DOS applications.
Well-behaved DOS applications are those that do not directly manipulate the
system hardware or devices, but use DOS system calls to perform their required
operations. OS/2 1.x allowed only one real mode session to be active at one
time. When the DOS program was running, the processor was in real mode, so
a defective DOS application could still bring down the entire system. When the
DOS session was switched to the background, it was frozen in its current state
to prevent it from bringing down the system while an OS/2 application was
running.

The Virtual DOS Machine

The Intel 80386 and 80486 processors have a built-in feature that allows real
mode programs to run in their own one megabyte address space, isolated from
the rest of the programs running on the system. This special mode is called the
Virtual 8086 or V86 mode, and is used by OS/2 Warp to run DOS applications
in their own DOS Session. In OS/2 jargon, a DOS session in the V86 mode of
the processor is called a Virtual DOS Machine, or VDM. OS/2 can support a
large number of DOS VDMs, and the capability to do that is referred to as
Multiple Virtual DOS Machines, or MVDMs.

DOS programs run in their own VDM without knowledge of other programs
running in the system. The V86 mode is a protected mode of operation, and it
will terminate the DOS session if it attempts a memory reference outside of its
own one megabyte space. In the V86 mode, an errant DOS application can
trash its own DOS session, but cannot bring down the rest of the system.

DOS programs that write directly to system hardware or devices are permitted
to run in a DOS session. The DOS application does not have to be modified,
but can run “out of the box.” When the DOS program attempts to write directly
to the system hardware or a system device, the operation is trapped by the
kernel and routed to a Virtual Device Driver, or VDD. The VDD is a special
driver that emulates the functions of a particular hardware device, such as the
system timer, interrupt controller or communications port. The DOS application

169

sees the VDD as the actual device, but direct access to the device is actually
performed through a Physical Device Driver (PDD).

The PDD performs the actual I/O and passes the results to the VDD, which in
turn sends the results back to the DOS application. OS/2 Warp is supplied with
a set of VDDs that virtualize the standard system device services such a DMA,
timer, COM ports, video, and PIC.

When VDDs are loaded at boot time, the VDD claims ownership of the system
resources it is responsible for while running in a VDM. The VDD can hook all
I/O associated with a particular port or the interrupts associated with a
particular IRQ. For example, the virtual COM driver, VCOM.SYS, claims
ownership of I/O address 0x3f8, which is the address of COM1. A DOS
program that attempts to perform direct I/O to 0x3f8 will be trapped by the
COM VDD. The VDD must emulate the actual hardware device, and make the
DOS application believe its talking directly to the device.

If a DOS program attempts to access an I/O port which has not been claimed by
a VDD, it is allowed to perform that I/O directly without going through a
VDD. The DOS application can turn interrupts off, although OS/2 will turn the
interrupts back on if the DOS program leaves them off too long.

If an adapter can be shared by a protect mode application and a DOS
application, a VDD should always be used to perform DOS I/O. Before
performing I/O to the adapter, the VDD should first ask the PDD for
permission to do so. The PDD and VDD should serialize access to the common
adapter.

Although VDMs can run DOS applications that access hardware directly, there
are some limitations. Existing DOS block device drivers for disk and tape
cannot be used in the standard VDM. For character drivers, only those that
perform I/O by polling can be used. Standard DOS drivers for the clock and
mouse are not permitted to be used. DOS INT 21 requests are formatted into a
standard OS/2 Request Packets and sent to the PDD for disposition.

170

VDMs, in which a specific version of DOS has been booted, can utilize existing
DOS block device drivers. The block device should not be accessible to protect
mode applications, so it must be dedicated to DOS operation.

Since versions of DOS differ in functionality, a DOS Setting is provided to
specify which version of DOS should be booted instead of the built-in DOS
emulator.

VDDs are loaded at system boot time, after any PDDs have been loaded and
before the PM shell is started. The system first loads the base VDDs which are
shared by multiple DOS sessions, such as the video virtual device driver, and
then loads the installable VDDs from the DEVICE= line in CONFIG.SYS.
Global code and data objects are loaded into low system memory to allow the
PDD to call the VDD at interrupt time, regardless of the current process
context. After the VDD is loaded, the VDDInit entry point is called to see if the
load was performed without error. If so, the VDD returns TRUE, and if not,
FALSE.

Virtual Device Drivers use a set of C callable helper routines, called the Virtual
Device Helper (VDH) to perform their operations. Unlike the PDD DevHlps,
which are register-based, the VDH routines are C callable, and exist in a DLL.
They use the 32-bit C calling convention.

VDD Architecture

The VDD is nothing more than a 32-bit DLL, which must contain at least one
of the following objects:

• swappable global data
• swappable instance data
• resident global code
• resident global data
• resident instance data

The VDD may also contain the following objects:

171

• initialization code
• initialization data
• swappable global code

A VDD that does not communicate with a PDD does not need a resident object
section. Run-time memory can be private or shared. The typical VDD has a
global code object, global data object, and a private instance data object.

VDDs are loaded by the DOS emulation component after all of the PDDs have
been loaded. When the VDD is loaded, the VDD entry point is called by OS/2
to initialize the VDD. The entry point of the DLL is defined by writing a small
assembly language program, which calls the DLL initialization entry point. The
last statement in the assembly language program should be an END statement,
with the parameter to the END statement being the name of the entry point. If
the name of the VDD initialization entry point is, for example, VDDInit, the last
statement in the assembly language routine should be END VDDInit. The IBM
C Set/2 Compiler now supports the pragma entry keyword which is used to
specify the initialization entry point for VDDs written in C.

After the VDD is loaded, the VDD entry point is called to see if the load was
performed without error. If it was, the VDD returns TRUE, if not, the VDD
returns FALSE.

VDD Initialization

The VDD performs initialization in a manner similar to the PDD. It verifies the
presence of the hardware device, establishes contact with the corresponding
PDD, reserves regions of linear memory containing device ROM and/or RAM,
saves the current state of the device, and finally, sets hooks for DOS session
events, such as session create, session destroy, and foreground/background
switch requests. VDDs cannot make Ring 3 calls during initialization, and must
use the Virtual Device Helper routines.

172

When a DOS session is started, the DOS Session Manager calls the VDD,
allowing it to perform a per-DOS session initialization. The VDD allocates
memory regions and passes control to the DOS emulation kernel, which loads
the DOS shell, usually COMMAND.COM. The DOS emulation kernel then
calls the VDD session creation entry points, allowing the VDD to set up aliases
to physical memory, and optionally to allocate a block of memory between
256K and RMSIZE for a LIM 4.0 alias window.

When a DOS session is started, the DOS Session Manager calls each VDD that
has registered a DOS session create hook. This allows VDDs to perform a per-
DOS-session initialization. Control is then passed to the DOS emulation kernel,
which loads the DOS shell, usually COMMAND.COM. At DOS session
creation, the VDD may also:

• initialize the virtual device state.
• initialize the ROM BIOS state.
• map memory.
• hook I/O ports.
• enable/disable I/O port trapping.
• hook the software interrupts.
• allocate per-DOS session memory.

The OS/2 Session Manager notifies the DOS Session Manager if the session is
being switched. The DOS Session Manager notifies any VDD that has
registered to get this event via the VDHInstallUserHook VDH call. Depending
on the VDD type, different actions will be taken. In the case of the virtual video
device driver, VVIDEO, the driver will appropriately disable or enable I/O port
trapping for the video board and re-map the physical video memory to logical
memory. The video will continue to be updated, but in logical video memory.
When the session is switched back to the foreground, the logical memory is
written to the physical video memory to update the display.

When the DOS session is exited, the VDD must perform any clean-up that is
necessary. This usually includes releasing any allocated memory and restoring
the state of the device. The VDD termination entry points are called by the
DOS Session Manager at DOS program termination time.

173

OS/2 Warp Virtual Device Drivers may only call OS/2 Warp Physical Device
Drivers that contain the “new level” bits. Older PDDs will return an error if
called by a VDD. When a new level PDD receives an IOCtl, it must check the
InfoSeg to determine whether it was called by a DOS session. If it was, it
assumes that any pointers passed in IOCtl packets are in segment:offset format,
computes the linear address directly (segment << 4 + offset) and then uses the
LinToGDTSelector to make a virtual address.

DOS Settings

OS/2 Warp allows users to customize the configuration of a DOS session.
Using the DOS Settings, the user can adjust certain DOS session parameters via
the Desktop Manager’s Settings menu for the DOS session. Device drivers
must call the VDHRegisterProperty routine to register their settings. A VDD
can call VDHQueryProperty at DOS session creation to get the value of the
current DOS settings. The user can also change some of the settings while the
DOS session is running, via a settings dialog box. The standard DOS settings
are shown in Table 9-1.

Table 9-1. DOS Settings

Property Type Operation

BREAK BOOLEAN Controls <cntl-c> checking in the INT 21
path

FCBS INTEGER Controls use of FCBs by errant DOS
applications

DEVICE STRING Specifies a DOS character driver
SHELL STRING Specifies the command interpreter
RMSIZE INTEGER Specifies size of DOS memory arena

174

DOS Settings Registration

At initialization time, the Virtual Device Driver must register any settings that it
will need. This information is stored in the kernel, and used to support all
property-related operations (see Table 9-2).

Table 9-2. DOS Settings Information

Name The property name presented to the user.
The settings should have common prefixes
so that they appear sorted together.

Ordinal The ordinal of the function independent of
the name string.

Type The property type. Boolean, integer,
enumeration, and single and multiple line
strings are supported.

Flags Flags control aspects of the property, i.e.,
whether or not they can be changed while
the DOS session is running.

Default Value The value used if the user does not supply
one.

Validation Information This information allows the user interface
to validate property values before sending
them to the device driver.

Function This function is used for validating string
settings, and for notifying the VDD when
the user has changed a property for a
running DOS session.

Since many VDDs virtualize or “mimic” hardware that generates interrupts,
these drivers will generally have to interact with a PDD. The VDD uses the
VDHOpenPDD VDH call to establish communication between the Virtual
Device Driver and the Physical Device Driver. The two drivers exchange entry

175

points, and are subsequently free to call each other using any type of protocol,
including register-based entry points. Both drivers should also be aware of the
shutdown protocol, in case the VDD has to shut down.

VDDs can call PDDs via the OS/2 file system by using the VDHOpen,
VDHWrite, VDHIOCtl, and VDHClose function calls. Using this method, a
VDD can communicate with an existing PDD without requiring modification of
the PDD.

VDDs support dynamic linking, and thus can pass data back and forth to other
VDDs via dynamic links. VDDs can also communicate with each other via the
VDHOpenVDD, VDHRequestVDD, and VDHCloseVDD Virtual Device
Helper routines.

The Virtual COM Device Driver

The Virtual COM Device Driver for OS/2 Warp, VCOM.SYS, allows for the
emulation and virtualization of the 8250/16450 UART. It provides support for
two virtual serial ports on ISA bus machines, and four ports on PS/2 and PS/2-
compatible systems. VCOM.SYS does not support the 16550 UART. Due to
the added overhead of context switching and system operation, the Virtual
COM Device Driver only guarantees error-free operation at 240 characters per
second, or about 2400 bits per second. DOS applications that access the I/O
hardware directly or through BIOS calls are supported.

The Virtual COM Device Driver “looks” like the 8250 UART, including
registers, modem lines, and interrupts. The DOS application sees the Virtual
COM Device Driver as the actual device. The Virtual COM Device Driver
contains the standard set of 8250/16450 port registers for access by the DOS
application. They are:

• Receive/Transmit Buffer and Divisor Latch
• Interrupt Enable and Divisor Latch
• Interrupt Identification
• Line Control

176

• Modem Control
• Line Status
• Modem Status
• Scratch

Interrupts supported by the Virtual COM Device Driver are:

• Line Status Interrupt
• Receive Data Available Interrupt
• Transmitter Empty Interrupt
• Modem Status Interrupt

Refer to Table 9-3 for a list of 8250/16450 registers supported by the Virtual
COM Device Driver.

Table 9-3. Virtualized 8250/16450 Registers

Name R/W Address Purpose

RBR R 03F8h Receive Buffer Register
THR W 03F8h Transmitter Holding

Register
DLL R/W 03F8h Low Divisor Latch
DLM R/W 03F9h High Divisor Latch
IER R/W 03F9h Interrupt Enable Register
IIR R 03FAh Interrupt Identification

Register
LCR R/W 03FBh Line Control Register
MCR R/W 03FCh Modem Control Register
LSR R 03FDh Line Status Register
MSR R 03FEh Modem Status Register
SCR R/W 03FFh Scratchpad Register

177

Adapters with serial ports must conform to this register configuration. For
UARTs with additional registers, I/O to those registers will be ignored by the
Virtual COM Device Driver. All register bits are compatible with the standard
bit assignments of the 8250/16450 UART.

Since interrupts are simulated, there is no physical PIC addressed by the Virtual
COM Device Driver. Rather, a simulated PIC, VPIC, is installed to arbitrate
interrupt priorities and to provide an End-Of-Interrupt port for those
applications that may issue an EOI directly to the PIC.

The Virtual COM Device Driver also supports access to the serial device via
INT 14h calls. The Virtual COM Device driver emulates the BIOS call,
returning the same information as though the BIOS routine was actually called.

When a character is received at the actual hardware, an interrupt is generated
and the PDD gets the character from the UART receive register. The PDD then
sends the character to the VDD for the waiting DOS application. When the
DOS application sends a character to a port, the Virtual 8086 Emulator traps
the operation and calls the VDD. The VDD, in turn, calls the PDD to output
the character to the actual device. Simulated interrupts, like their physical
counterparts, are not recognized if the interrupt system is disabled, and are only
emulated if the interrupt system is on. To maximize performance, the PDD does
not call the VDD at the receipt of every interrupt. Rather, it receives the
information that PDD device driver events have taken place, and determines
whether to continue simulating interrupts or take other action. For more
information on the Virtual COM Device Driver, please refer to the OS/2 Warp
Virtual Device Driver Reference.

The Virtual Timer Device Driver

The Virtual Timer Device driver provides support for DOS applications by
providing the following services:

• Virtualization of timer ports to allow reprogramming of the interrupt rate
and speaker tone.

178

• Distribution of timer ticks to all DOS sessions.
• Maintenance of the timer tick count in the ROM BIOS data area.
• Serialization of timer 0 and timer 2 across multiple DOS sessions.
• Arbitration of the ownership of timer 0 and timer 2 between the VDD and

the Clock PDD.

In DOS, timer 0 is used as the system timer, and set to interrupt every 18.2
milliseconds. This timer is used to update the time of day clock and time-out the
floppy disk drive motor on-off functions. DOS programs that need a higher tick
resolution frequently program timer 0 to a higher frequency. The DOS tick
handler intercepts the timer ticks and, at specified intervals, calls the system
clock routine so that the time-of-day clock value is not affected. Timer 1 is the
memory refresh timer and cannot be modified. Timer 2 is the speaker tone
generator, and can be programmed to generate different sounds and tones.
Timer 2 has two control bits, one to enable/disable the timer, and one to route
the output to the speaker.

Timer 0 ticks can be lost due to system loading, so the Virtual Timer Device
Driver continually compares the actual elapsed time with the per-session DOS
timer and updates it if necessary to make up for lost ticks. Every second, all of
the currently running DOS sessions have their times re-synchronized.

The hardware of timer 2 is virtualized, allowing it to be reprogrammed. The
registers appear to the DOS applications exactly the same as the 8254 CTC (see
Table 9-4).

Table 9-4. Virtualized Timer Registers

Description Port
Count word 0 40h
Count word 1 41h
Count word 2 42h
Count word 3 43h

179

See Table 9-5 for a list of timer registers supported by the Virtual Timer Device
Driver.

Table 9-5. Supported Virtualized Timer Registers

Count word 0 read virtualized
Count word 0 write virtualized
Count word 1 read virtualized
Count word 1 write ignored
Count word 2 read virtualized
Count word 2 write virtualized
Control word read virtualized
Control word write virtualized

The Virtual Disk Device Driver

The VDM supplies DOS applications with a DOS-compatible disk interface via,
the INT 13h DOS interrupt. The Virtual Disk Device Driver, VDSK, simulates
ROM BIOS for disk access. A list of supported INT 13h functions can be found
in Table 9-6.

180

Table 9-6. Virtualized INT 13 Functions

AH Function

00h Reset Diskette System
01h Status of Disk System
02h Read Sectors Into Memory (floppy and fixed disk)
03h Write Sectors From Memory (floppy disk)
04h Verify Sectors (floppy and fixed disk)
05h Format Track (floppy)
08h Get Current Drive Parameters (floppy and fixed disk)
15h Get Disk Type (floppy and fixed disk)
16h Change of Disk Status (floppy)
17h Set Disk Type (floppy)
18h Set Media Type for Format (floppy)

When a DOS application issues an INT 13h request, the request is trapped by
the Virtual Disk Device Driver, transformed into a Request Packet, and sent to
the disk PDD for processing. If the disk is currently busy, the PDD queues up
the request until it can process it. When the request can be completed, the PDD
notifies the Virtual Disk Device Driver, which unblocks the DOS session.

The disk VDD does not support direct register access to and from the disk
controller. Any attempts to perform direct I/O are trapped and ignored. Some
types of copy protection algorithms that are dependent on disk timing may fail.

Floppy disk access is allowed directly to the floppy disk controller hardware,
but only after the application gains exclusive access to the floppy disk drive.
When a DOS application gains access to the floppy disk, it disables all port
trapping and allows direct port access to the floppy controller (see Table 9-7).

181

Table 9-7. Virtualized Floppy Disk Ports

Port Function

3f0h Status Register A (PS/2 only)
3f1h Status Register B (PS/2 only)
3f2h Digital Output Register
3f7h Digital Input Register
3f7h Configuration Register
3f4h Controller Status Register
3f5h Controller Data Register

While the DOS session has access to the floppy disk, all interrupts from the
floppy disk controller are reflected to the owning DOS application. Even when
the DOS application has finished with the floppy disk, the ownership of the
floppy disk will remain with the original DOS application until another
application requests ownership.

The Virtual Keyboard Device Driver

The Virtual Keyboard Device Driver allows DOS applications that access to
keyboard to run without a change in the VDM. The Virtual Keyboard Device
Driver allows access to the keyboard, using the following methods:

• INT 21h. DOS applications can access the keyboard using the CON device
name, or get input from the stdin device.

• BIOS access via the INT 16h function.
• I/O port access, by reading and writing I/O ports 60h and 64h.

The Virtual Keyboard Device Driver must also handle the aspects of translation
and code page tables, performance, and idle detection for those applications
that poll the keyboard. When the physical keyboard driver receives an interrupt,
it sends that interrupt to the Virtual Keyboard Device Driver, which in turn

182

notifies the Virtual Programmable Interrupt Controller, or VPIC. The Virtual
Keyboard Device Driver must supply the key scan codes for those applications
that decipher the scan codes themselves. Setting the repeat rate is not
supported.

DOS applications frequently wait for a keyboard key to be pressed in a polling
loop. The Virtual Keyboard Device Driver detects an idle loop, and adjusts the
actual polling time as necessary. The driver increases the sleep between each
poll, allowing other programs in the system to run. When a key is hit, the time
between polls is reset to a short period, then increased as the inactivity
increases. The Virtual Keyboard Device Driver uses the VDHWaitVRR VDH
function to sleep in-between polls, and the DOS session is immediately woken
up if a key is pressed.

Normally, IRQ1 interrupts are channeled to the INT 09h interrupt service
routine, which is usually a BIOS routine that performs key translation. The
Virtual Keyboard Device Driver emulates the INT 09h BIOS routine, calling
the INT 15h handler for scan code monitoring, handling <cntl-break> (INT
18h), and Print Screen (INT 05h) processing.

The Virtual Mouse Device Driver

DOS applications that require a mouse are supported via the INT 33h interface,
which performs the following functions:

• position and button tracking
• position and button event notification
• selectable pixel and mickey mappings
• video mode tracking
• pointer location and shape
• emulation of a light pen

Operation of the virtual mouse driver is similar to other virtual drivers. The
mouse physical device driver is always aware of which session owns the mouse.
When a full-screen DOS session owns the mouse, the mouse PDD notifies the

183

virtual device driver of mouse events. If the DOS session is a windowed DOS
session, the mouse PDD routes the mouse events to the Presentation Manager,
which routes them to the virtual mouse device driver. The user may optionally
set the exclusive mouse access on in the DOS Settings for the DOS windowed
session. If so, events from the mouse PDD are sent directly to the mouse
VDD, bypassing the Presentation Manager. This property is used for
applications that track and draw their own mouse pointer.

The Virtual Line Printer Device Driver

The Virtual Line Printer Device Driver, VLPT, allows DOS applications access
to the parallel printer port via INT 17h BIOS calls. It also supports the BIOS
INT 05h print screen call. The VLPT supports up to three parallel controllers,
and virtualizes the data, status, control, and reserved ports of the printer
controller. The VLPT also provides a direct access mode for DOS programs
that control the parallel port hardware directly. When the VLPT recognizes that
a DOS application wishes to perform direct I/O to the parallel port, it requests
exclusive rights to the port from the parallel port PDD.

If another application tries to use the printer after the DOS application has
gained exclusive access to it, the access will fail. Print jobs from the spooler will
continue to be queued up until the requested parallel port becomes free.

The VLPT continues to handle the traps from the DOS application. The VLPT
also traps the IRQ enable bit from a DOS application attempting to enable the
parallel port IRQ. Interrupt transfers are not supported for the parallel port, so
the VLPT contains no interrupt simulation routines. The VLPT also detects
when a DOS application tries to change the direction bit, which is illegal on
non-PS/2 systems.

The Virtual Video Device Driver

The Virtual Video Device Driver, or VVIDEO, provides display adapter
support for DOS sessions. The VVIDEO driver communicates with the DOS

184

Session Window Manager, ensuring that the DOS window stays relatively
synchronized with the DOS application. Some parts of the DOS session
environment have been designed especially for the VVIDEO driver. They are:

• foreground/background notification hooks.
• freeze/thaw services.
• code page and title change notification hooks.

The VVIDEO driver is a base driver, loaded at boot time from CONFIG.SYS.
If the VVIDEO driver cannot be loaded at boot time, no DOS sessions will be
able to be started. The standard VVIDEO drivers support CGA, EGA, VGA,
XGA, and 8514/A adapters, and monochrome adapters as secondary display
adapters. All adapter memory sizes are supported up to 256KB, and more than
one VVIDEO driver can be loaded for the same adapter.

The DOS Window Manager starts a thread for communication to the VVIDEO
driver, which calls the VVIDEO driver and waits for a video event. The
VVIDEO driver supports both full screen and windowed operation, and can
switch back and forth between full screen and windowed, and back. The
VVIDEO drivers install hooks to trap all port accesses, maps physical screen
memory to logical screen memory, and reports video events to the DOS Session
Window Manager. Changes that are trapped by the DOS Session Window
Manager, whether the DOS application is in focus or not, are:

• mode changes.
• palette changes.
• a change in the cursor position.
• changing the session title.
• screen switch video memory allocation errors.
• scrolling and other positioning events.

The DOS Session Window Manager can query the state of its DOS session
video for the following:

• the current display mode.
• the current palette.

185

• the cursor position.
• the contents of video memory.

The DOS Session Window Manager can also issue the following directives:

• wait for video events.
• cancel wait for video events.

The VVIDEO driver opens the Virtual Mouse Device Driver, and provides it
with the following entry points:

• show mouse pointer.
• hide mouse pointer.
• define text mouse pointer.
• define graphics mouse pointer.
• set video page.
• set for light pen emulation.

The VVIDEO driver calls the Virtual Mouse Device Driver whenever the DOS
session changes video modes.

VVIDEO drivers can share the same video adapter by accepting to be
temporarily shut down while another VVIDEO driver uses the adapter, and
restarted when control of the adapter is released back to the original owner.

The VVIDEO driver supports the DOS INT 10h to support drawing operations
and the simultaneous use of the mouse pointer. The VVIDEO also supports
INT 2Fh services, which notify an application that it is about to be switched.
The 8514/A and XGA adapters can run only in the full screen mode of the DOS
session, and will immediately be frozen if it attempts to write directly to the
8514/A or XGA adapter.

Virtual DevHlp Services By Category

186

Virtual DevHlp functions provide virtual device drivers with access to various
services provided by the operating system and by other virtual device drivers.
The Virtual DevHlp services are listed alphabetically, with a short explanation
of their purpose. A complete reference to the Virtual Device Helper routines,
including details on parameter use, can be found in the IBM OS/2 Warp Virtual
Device Driver Reference. Virtual DevHlp services can be divided into
categories based on the type of service that the virtual DevHlp provides. These
categories are:

DOS Settings

VDHRegisterProperty Register virtual device driver property
VDHQueryProperty Query virtual device driver property value
VDHDecodeProperty Decode property string

File (or device) I/O Services

VDHOpen Open a file or device
VDHClose Close a file handle
VDHRead Read bytes from a file or device
VDHWrite Write bytes to a file or device
VDHIOCtl Perform IOCtl to a device
VDHPhysicalDisk Get information about partitionable disks
VDHSeek Move read/write file pointer for a handle

187

DMA Services

VDHRegisterDMAChannel Register a DMA channel with the virtual
DMA device driver

VDHCallOutDMA Let DMA do its work
VDHAllocDMABuffer Allocate DMA buffer
VDHFreeDMABuffer Free DMA buffer previously allocated

DOS Session Control Services

VDHKillVDM Terminate a DOS session
VDHHaltSystem Halt the system
VDHFreezeVDM Freeze a DOS session; prevent the DOS

session from executing any V86 code
VDHThawVDM Allow a frozen DOS session to resume

executing V86 code
VDHIsVDMFrozen Determine if a DOS session is frozen
VDHSetPriority Adjust a DOS session's scheduler priority
VDHYield Yield the processor

188

DPMI Services

VDHGetSelBase Get a flat base address for an LDT selector
VDHGetVPMExcept Get the current DOS session's protect

mode exception vector
VDHSetVPMExcept Set the current DOS session's protect

mode exception vector to a specified value
VDHChangeVMPIF Change the virtual interrupt flag (IF),

enabling or disabling protect mode
interrupts

VDHRaiseException Raise an exception to a DOS session, as if
the exception had been caused by the
hardware

VDHReadUBuf Read from protect mode address space
VDHWriteUBuf Write to a protect mode address space
VDHCheckPagePerm Check Ring 3 page permissions
VDHSwitchToVPM Switch a DOS session to protect mode
VDHSwitchToV86 Switch a DOS session to V86 mode
VDHCheckVPMIntVector Determine if a DOS session protect mode

handler exists
VDHGetVPMIntVector Return the DOS session's protect mode

interrupt vector
VDHSetVPMIntVector Set the DOS session's protect mode

interrupt vector
VDHArmVPMBPHook Obtain the address of a DOS session's

protect mode breakpoint
VDHBeginUseVPMStack Begin using the DOS session's protect

mode stack
VDHEndUseVPMStack End the use of the DOS session's protect

mode stack

(The "VPM" in many of the function names in this section stands for "Virtual
Protect Mode").

189

GDT Selector Services

VDHCreateSel Create a GDT selector to map a linear
range

VDHDestroySel Destroy a GDT selector previously created
by VDHCreateSel

VDHQuerySel Get the selector for an address in the
virtual device driver's data or on its stack

Hook Management Services

VDHAllocHook Allocate the hooks needed for interrupt
simulation

VDHArmBPHook Obtain the address of a V86 breakpoint
VDHArmContextHook Set a local or a global context hook
VDHArmReturnHook Set a handler to receive control when an

IRET or RETF is executed in V86 mode
VDHArmSTIHook Sets a handler to receive control when

interrupts are enabled in the current DOS
session

VDHArmTimerHook Set a timer handler
VDHFreeHook Disarm and free a hook
VDHInstallIntHook Set a handler for a V86 interrupt
VDHInstallIOHook Install PIC I/O port hooks
VDHInstallUserHook Install a handler for a DOS session event
VDHQueryHookData Returns a pointer to a hook's reference

data (created during the VDHAllocHook
call

VDHRemoveIOHook Remove hooks for PIC I/O ports
VDHRegisterAPI Set V86 or protect mode API handler
VDHSelIOHookState Enable/Disable I/O port trapping

190

DOS Application Management

VDHReportPeek Report DOS session polling activity for
the purpose of idle detection

VDHWakeIdle Wake up a DOS session that is doing
VDHSelIOHookState sleep

These services allow virtual device drivers to tell OS/2 when a DOS application
appears to be idle, and when there is some activity that could make the DOS
application busy.

Inter-Device Communication Services

VDHRegisterVDD Register a virtual device driver's entry
points

VDHOpenVDD Open a virtual device driver previously
registered with VDHRegisterVDD

VDHOpenPDD Open a physical device driver for VDD -
PDD communications

VDHRequestVDD Issue a request for an operation of a
virtual device driver

VDHCloseVDD Close a virtual device driver opened with
VDHOpenVDD

Keyboard Services

VDHQueryKeyShift Query the keyboard shift state

191

Memory Management Services

There are three subcategories of memory management virtual DevHlp services.
The first two are based on the granularity of the memory allocation unit, the
third category is for memory locking services.

Byte Granular Memory Management Services

VDHAllocMem Allocate a small amount of memory
VDHFreeMem Free memory allocated with

VDHAllocMem
VDHAllocDOSMem Allocate a block of memory from the DOS

area
VDHCreateBlockPool Create a memory block pool
VDHAllocBlock Allocate a block from a memory block

pool
VDHFreeBlock Free a previously allocated block of

memory (return the block to a memory
block pool)

VDHDestroyBlockPool Destroy a memory block pool
VDHCopyMem Copy from one linear memory address to

another
VDHExchangeMem Exchange the contents of two linear

memory regions

192

Page Granular Memory Management Services

VDHAllocPages Allocate a page-aligned memory object
VDHReallocPages Reallocates (re-sizes) a memory object
VDHFreePages Free a memory object
VDHFindFreePages Find the largest available linear memory

region
VDHGetDirtyPagelnfo Returns the status of the dirty bits for a

range of memory pages (resets the bits)
VDHQueryFreePages Returns the total amount of free virtual

memory in bytes
VDHReservePages Reserve a range of linear addresses
VDHUnreservePages Unreserve a range of linear addresses
VDHMapPages Map a specified linear address
VDHInstallFaultHook Install your own page fault handler
VDHRemoveFaultHook Remove your page fault handler

Memory Locking Memory Management Services

VDHLockMem Verify access to a region of memory, then
lock that memory

VDHUnlockMem Release a memory lock

These services allow virtual device drivers to allocate, free, reallocate, and lock
memory for global and per-DOS session objects, page or byte granular objects,
and with different options, such as fixed or swappable allocations.

193

 Four types of mapping are supported:

1. Mapping to a physical address.
2. Mapping to another linear address.
3. Mapping to black hole (don't care) pages.
4. Mapping to invalid pages, which means unmapped.

Virtual device drivers can also request smaller memory allocations from the
kernel heap, which is global and fixed. Small, fixed-size block services are
available to speed up frequent allocations and the freeing of memory. For a
particular block size, a pool of blocks are maintained, and the requirements are
met by taking off a block from the block pool.

194

Miscellaneous Virtual DevHlp Services

VDHSetFlags Set the DOS session's FLAGS register to a
specified value

VDHSetA20 Enable or disable the A20 line for the
current DOS session

VDHQueryA20 Query the current state of the A20 line
VDHDevBeep Device beep Virtual DevHlp service
VDHGetError Get the error code from the last Virtual

DevHlp service called
VDHSetError Set the error code for VDHGetError to

query
VDHHandleFromSGID Get the DOS session handle from the

screen group ID
VDHHandleFromPID Get the handle for a given process ID
VDHEnumerateVDMs For each DOS session in the system, run a

worker function
VDHQueryLin Get the linear address for a FAR16

(16:16) address
VDHGetCodePageFont Return information about the DOS

session's code page font
VDHReleaseCodePageFont Release code page font returned by

VDHGetCodePageFont
VDHQuerySysValue Query a system value
VDHPutSysValue Set a system value
VDHPopup Display a message
VDHSetDosDevice Register/Install a DOS device driver

195

NPX (Numeric Coprocessor) Services

VDHReleaseNPX Give up ownership of NPX
VDHNPXReset Reset port F1
VDHNPXClearBusy Clear busy latch
VDHNPXRegisterVDD Register virtual device driver entry points

Parallel Port and Printer Services

VDHPrintClose Flush and close all open printers for a
DOS session

Semaphore Services

VDHCreateSem Create an event or mutex semaphore
VDHDestroySem Destroy a semaphore
VDHResetEventSem Reset an event semaphore
VDHPostEventSem Post an event semaphore
VDHWaitEventSem Wait on an event semaphore
VDHRequestMutexSem Request a mutex semaphore
VDHReleaseMutexSem Release a mutex semaphore
VDHQuerySem Query a semaphore's state

These services are used for synchronizing with an OS/2 process. Virtual device
drivers must be careful not to block (VDHRequestSem/VDHWaitSem) in the
context of a DOS session task, or that task will receive no more simulated
hardware interrupts until it becomes unblocked.

196

Timer Services

VDHArmTimerHook Set a timer service handler
VDHDisarmTimerHook Cancel a timer service before the handler

has been called

Virtual Interrupt Services

VDHOpenVIRQ Register an IRQ handler for a virtual
device driver

VDHCloseVIRQ Deregister an IRQ handler for a virtual
device driver

VDHSetVIRR Set the virtual Interrupt Request Register
(IRR), causing an interrupt to be simulated
to the DOS session

VDHClearVIRR Clear the virtual IRR, stopping the
simulation of interrupts to the DOS
session)

VDHQueryVIRQ Query the IRQ status in a DOS session
VDHWaitVIRRs Wait until an interrupt is simulated
VDHWakeVIRRs Wake up a DOS session that is waiting

with VDHWaitVIRRs
VDHSendVEOI Send a virtual EOI (End-Of-Interrupt) to

the VPIC

197

V8086 Stack Manipulation

VDHPushRegs Push a client DOS session's registers onto
the client's stack

VDHPopRegs Pop a client DOS session's registers from
the client's stack

VDHPushFarCall Simulate a far call to V86 code
VDHPopStack Pop data off client stack
VDHPushStack Push data onto a client's stack
VDHPushInt Transfer control to a V86 interrupt handler

when an interrupt is simulated
VDHPopInt Remove IRET frame from a client DOS

session's stack

Many of the virtual DevHlp functions that are called with invalid parameters or
other error conditions often cause a system halt. This is because virtual device
drivers run at Ring 0; they have free access to everything in the system. If an
invalid parameter is detected, it has probably done enough damage that the
system has become unstable. The only thing to do at that point is to halt the
system.

198

DOS Session Interrupts

Table 9-8 describes the DOS hardware interrupts virtualization supplied by the
Virtual Device Drivers and the DOS emulation component of the VDM.

Table 9-8. Virtualized DOS Interrupts

Interrupt Description Notes

IRQ 0 Timer (INT 08h) DOS programs can hook this interrupt
with the INT 08h call. The INT 08h
handler is called for each tick of the
channel 0 system clock.

IRQ 1 Keyboard (INT
09h)

The INT 09h handler is invoked for every
press and release of a keystroke.

IRQ 2 Cascade Interrupt
Controller

Use for the support of interrupts 8-15 to
emulate the second PIC

IRQ 3 Serial Port (COM2,
COM3)

Supported when VCOM.SYS and
COM.SYS are loaded.

IRQ 4 Serial Port (COM1) Supported when VCOM.SYS and
COM.SYS are loaded.

IRQ 5 Parallel Port
(LPT2)

Not supported

IRQ 6 Diskette Not supported
IRQ 7 Parallel Port

(LPT1)
Not supported

IRQ 8 Real Time Clock Not supported
IRQ 9 Redirect cascade Not supported
IRQ 10 Not supported
IRQ 11 Not supported
IRQ 12 Aux. device Not supported
IRQ 13 Math Coprocessor Supported
IRQ 14 Fixed disk Not supported
IRQ 15 Not supported

199

Table 9-9 describes the DOS BIOS software interrupts supported in a VDM.

Table 9-9. Virtualized BIOS Interrupts

Interrupt Description Notes

02h NMI Not supported
05h Print screen Supported by the Virtual Line Printer

driver
08h System timer Supported by the Virtual Timer device

driver. Due to system overhead, interrupts
may come in short bursts

0eh Diskette Not supported
10h Video Fully supported
13h Disk/diskette Supported by a subset of the DOS INT

13h functions. The supported functions
are:

• 00h - Reset diskette
• 01h - Read status
• 02h - Read sectors
• 03h - Write sectors (diskette only)
• 04h - Verify sectors
• 05h - Format track (diskette only)
• 08h - Get driver parameters
• 0ah - Read long (fixed disk only)
• 15h - Read DASD type
• 16h - Change status (diskette only)
• 17h - Set disk type (diskette only)
• 18h - Set media type (diskette only)

200

Table 9-9. Virtualized BIOS Interrupts (continued)

14h Serial Port (Async) Supported by the Virtual COM driver
15h System services Supports the following system services:

• 00h - Cassette motor on
• 01h - Cassette motor off
• 02h - Cassette read
• 03h - Cassette write
• 0fh - Format periodic int
• 4fh - Keyboard intercept
• 80h - Open device
• 81h - Close device
• 82h - program terminate
• 83h - Event wait
• 84h - Joystick
• 85h - SysReq key
• 86h - Wait
• 87h - Move block
• 88h - Get extended memory size
• 89h - Switch to protect mode
• 90h - Device wait
• 91h - Device post
• c0h - Get system config parameters
• c1h - Get ABIOS data area
• c2h - PS/2 mouse functions
• c3h - Watchdog timer
• c4h - Programmable Option Select

16h Keyboard Fully supported
17h Printer Fully supported by the VLPT
19h Reboot if DOS_STARTUP_DRIVE is set, the

session is rebooted; if not, the session is
terminated.

1ah Time of Day Read only access to Real Time Clock is
supported.

201

Table 9-9. Virtualized BIOS Interrupts (continued)

1eh Diskette parameters Fully supported
70h Real Time Clock Not supported

202

Table 9-10 describes the DOS software interrupts which are supported by the
DOS emulation component.

Table 9-10. Virtualized DOS Software Interrupts

Interrupt Description Notes

20h Program terminate Fully supported
21h Function request Fully supported, plus some undocumented

functions. The following calls are
supported with restrictions:

• 38h - Return country information
• 44h - Generic IOCtl
• 66h - Get/set code page
• 67h - Set handle count

22h Terminate address Fully supported
23h Cntl-break exit

address
Fully supported

24h Critical error
handler

Fully supported

25h Absolute disk read Fully supported
26h Absolute disk write Fully supported, but error generated for

attempt on fixed disk
27h Terminate/stay

resident
Fully supported

28h Idle loop Fully supported
2fh Multiplex When a DOS application issues an INT

2fh with AX=1680h, it yields its time slice.
33h Mouse Fully support, providing VMOUSE.SYS

driver is loaded
67h LIM expanded

memory manager
Supported when Expanded Memory
Manager VDD is installed. Supports LIM
EMS V4.0 functions.

203

Sample Virtual Device Driver

The following code represents a sample VDD designed to work with the simple
parallel PDD outlined in Chapter 7. It is written using the IBM C Set/2
compiler. This VDD traps I/O to the 8-bit ports from a DOS application
running in a VDM. This VDD performs simple input and output to the
dedicated parallel port adapter described in Chapter 7.

Note that input and output for OS/2 printer ports is handled much differently
than in the sample driver. For OS/2 printer I/O, the OS/2 virtual printer driver
VLPT calls the OS/2 kernel, which formats the request into a standard OS/2
Request Packet. The kernel then sends the Request Packet to the PDD for
disposition.

The VDD can perform input and output in one of two ways. The VDD can ask
the PDD to use the specific ports and, if permission is granted, can do the
inputs and outputs directly from within the VDD. The VDD can also call the
PDD and have the PDD perform the required I/O, and pass the results back to
the VDD. If the adapter is dedicated to the VDM application, and no other
programs will access it, the VDD need not call a PDD to perform the operation.
If the adapter can be accessed by protect mode programs, the VDD must get
permission to use the adapter by calling the PDD. The PDD will queue up any
subsequent requests from other threads until the VDD is finished with the
adapter.

In most cases, writing a VDD will be unnecessary, as most of the required DOS
virtualization is handled by the VDDs that come with OS/2 Warp. Writing a
VDD is only necessary if the DOS application needs to support a custom
adapter in a VDM which cannot be serviced by the existing VDD supplied with
OS/2. This should be rare, as most new applications should be written for
protect mode operation.

In this sample VDD, the VDD traps I/O on a per-DOS-session basis, to ports
0x210, 0x211 and 0x212. When the hook is entered, the VDD checks to see

204

that the current requester is the also the current owner of the port. If not, the
VDM application attempting the access is terminated. If the requester is valid,
port trapping is disabled, allowing subsequent I/O to go directly to the
hardware for increased performance. When the DOS session is exited, the I/O
hooks are removed and port trapping is reenabled. This VDD shows you how
to call some basic VDH functions, such as VDHInstallIOHook,
VDHRemoveIOHook, and VDHInstallUserHook.

When a VDM is created, the PIOCreate routine is called, and when the VDM is
closed, the PIOTerminate routine is called. PIOCreate is called with a handle to
the VDM, which is actually the base linear address of the VDM. You may
verify the operation of any of these funtions if you have the kernel debugger
installed. Simply place a call to VdhInt3 in the source code, recompile and
relink, then reboot. The VdhInt3 call will cause a break at the debugging
terminal, and if you used the MAPSYM after the link, you can examine VDD
variables. Do not insert the call to VdhInt3 if you do not have the kernel
debugger installed, or have the debugging terminal connected.

205

/* file pioinit.c */

/**/
/* sample parallel port VDD init section */
/**/

#include "mvdm.h" /* VDH services, etc. */
#include "pio.h" /* PIO data defines */

#pragma entry (_PIOInit)

#pragma data_seg(CSWAP_DATA)

extern SZ szProplpt1timeout;

#pragma alloc_text(CINIT_TEXT,_PIOInit,PIO_PDDProc)

/* init entry point called by system at load time */

BOOL EXPENTRY _PIOInit(psz) /* PIO VDDInit */
{

 /* Register a VDM termination handler entry point*/

 if ((VDHInstallUserHook((ULONG)VDM_TERMINATE,
 (PUSERHOOK)PIOTerminate)) == 0)
 return 0; /* return FALSE if VDH call failed */

 /* Register a VDM creation handler entry point */

 if ((VDHInstallUserHook((ULONG)VDM_CREATE,
 (PUSERHOOK)PIOCreate)) == 0)
 return 0 ; /* return FALSE if VDH call failed */

 /* Get the entry point to the PDD */

 PPIOPDDProc = VDHOpenPDD(PDD_NAME, PIO_PDDProc);

 return CTRUE;
}

/* entry point registered by VDHOpenPDD, called by the PDD */

SBOOL VDDENTRY PIO_PDDProc(ulFunc,f16p1,f16p2)
ULONG ulFunc;
F16PVOID f16p1;
F16PVOID f16p2;
{
 return 0;
}

Figure 9-2. VDD initialization section.

206

/* piodata.c */

#include "mvdm.h" /* VDH services, etc. */
#include "pio.h" /* PIO specific */

#pragma data_seg(SWAPINSTDATA)

HVDM owner_VDM = 0; /* actual VDM handle */
HVDM current_VDM;
ULONG Resp = 0;

#pragma data_seg(CSWAP_DATA)

FPFNPDD PPIOPDDProc = (FPFNPDD)0; /* addr of PDD entry pt */

Figure 9-3. VDD data segment.

207

/* pioin.c */

#include "mvdm.h" /* VDH services, etc. */
#include "pio.h"
#include "basemid.h"

/* PIO specific */

#pragma alloc_text(CSWAP_TEXT,PIODataIn,RequestDirect)

extern IOH Ioh;

/* entry from data input trap in VDM */

BYTE HOOKENTRY PIODataIn(ULONG portaddr, PCRF pcrf)
{
 BYTE dataread; /* set up byte to return */

 RequestDirect();

 /* disable I/O trap */

 VDHSetIOHookState(current_VDM,DIGIO_BASE,3,&Ioh,0);

 dataread = inp(portaddr);
 return(dataread); /* return data read */
}

BOOL HOOKENTRY RequestDirect(void)
{
 if (owner_VDM != current_VDM)
 {
 if (owner_VDM !=0)
 {

 VDHPopup(0,0,MSG_DEVICE_IN_USE,&Resp,ABORT,0);
 if (Resp != ABORT)
 {
 VDHKillVDM(current_VDM);
 owner_VDM = current_VDM;
 }
}
else
 owner_VDM = current_VDM;

 }
}

Figure 9-4. VDD input handler.

208

/* pioout.c */

#include "mvdm.h" /* VDH services, etc. */
#include "pio.h" /* PIO specific */

#pragma data_seg(CSWAP_DATA)

extern IOH Ioh;

#pragma alloc_text(CSWAP_TEXT,PIODataOut)

/* this routine is the data out trap entry point */

VOID HOOKENTRY PIODataOut(BYTE chartowrite,ULONG portaddr,PCRF pcrf)
{
 RequestDirect();

 /* disable port trapping */

 VDHSetIOHookState(current_VDM,DIGIO_BASE,3,&Ioh,0);

 outp(portaddr,chartowrite); /* write the char */
 return;
}

Figure 9-5. VDD data port output handler.

209

/* file piouser.c */

#include "mvdm.h" /* VDH services, etc. */
#include "pio.h" /* PIO specific */
#include "basemid.h"

#pragma data_seg(CSWAP_DATA)

/* our routines are for 8-bit ports */

IOH Ioh = {PIODataIn,PIODataOut,0,0,0};

#pragma alloc_text(CSWAP_TEXT,PIOCreate,PIOTerminate)

/*--

PIOCreate, entered when the VDM is created

--*/

BOOL HOOKENTRY PIOCreate(hvdm)
HVDM hvdm;
{
 current_VDM = hvdm; /* save our vdm handle */

 /* install I/O hooks for our three 8-bit ports */

 if ((VDHInstallIOHook(hvdm,
 DIGIO_BASE,
 3,
 (PIOH)&Ioh,
 !VDH_ASM_HOOK)) == 0)
 {
 PIOTerminate(hvdm);
 return 0; /* return FALSE */
 }

 return CTRUE;
}

/*--

PIOTerminate, called when the VDM terminates. This code is
optional, as the User and IO hooks are removed automatically by
the system when the VDM terminates. It is shown for example.

--*/

BOOL HOOKENTRY PIOTerminate(hvdm)
HVDM hvdm;
{

 owner_VDM = 0;

 VDHRemoveIOHook(hvdm, /* remove the IO hooks */

210

 DIGIO_BASE,
 3,
 (PIOH)&Ioh);

 return CTRUE;
}

Figure 9-6. VDD user routines.

211

/*
 digio memory map for os/2 virtual device driver
*/

#define DIGIO_BASE 0x210 /* board address */
#define DIGIO_OUTPUT DIGIO_BASE /* output port */
#define DIGIO_INPUT DIGIO_BASE+1 /* input port */
#define DIGIO_CONFIG DIGIO_BASE+2 /* initialization port */

#define ABORT 0x02

/* name of the PDD */

#define PDD_NAME "DIGIO$ \0" /* string */

/* pioinit.c */

BOOL EXPENTRY PIOInit(PSZ);
SBOOL VDDENTRY PIO_PDDProc(ULONG,F16PVOID,F16PVOID);

/* piouser.c */

BOOL HOOKENTRY PIOCreate(HVDM);
BOOL HOOKENTRY PIOTerminate(HVDM);

/* pioin.c */

BYTE HOOKENTRY PIODataIn(ULONG, PCRF);
BOOL HOOKENTRY RequestDirect(void);

/* pioout.c */

VOID HOOKENTRY PIODataOut(BYTE, ULONG, PCRF);
VOID HOOKENTRY PIOConfigOut(BYTE, ULONG, PCRF);

extern ULONG MachineType; /* Machine Type */
extern FPFNPDD PPIOPDDProc; /* addr of PDD entry point */
extern HVDM owner_VDM;
extern HVDM current_VDM;
extern ULONG Resp;

/* ioseg */

USHORT _Far32 _Pascal inp(ULONG);
VOID _Far32 _Pascal outp(ULONG,USHORT);

Figure 9-7. VDD include file.

212

vpio.sys: pioinit.obj piouser.obj pioin.obj pioout.obj piodata.obj \
ioseg.obj

link386 /A:16 /M:FULL /NOL pioinit+piouser+pioin+pioout+\
piodata+ioseg,vpio.sys,vpio.map,vdh,pio.def

mapsym vpio

pioinit.obj: pioinit.c mvdm.h pio.h
icc /Sm /Ss /O /Q /W2 /Rn /Gr /C pioinit.c

pioin.obj: pioin.c pio.h mvdm.h
icc /Sm /Ss /Q /O /W2 /Rn /Gr /C pioin.c

pioout.obj: pioout.c pio.h mvdm.h
icc /Sm /Ss /Q /O /W2 /Rn /Gr /C pioout.c

piouser.obj: piouser.c pio.h mvdm.h
icc /Sm /Ss /Q /O /W2 /Rn /Gr /C piouser.c

piodata.obj: piodata.c pio.h mvdm.h
icc /Sm /Ss /Q /O /W2 /Rn /Gr /C piodata.c

ioseg.obj: ioseg.asm
 masm /Mx /x ioseg.asm;

VIRTUAL DEVICE VPIO
PROTMODE

STUB 'OS2STUB.EXE'
SEGMENTS
 CODE32 CLASS 'CODE' SHARED NONDISCARDABLE RESIDENT
 _TEXT CLASS 'CODE' SHARED NONDISCARDABLE RESIDENT
 CINIT_TEXT CLASS 'CODE' SHARED DISCARDABLE RESIDENT
 CSWAP_TEXT CLASS 'CODE' SHARED NONDISCARDABLE
 CINIT_DATA CLASS 'CINITDATA' SHARED DISCARDABLE RESIDENT
 CSWAP_DATA CLASS 'CSWAPDATA' SHARED NONDISCARDABLE
 MVDMINSTDATA CLASS 'MIDATA' NONSHARED NONDISCARDABLE RESIDENT
 SWAPINSTDATA CLASS 'SIDATA' NONSHARED NONDISCARDABLE
 DATA32 CLASS 'DATA' SHARED NONDISCARDABLE RESIDENT
 _DATA CLASS 'DATA' SHARED NONDISCARDABLE RESIDENT

Figure 9-8. VDD Make And DEF Files.

Establishing a VDD-PDD Link

Note that, in this VDD, the actual I/O was performed by the VDD routines
PIODataIn and PIODataOut. The VDD could have called the PDD to perform

213

the actual I/O. This would be necessary if the I/O involved interrupts, as device
interrupts must be handled by a PDD.

The PDD requires slight modifications to support VDD-PDD communications.
The PDD must register its ability to provide VDD support by issuing a
RegisterPDD DevHlp call in the Init section of the PDD. The RegisterPDD
informs OS/2 of the name of the PDD and the 16:16 address of the PDD’s
communication function. Note that this is not the same entry point as defined by
the IDC entry point in the PDD Device Header. The VDD can then establish
communications with the PDD by calling the VDHOpenPDD Virtual Device
Helper function. This is one of the reasons that OS/2 loads all of the PDDs
before the VDDs during system boot. Note that this DevHlp function has no
error return. A failure when registering the PDD will cause a system crash
during boot.

If the PDD fails initialization for another reason, such as a failed SetIRQ or
SetTimer, the PDD must release the PDD-VDD registration by calling
RegisterPDD, with the function pointer equal to 0:0. The PDD described in
Chapter 7 would be modified as outlined in Figure 9-9.

Init code
.
.
RegisterPDD((FPUCHAR)devhdr.DHname,(FARPOINTER)DigioComm);
.
.
more Init code

main Strategy code section
.
.
DigioComm(ULONG Func, ULONG Parm1, ULONG Parm2)
{

 VDD-PDD comm code here
}
.
.

Figure 9-9. Registering PDD for VDD-PDD communications.

214

During initialization, the VDD calls VDHOpenPDD, passing it the ASCII-Z
name of the PDD and the 16:32 entry point of the VDD’s communication
routine. Note the call to VDHOpenPDD in the pioinit.c routine above. If
VDHOpenPDD (or any other VDH call) fails, it will return FALSE and the
driver must call VDHGetError to retrieve the exact error. If the call succeeds,
VDHOpenPDD returns a pointer to the PDD’s communication routine,
previously registered by the RegisterPDD call in the PDD Init section.

The two drivers communicate by sending a structure back and forth. This
structure is described in Figure 9-10.The first parameter is a private function
code, which the drivers pass back and forth to identify the operation to be
performed. The two parameters can be data or 16:16 pointers to input and
output packets. The VDD-PDD communication functions should return
nonzero for success, and zero for failure.

If the PDD allocates any resources on behalf of the VDD, the VDD must call
the PDD to release those resources when the VDM is destroyed.

typedef _DRVCOMM {
 ULONG FunctionCode;
 ULONG Parm1;
 ULONG Parm2;
 } DRVCOMM;

Figure 9-10. VDD-PDD communications structure.

215

Chapter 10 - Memory-Mapped Adapters and
IOPL

A large number of adapters provide on-board memory for communication
between the adapter and the program or drivers. Generally, a program or driver
maps the on-board memory to a physical memory address, and reads or writes
board memory as if it were normal system RAM. These adapters are referred to
as memory-mapped adapters. Memory-mapped adapters, when placed in a
special hardware mode, appear to a device driver or application as normal RAM
memory. An application that is allowed direct access to the adapter memory can
transfer data much faster than if it were to call a device driver to perform the
transfer. This type of operation, called memory-mapped I/O, can result in
increased performance and is the preferred method for transferring large
amounts of memory quickly. Memory-mapped adapters may also utilize
interrupts or DMA. An example of a memory-mapped adapter would be a video
adapter, such as a VGA card.

Programs that perform transfers with memory-mapped adapters usually write
data in a special format to an area of memory between the 640K and one
megabyte, although some adapters can be mapped in the region above one
megabyte.

The most common example of a memory-mapped adapter is the standard VGA
graphics adapter found in most IBM clones. Data to be displayed on the screen
is written to the adapter’s RAM memory. The video controller constantly reads
this memory, converts it to electrical signals and presents these voltage levels to
the actual display device. If you power down your display terminal and power it
back up, the contents of the display is not lost because the display is actually
kept in video memory, not in the display itself.

High and Low Memory Maps

216

Memory-mapped adapters come in two basic flavors. The first has a memory-
mapped address that is selectable in the area between 640K and one megabyte.
Some of the memory space between 640K and one megabyte is reserved for
such things as BIOS shadow RAM and video memory. There is room, however,
to map an adapter board in that space, providing no address conflicts exist.
Most memory-mapped adapters were designed for personal computers running
DOS, so there was no need to provide memory-mapped addresses greater than
one megabyte. Recall that DOS runs in the real mode of the Intel
microprocessor, which provides for only a 20-bit address. This limits the
addressing capability of the CPU to one megabyte, so an adapter designed for
the DOS environment that could be mapped to addresses greater than one
megabyte would not be of much use.

The second type has a memory-mapped address of greater than one megabyte.
The 32-bit addressing mode of OS/2 Warp allows adapters to be mapped above
the one megabyte boundary and accessed directly.

ISA bus memory-mapped adapters use small jumpers or switches to set their
memory-mapped address, while Micro Channel adapters usually contain their
memory-mapped address in the POS registers (see Chapter 3). Some recently-
introduced adapters designed to run in 32-bit systems like OS/2 have been
designed for memory-mapped addresses of greater than one megabyte.

Application Program Access To Adapter Memory

One of the most important features of OS/2 is its ability to protect programs
from one another. With the aid of the protect mode circuitry in the CPU, the
operating system can determine beforehand if a program is about to read from
or write to another program’s memory space. If the processor detects this kind
of error, the system’s error handler is called to display the error and the
offending program is immediately terminated. How then does an application
operating at Ring 3 gain access to the memory-mapped adapter address that is
not within its own address space?

217

Recall the discussion of the processor architecture in Chapter 3. As was
outlined, a program’s access to memory is controlled by selectors, which are
indexes into the program’s Local Descriptor Table. The descriptor contains a
physical address and Requested Privilege Level, or RPL, of the memory object.
When a program is executed, it get’s its own list of selectors, or LDT, which
defines its valid addressable memory areas and their access restrictions. When
the program attempts to read or write memory, the CPU compares the target
address and type of operation to a corresponding entry in the LDT. If the
program does not have access to the target memory, a General Protect, or GP
fault is generated, and the program is immediately terminated. If the address is
valid, the CPU verifies that the memory has the correct permissions, such as
read and write, and generates a fault if the permissions do not agree with the
attempted operation.

If the adapter’s memory-mapped address could be placed in the application’s
LDT, the program would be free to access the adapter’s memory. The
application’s LDT, however, is created at load time, and is not modifiable by
the application. If that were permitted, applications would be free to select the
memory addresses they wished to read and write, and crash OS/2. The only
program that can grant an application access to memory is a device driver. The
device driver, operating at Ring 0, is free to manipulate the application’s
environment, with some limitations.

To allow the application to access the foreign memory, the application program
opens up the device driver and passes it the physical address and size of the
memory it wishes to access. For most adapters, the memory size is generally
4K, 8K, 16K, or 32K bytes. The driver should first verify that the memory
address is within the valid range for the adapter. The driver can be hard-coded
with the valid physical addresses, it can be sent the address via an IOCtl, or the
valid address could be entered at driver load time in the “DEVICE=XXX.SYS”
line in the CONFIG.SYS file (see Chapter 8). The driver then allocates an LDT
selector for the new adapter address. Even though the LDT belongs to the
application, the driver can access it freely. This is due to the fact that when the
driver is called by the application, the driver and application share the same
context.

218

Next, the driver calls the OS/2 system DevHlp function PhysToUVirt (see
Figure 10-1), which maps the physical address to an LDT selector in the
application’s LDT. The result is referred to as a fabricated address. Using an
IOCtl, the driver then passes back the new LDT selector:offset value to the
application. The application makes a pointer from the selector using the
MAKEP macro, and uses this pointer for direct access to adapter memory. The
LDT entry remains valid until the program is terminated.

if (PhysToUVirt(0xd8000, 0x8000, 1, &mem))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

Figure 10-1. PhysToVirt call.

The 0xd8000 is the physical adapter memory address. The 0x8000 is the
requested size, the parameter 1 means get a virtual pointer and make the
memory read-write, and &mem is the address of DS-relative storage for the
returned virtual address.

Access to Adapter Memory In the Interrupt Handler

In some cases, such as upon receipt of an interrupt, the device driver may be
required to access memory-mapped adapter inside the interrupt handler. If a
driver is required to perform interrupt-time memory transfers, it should set up
the references to the memory in the INIT section. Since the interrupt handler
can be entered in any context, the LDT of the application may not be in the
current context. The driver cannot use an LDT to address memory, but must
use a GDT entry for memory access. The GDT entry will be valid in any
context.

If the device driver will be performing memory-mapped transfers inside an
interrupt handler, it must allocate the required selector(s) by issuing the
AllocGDTSelector DevHlp, then map the new selector(s) to the physical
address with the PhysToGDTSelector DevHlp call (see Figure 10-2). The

219

driver now has direct addressability to the adapter memory regardless of
context, and can freely transfer data to and from the adapter memory at
interrupt time. The device driver must allocate and map the GDT selector(s)
during INIT. However, remember that the INIT code is run as a Ring 3 thread
of the system, so the driver cannot access the memory mapped to the GDT
selector at INIT time.

A complete memory-mapped device driver and sample 16-bit and 32-bit
application code is shown in the Listings section.

FARPOINTER fabricated_ptr = 0;

// allocate space for a GDT selector during INIT

 if (AllocGDTSelector (1,sel_array))
 { // allocate a GDT sel

DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1,strlen(GDTFailMsg),GDTFailMsg);
break;
}

 // now map the board memory address to the GDT selector

 if (PhysToGDTSelector (board_address,
 (USHORT) MEMSIZE,
 sel_array[0],
 &err))
 {

DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1,strlen(SELFailMsg),SELFailMsg);
break;
}

 fabricated_ptr = MAKEP(sel_array[0],0);

Figure 10-2. Mapping a GDT selector during INIT.

Input/Output Privilege Level (IOPL)

OS/2 allows programs with I/O Privilege Level (IOPL) enabled to do direct
register I/O to a device. If the device your application will be using is a parallel
card or digital switch, an actual device driver may not be necessary. With IOPL,

220

the application program can perform direct register I/O using IN and OUT
instructions. If the device does not require interrupt or timer support, IOPL
may be the ticket.

Note, however, that IOPL is a processor-specific function, and thus is not
portable across hardware platforms such as RISC. For instance, the port
mapping of a MIPS processor is not the same as an Intel processor, so code
written for one processor will not necessarily run on another processor. The
current trend is to migrate operating systems onto other platforms such as RISC
and SMP. For these reasons, you can only perform IOPL from a 16-bit
segment, and cannot enable a 32-bit C Set/2 segment to perform IOPL. 16-bit
segments are allowed to perform IOPL since the 16-bit segments themselves
are processor-dependent, and can’t be migrated to other processor platforms
anyway.

There are circumstances when it makes sense, for performance reasons, to
allow the application to perform simple I/O. This could mean something as
simple as controlling an external switch, or testing for a single bit from an I/O
port. Calling a device driver to accomplish this is the preferred method, since its
more likely to be portable. Under some circumstances, however, IOPL may be
the best solution.

The IOPL Segment

To enable IOPL, the segment descriptors of the segment that contains the I/O
code must be marked Descriptor Privilege Level, or DPL 2. OS/2 allows
segments with properly marked descriptors to perform direct register I/O.
There are two ways you can structure your IOPL routines. If you’re using
Microsoft C 6.0, the inp and outp functions are located in a separate segment
called _IOSEG. You can indicate with your DEF file to mark _IOSEG as
IOPL, and call the standard run-time library routines inp and outp. You can also
write a simple function (See Figure 10-3) to perform the input and output.

221

; Sample IOPL segment

 PUBLIC IN_PORT
 PUBLIC OUT_PORT

 .model large
 .286P

DGROUP GROUP _DATA
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

_IOSEG segment word use16 public 'CODE'

 assume CS:_IOSEG,DS:DGROUP,SS:DGROUP
 .286P
;
IN_PORT proc far
;
 push bp ;set up stack frame
 mov bp,sp ;save bp
 push dx ;save dx
 mov dx,[bp+6] ;get port address
 in ax,dx ;do input
 pop dx ;restore regs
 pop bp ;return in ax
 ret 2 ;remove from IOPL stack
;
IN_PORT endp

OUT_PORT proc far
;
 push bp ;set up stack frame
 mov bp,sp ;save it
 push ax ;save ax
 push dx ;and dx
 mov ax,[bp+6] ;get data
 mov dx,[bp+8] ;get port
 out dx,al ;do output
 pop dx ;restore regs
 pop ax
 pop bp
 ret 4 ;remove off local stack
;
OUT_PORT endp

_IOSEG ends
 end

Figure 10-3. IOPL Segment.

222

During the link operation, the linker is told to mark the special segment as
IOPL. The linker must also know the names of the exported routines and the
size of the parameters that will be passed to the routines by the Ring 3
application. The number of words that the parameters will occupy on the stack
is extremely important. Since the Ring 3 code (application) and the Ring 2 code
(the IOPL code) do not share the same physical stack area, OS/2 must copy the
contents of the Ring 3 stack to the Ring 2 stack. The linker informs OS/2 of the
number of bytes to copy by the size parameter in the EXPORTS statement in
the linker module definition file (see Figure 10-4).

NAME SAMPLE
STACKSIZE 8192
SEGMENTS
 _IOSEG IOPL
EXPORTS
 PORTIN 1
 PORTOUT 2
PROTMODE

Figure 10-4. IOPL DEF file.

When the application calls either the IN_PORT or OUT_PORT routine, OS/2
will perform a ring transition from Ring 3 to Ring 2, copy the caller’s stack to
the separate Ring 2 stack, call the I/O routine, and perform another ring
transition back to the Ring 3 application. Because of the extra overhead in ring
transitions and copying stacks, this method will not be as fast as the DOS
equivalent, but will be much faster than calling the device driver for every port
input or output.

Remember that devices that generate interrupts, require asynchronous service,
or operate in a time-critical environment must utilize a device driver. You may
be able to get by using memory-mapping and IOPL, and I suggest using it if
possible. Just keep in mind that eventually, OS/2 PDDs will eventually become
32-bit PDDs, and the handy shortcuts like IOPL will most likely disappear.

223

IOPL From 32-bit Applications

IOPL is not permitted from 32-bit segments. To use IOPL from a 32-bit
application, the application must call I/O routines located in a 16-bit segment.
The easiest way to do this is to create a simple 16-bit DLL, then link it to the
application with the IMPLIB utility. The same IOPL code can be used for 16-
bit and 32-bit applications. A complete set of code for performing IOPL from
16-bit and 32-bit applications can be found in the Listings section.

225

Chapter 11 - Direct Memory Access (DMA)

DMA is the ability of a device to access the computer system’s memory without
going through the CPU. Since DMA reads and writes bypass the CPU, data can
be transferred very quickly without affecting system performance. This feature
is useful for devices that generate large amounts of data frequently, such as
video frame grabbers or an Analog to Digital (A/D) converter. The measure of
a device’s ability to transfer large amounts of data at a time is called its
bandwidth. The larger the amount of data in a given time period, the higher the
bandwidth. Devices that transfer large amounts of data frequently are therefore
called high bandwidth devices. An example of a high bandwidth device would
be a hard disk drive. The hard disk drive is capable of reading or writing large
amounts of data very quickly. So quickly, in fact, that the CPU and device
driver software cannot keep up with the disk drive’s data transfer rate. If a read
was requested from the disk driver using the CPU, the data from the disk would
appear faster than the CPU could dispose of it, leading to overruns and data
corruption.

The DMA Controller

Since memory is connected to the computer system’s bus, the DMA controller
must request that the CPU “give up” the bus for a short period of time. The
DMA controller is a special set of circuitry responsible for performing the DMA
transactions. Since memory is connected to the computer system’s bus, the
DMA controller must request that the CPU “give up” the bus for a short period
of time. When the DMA controller needs to transfer data, it asks the CPU for
control of the bus by issuing a HOLD request. When the CPU can release the
bus, it grants the DMA controller use of the bus by raising a HOLD
ACKNOWLEDGE or HLDA signal. When the DMA controller sees the HLDA
signal, it begins transferring data to or from the adapter to the computer’s
memory. Memory transfers are very fast, much faster than if the CPU was
involved. When the DMA controller finishes transferring the data, it drops the
HOLD line, allowing the CPU to again use the system bus.

226

DMA is also a time-saving feature, in that it “steals” machine cycles from the
CPU. The net effect is that of no noticeable loss in system performance, even
when transferring large amounts of data. During DMA operation, the CPU
remains free to execute program threads without knowledge of any DMA
activity, other than the occasional giving up of the system bus.

Most IBM-compatibles and clones use a configuration of two 8237A-5 4-
channel DMA controllers. Like the 8259 PIC, the 8237A-5 controllers are
cascaded to provide additional functionality. One channel of the upper four
DMA channels is used for the cascade to the lower DMA controller, so a total
of seven DMA channels are available (see Table 11-1). The first DMA
controller, called DMA controller 1, contains channels 0-3. Channels 0-3
support 8-bit transfers between adapters and memory. The largest block of
memory that can be transferred is 64K bytes. Channels 5-7 support 16-bit
transfers between adapters and memory, and the largest block that can be
transferred is 128K bytes.

Table 11-1. DMA Channel Assignments

Controller 1 Description Controller 2 Description

Channel 0 8-bit DMA channel Channel 4 Cascade for
controller1

Channel 1 Reserved for SDLC Channel 5 16-bit DMA channel
Channel 2 Diskette (IBM PC) Channel 6 16-bit DMA channel
Channel 3 8-bit DMA channel Channel 7 16-bit DMA channel

Since the 8237 is a 16-bit DMA controller with an 8-bit page register, all DMA
transfers must occur from an address between 0 and 16 MB. The DMA
controller contains a 24-bit address register, which limits the memory
addressing. The DMA controller also has a count register, which is 16 bits long,
limiting the transfers to 64KB (65536*8) with an 8-bit DMA channel and

227

128KB (65536*16) with a 16-bit channel. When using the 16-bit mode, bytes
must be transferred on even-word boundaries.

Table 11-2 lists the DMA controller port assignments.

228

Table 11-2. DMA Controller Port Assignments

Port address Description

0000h channel 0 base/current address
0001h channel 0 base/current word count
0002h channel 1 base/current address
0003h channel 1 base/current word count
0004h channel 2 base/current address
0005h channel 2 base/current word count
0006h channel 3 base/current address
0007h channel 3 base/current word count
0008h channel 0-3 status register
000Ah channel 0-3 mask register (set/reset)
000Bh channel 0-3 mode register (write)
000Ch clear byte pointer (write)
000Dh DMA controller reset (write)
000Eh channel 0-3 clear mask register (write)
000Fh channel 0-3 write mask register
0018h extended function register (write)
001Ah extended function execute
0081h channel 2 page table register
0082h channel 3 page table register
0083h channel 1 page table register
0087h channel 0 page table register
0089h channel 6 page table register
008Ah channel 7 page table register
008Bh channel 5 page table register
008F channel 4 page table register
0C0h channel 4 base/current address
0C2h channel 4 base/current word count
0C4h channel 5 base/current address
0C6h channel 5 base/current word count
0C8h channel 6 base/current address

229

Table 11-2. DMA Controller Port Assignments (cont'd)

0CAh channel 6 base/current count
0CCh channel 7 base/current address
0CEh channel 7 base/current count
0D0h channel 4-7 read status/write command
0D2h channel 4-7 write request register
0D4h channel 4-7 write single mask register bit
0D6h channel 4-7 write mode register
0D8h clear byte pointer flip-flop
0DAh read temporary register/write Master Clear
0DCh channel 4-7 clear mask register (write)
0DEh channel 4-7 write mask register bits

Addressing for the DMA controller is accomplished by loading the address and
page registers defined in Table 11-3.

Table 11-3. DMA Channel Addressing

For DMA Channels 0-3
Source DMA Page Register Address Register
Address A23 < - > A16 A15 < - > A0

For DMA Channels 5-7
Source DMA Page Register Address Register
Address A23 < - > A17 A16< - > A1

More detailed information on the 8237A DMA controller and support circuitry
can be found in the Intel iAPX 86/88 User’s Manual Hardware Reference.

230

Using DMA

To utilize DMA, the device adapter must support DMA transfers. When data
has to be written, the appropriate DMA channel registers are loaded with the
address of the data to be written, the length of the data, and the proper mode
(read/write) by the device driver. The adapter circuitry, usually a UART or
some type of controller, issues a write request based on a programmed
operation initiated by the device driver. An on-board arbiter issues a DMA
request, which causes the system bus HOLD line to be raised. When the bus
becomes available, the DMA controller raises the hold acknowledge line,
HLDA, to signal the adapter that access to the bus has been granted. The
adapter controller then begins a read operation on the system bus until the
number of requested bytes have been read from memory, and then outputs the
data to the device. The adapter normally generates an interrupt when the
transfer is complete, so that the device driver can check the status of the
transfer.

When data has to be read, the DMA channel registers are loaded with the
address of the receive buffer, and the adapter controller programmed to start a
read operation. The on-board arbiter requests a DMA operation, and the input
data is transferred from the adapter controller directly to the memory buffer
without using the CPU. When the required data has been read, or the adapter
controller decides that the input should be terminated, it generates an interrupt
so that the device driver can examine the received data. The DMA controller
will give up the bus by releasing the HOLD line when the DMA channel transfer
count goes to zero or the DMA channel is reset. In addition to the adapter
initiating the DMA operation, the DMA controller can be programmed to start
a DMA transfer using the 8237’s request register.

To start the DMA, the particular channel is first masked to prevent it from
running. Normally, device drivers are free to utilize DMA channels 5, 6, and 7.
The mask register for DMA channels 4-7 is at I/O address 0xD4. The driver
masks the DMA channel by setting the proper bits in the DMA mask register
(see Table 11-4).

231

Table 11-4. DMA Mask Register

Bit Meaning

0-1 00 = select channel 4 mask bit
01 = select channel 5 mask bit
10 = select channel 6 mask bit
11 = select channel 7 mask bit

2 0 = clear mask bit
1 = set mask bit

3-7 don't care

Next, the mode register for the selected channel is configured by setting the
channel bit and the read/write bits (see Table 11-5).

232

Table 11-5 DMA Mode Register

Bit Meaning

0-1 00 = channel 4 select
01 = channel 5 select
10 = channel 6 select
11 = channel 7 select

2-3 00 = verify transfer
01 = write transfer
10 = read transfer
11 = illegal
xx = don't care if bits 6-7 = 11

4 0 = auto-initialize disable
1 = auto-initialize enable

5 0 = address increment
1 = address decrement

6-7 00 = demand mode select
01 = single mode select
10 = block mode select
11 = cascade mode select

The DMA Command Registers are defined in Table 11-6.

233

Table 11-6. DMA Command Register

Bit Meaning

0 0 = memory to memory disable
1 = memory to memory enable

1 0 = channel 4 address hold disable
1 = channel 4 address hold enable
x = don't care if bit 0 = 0

2 0 = controller enable
1 = controller disable

3 0 = normal timing
1 = compressed timing
x = don't care if bit 0 = 1

4 0 = fixed priority
1 = rotating priority

5 0 = late write selection
1 = extended write selection
x = don't care if bit 3 = 1

6 0 = DREQ sense active high
1 = DREQ sense active low

7 0 = DACK sense active low
1 = DACK sense active high

The channel is then programmed to transfer words or bytes by the loading of
the page select, base address and count registers. To start the DMA operation,
the channel is unmasked by writing the proper mask bits to the mask register.

The code to initiate a DMA transfer is shown in Figure 11-1. A complete listing
of the code can be found in Appendix C. The DMACh structure is assumed to
be initialized before the call to SetupDMA. The DMA channel might be active
at the time that it is needed, so the device driver should examine the status of
the DMA channel to verify that it is available. This is done by examining the
status word of the controller and checking the DMA channel busy bits.

234

USHORT SetupDMA(USHORT channel)
 {
 if(DMAChannelBusy(channel))
 return (DMA_CHANNEL_BUSY);
 MaskDMA(channel);
 SetDMAMode(channel,DMA_SINGLE | DMA_READ);
 InitDMA(channel,(UCHAR) DMACh.PageSelect,

 (USHORT) DMACh.BaseAddress,
 (USHORT) DMACh.WordCount);

 UnmaskDMA(channel);
 return (DMA_COMPLETE);
 }

Figure 11-1. DMA setup routine.

DMA and Micro Channel

The Micro Channel bus permits adapters to be masters or slaves. During a
memory or I/O transfer under DMA, the master owns the bus and transfers data
to and from a slave. Adapters that need the bus compete for it using a
centralized arbiter, called the Central Arbitration Control Point, or CACP. The
CACP arbitrates DMA channel utilization based on a 4-bit arbitration bus,
known as the ARBUS. The ARBUS and CACP work together to ensure that
the highest priority master gets control of the bus when it needs it, and that
other masters which are competing for the bus get a fair share of the available
time.

In a Micro Channel system, the DMA controller is a master, which assists in
transfers between slaves during a DMA operation. The DMA controller cannot
arbitrate the bus. Rather, a slave initiates the arbitration which is monitored by
the DMA controller. The DMA controller then transfers the data between the
slave and memory. In this capacity, the DMA controller acts as a “middle man”,
responsible for helping out with the transfer. Thus this arrangement is
sometimes referred to as “third-party DMA”.

Micro Channel slave adapters capable of DMA operation are fitted with a
second DMA controller, called a DMA arbiter. To perform DMA transfers, the

235

device driver initializes the adapter with the source, destination, and count of
the transfer. The on-board hardware DMA arbiter arbitrates for the use of the
bus using its preassigned arbitration level, which is usually stored in the
adapter’s POS registers. Data transfers can also be performed to and from
Micro Channel Bus Masters without using the system DMA controller.

237

Chapter 12 - Extended Device Driver Interface

The Extended Device Driver Interface, EDDI, is a new interface developed to
take advantage of a new generation of intelligent disk controllers. These new
disk controllers are capable of handling transfers to and from discontiguous
memory areas. Although EDDI is intended for disk drivers, other types of
device drivers can also utilize EDDI.

EDDI improves performance by allowing multiple, prioritized requests to be
submitted to the device driver at the same time. Instead of the standard
synchronous Request Packet, the EDDI driver is sent a Request List of
commands, which it can reorder to provide maximum performance. The Read
and Write operations use scatter/gather descriptors (SGDs), which allow for
data transfer to and from discontiguous data buffers. The driver does not need
to block waiting for the request to complete, but returns immediately. The
actual transfer is usually completed by the disk adapter hardware.

The ability to handle transfers to and from discontiguous memory is more
efficient in a system such as OS/2 Warp, which utilizes the 4KB paging
functionality of the 80386 and 80486 processors. Data buffers to be written to
or from the device driver are normally partitioned into 4K pages, and are not
necessarily contiguous. EDDI requires that the device driver contain a second
Strategy routine in addition to the normal Strategy routine in an OS/2 device
driver. The new extended Strategy routine is also called the Strategy 2 or
scatter/gather entry point.

Device Driver Capabilities

The OS/2 kernel issues a GetDriverCapabilities request to the device driver. If
the device driver supports the scatter/gather interface, it returns to the kernel a
structure containing two 16:16 pointers to special structures that are supported
and maintained by the device driver. Contained in one of the structures is a
16:16 pointer to the second Strategy routine to handle synchronous I/O, along

238

with several other parameters. See the Get Driver Capabilities command in
Chapter 6.

The first structure returned is the Driver Capabilities Structure, or DCS (see
Figure 12-1). The DCS can be changed only by the device driver.

typedef struct _DRIVCAPSTRUCT
{
 USHORT reserved;
 UCHAR VerMajor; // major version, should be 01
 UCHAR VerMinor; // minor version, should be 01
 ULONG Capabilities;// capabilities bits
 PFUNCTION Strategy2; // 16:16 pointer to STRAT2
 PFUNCTION SetFSDInfo; // 16:16 pointer to SetFSDInfo
 PFUNCTION ChgPriority; // 16:16 pointer to ChgPriority
 PFUNCTION SetRestPos; // 16:16 pointer to RestPos
 PFUNCTION GetBoundary; // 16:16 pointer to GetBoundary
} DRIVCAPSTRUCT;

Figure 12-1. Driver Capabilities structure.

The major and minor version number specifies the version of the EDDI
interface that the driver supports. For OS/2 Warp, these should both be 1.

The capabilities bits are described in Table 12-1.

Table 12-1. Capabilities Bits

Bit(s) Description
0-2 reserved, must be zero
3 if set, supports disk mirroring
4 if set, supports disk multiplexing
5 if set, driver does not block in STRAT2 requests. LAN

Server and LAN Manager require this.
6-31 reserved, should be 0

239

If the driver does not provide a particular service such as ChgPriority, it must
return 0:0 as the pointer to the nonexistent function.

The second pointer returned from the Get Driver Capabilities function is a
pointer to the Volume Characteristics Structure, or VCS. The VCS structure
appears in Figure 12-2.

typedef struct _VOLCHARSTRUCT
{
 USHORT VolDescriptor;
 USHORT AvgSeekTime;
 USHORT AvgLatency;
 USHORT TrackMinBlocks;
 USHORT TrackMaxBlocks;
 USHORT HeadsPerCylinder;
 USHORT VolCylinderCount;
 USHORT VolMedianBlock;
 USHORT MaxSGList;
} VOLCHARSTRUCT;

Figure 12-2. Volume Characteristics Structure.

The VolDescriptor is defined in Table 12-2.

240

Table 12-2. Volume Descriptor Word

Bit(s) Description
0 if set, volume resides on removable media
1 if set, volume is read only
2 if set, average seek time is independent of position, such

as a RAM disk
3 if set, outboard cache is supported
4 if set, scatter/gather is supported by the adapter
5 if set, Read Prefetch is supported
6-15 reserved, should be zero

The AvgSeekTime is the disk seek time specified in milliseconds. If unknown,
the time should be set to FFFF. If the device is a RAM disk, the time should be
0.

The AvgLatency is the average rotational latency in milliseconds. Like the
average seek time, the latency should be set to FFFF when it is unknown, and 0
when the device is a RAM disk.

The TrackMinBlocks specifies the number of blocks available on the smallest
capacity track. If this value is not known, it should be set to 1.

The TrackMaxBlocks is the number of blocks available on the largest capacity
track. If this value is not known, it should be set to 0.

The Heads Per Cylinder is the number of heads per disk cylinder. If not known
or applicable, this value should be set to 1.

The VolCylinderCount is the number of cylinders in the volume. If not known,
it should contain the number of sectors in the volume.

The MaxSGList is the maximum number of scatter/gather list entries that can be
submitted with one command. If the adapter does not directly support
scatter/gather, this field should be set to 0.

241

Request Lists and Request Control

To enable the EDDI driver to be called with multiple requests at one time, a
new request format was defined, and is referred to as a Request List. The
Request List allows an EDDI device driver’s Strategy entry point to be called
with a list of requests. The device driver can reorder the requests to provide
maximum performance. Only four types of requests have been defined. The four
requests are Read, Write, Write Verify, and Read Prefetch. Other commands
may be added in the future. The requests have Request Control flags associated
with them which can be used to force sequential execution.

The Request list consists of a 20-byte Request List Header shown in Figure 12-
3.

typedef struct _REQUESTLISTHEADER {
 USHORT ReqListCount;
 USHORT Reserved;
 FARPOINTER ListNotifyAddress;
 USHORT ListRequestControl;
 UCHAR BlkDevUnit;
 UCHAR ListStatus;
 ULONG Reserved1
 ULONG Reserved2;
 } REQUESTLISTHEADER;

Figure 12-3. Request List Header structure.

The ReqListCount is the number of requests in the Request List.

The LstNotifyAddress is a 16:16 pointer to the notification routine to be called
when all requests in the Request List have been completed, or when an
unrecoverable error has occurred. The LstNotifyAddress is called with ES:BX
pointing to the Request List Header, and the carry flag set (STC) if an error has
occurred. The device driver must save all registers before making the call to the

242

NotifyAddress, and restore them when the call is complete. This call should not
be made if both bit 4 and bit 5 of the LstRequestControl word are clear (0).

The LstRequestControl word is defined in Table 12-3.

Table 12-3. LstRequestControl Word Bits

Bit(s) Description
0 reserved
1 if set, only one request is in the list
2 if set, execute the requests sequentially (do not

reorder)
3 if set, abort on error, set all status, error code and

count (BlocksXferred) fields
4 if set, notify immediately (by calling the

LstNotifyAddress) if an error is detected
5 if set, call the LstNotifyAddress upon completion

regardless of any errors
6-15 reserved, set to 0

The BlockDevUnit is the logical unit number of the volume.

The LstStatus contains the current status of the request list as it is being
processed. The device driver should update the list as requests are being
processed. The LstStatus byte is divided into two 4-byte nibbles. The lower 4
bits indicate the completion status of the requests in the list and the upper 4 bits
indicate the error status of the requests in the list. The bits are defined in Tables
12-4 and 12-5.

243

Table 12-4. LstStatus Byte, Lower Nibble

Value Meaning
00h no requests are queued
01h queueing is in process
02h all requests queued
04h all requests completed
08h reserved

Table 12-5. LstStatus Byte, Upper Nibble

Value Meaning
00h no error
01h recoverable error occurred
02h unrecoverable error occurred
03h unrecoverable error with retry
04h reserved
08h reserved

Request Format

The valid requests are Read (1Eh), Write(1Fh), Write Verify(20h) and Read
Prefetch(21h). Each extended request has a Request Header which is different
from the Request List Header. The Request Header is 32 bytes long and is
described in Figure 12-4.

244

typedef struct _REQUESTHEADER {
 USHORT ReqLength;
 UCHAR CmdPrefix;
 UCHAR CmdCode;
 ULONG HeaderOffset;
 UCHAR RequestCtl;
 UCHAR Priority;
 UCHAR Status;
 UCHAR ErrorCode;
 FARPOINTER NotifyAddress;
 FARPOINTER HintPointer;
 ULONG Reserved1;
 ULONG Reserved2;
 ULONG Reserved3;
 } REQUESTHEADER;

Figure 12-4. Request Header structure.

The ReqLength is the offset to the next request. FFFF terminates the list.

The CmdPrefix is always set to 0x1C to differentiate the request from a
standard Request Packet.

The CmdCode is one of the valid command codes, 1Eh, 1Fh, 20h, or 21h.

The HeaderOffset is the offset from the beginning of the Request List Header to
the header of this request, and is used as a quick access to the Request List
Header.

The RequestCtl field is defined in Table 12-6.

The notify routines should not be called if bits 4 and 5 are both clear (0).

245

Table 12-6. RequestCtl Byte

Bit(s) Description
0-3 reserved, must be 0
4 if set, notify on error only by calling the NotifyAddress

immediately
5 if set, notify on completion by calling the NotifyAddress
6-7 reserved, must be 0

The Request Priority defines the priority of the request, and is defined in Table
12-7.

Table 12-7. Request Priority

Value Meaning
00h prefetch requests
01h low-priority request
02h read ahead, low-priority pager I/O
04h background synchronous user I/O
08h foreground synchronous user I/O
10h high-priority pager I/O
80h urgent request, should be handled immediately

The Status field contains the status of the current request and is defined in
Tables 12-8 and 12-9.

246

Table 12-8. Request Status, Lower Nibble (Completion Status)

Value Meaning
00h not queued yet
01h queued and waiting
02h in process
04h done
08h reserved

Table 12-9. Request Status, Upper Nibble (Error Status)

Value Meaning
00h no error
01h recoverable error occurred
02h unrecoverable error occurred
03h unrecoverable error occurred
04h the request was aborted
08h reserved

ErrorCode contains one of the errors described in Tables 12-10 and 12-11 if the
corresponding error bits are set in the Status field.

247

Table 12-10. Request Unrecoverable Error Codes

Value Meaning
00h write protect violation
01h unknown unit
02h device not ready
03h unknown command
04h CRC error
06h seek error
07h unknown media
08h block not found
0Ah write fault
0Bh read fault
0Ch general failure
10h uncertain media
13h invalid parameter

Table 12-11. Request Recoverable Error Codes

Value Meaning
1Ah verify error on write, recovered after 1 try
2Ah write error, write to duplexed or mirrored driver

succeeded
3Ah write error on mirrored or duplexed drive, write

to primary drive succeeded
1Bh read error, corrected using ECC
2Bh read succeeded after retry
3Bh read error, recovered from mirrored or duplexed

driver

The NotifyAddress contains a 16:16 pointer to the driver to call when the
request has been completed or aborted. If bits 4 and 5 of the RequestCtl field
are both clear (0), the Notify Address is not valid and should not be called. The

248

device driver must save all registers before calling the notify routine, and
restore them when the call returns.

The HintPointer is a 16:16 pointer to a Request Packet in the Request List. The
device driver can use this pointer to determine whether the current request can
be grouped with another pending request, providing that the other request has
not yet been completed.

Read/Write/Write Verify Request

The format of these requests is described in Figures 12-5 and 12-6.

typedef struct _SGD {
 PHYSADDR BufferPtr;
 ULONG BufferSize;
 } SGD;

Figure 12-5. Scatter Gather Descriptor structure.

typedef struct _READWRITE {
 REQUESTHEADER ReadWriteHeader;
 ULONG StartBlock;
 ULONG BlockCount;
 ULONG BlocksXferred;
 USHORT Flags;
 USHORT SGDescrCount
 ULONG Reserved;
 SGD Sgd[SGDescrCount];
 } READWRITE;

Figure 12-6. Read/Write Request structure.

The StartBlock is the string disk block for the data transfer. A disk block is
defined as a 512-byte logical disk sector.

The BlockCount is the number of 512-byte blocks to be transferred.

249

The BlocksXferred is the number of blocks that have been transferred at the
time that the notification routine was called.

The Flags field currently uses only the two least significant bits. All other bits
are set to 0. If bit 0 is set, it specifies write-through, defeating any lazy write. If
bit 1 is set, the data should be cached on the outboard controller cache.

The SGDescrCount field contains the number of scatter/gather descriptors in
the Sgd field.

The Sgd field contains an array of scatter/gather descriptors.

Read Prefetch Request

The format of the Read Prefetch request is described in Figure 12-7.

typedef struct _READPREFETCH {
 REQUESTHEADER ReadPreHdr;
 ULONG StartBlock;
 ULONG BlockCount;
 ULONG BlocksXferred;
 USHORT Flags;
 USHORT Reserved;
 } READPREFETCH;

Figure 12-7. Read Prefetch Request structure.

The StartBlock is the string disk block for the data transfer. A disk block is
defined as a 512-byte logical disk sector.

The BlockCount is the number of 512-byte blocks to be transferred.

The BlocksXferred is the number of blocks that have been transferred at the
time that the notification routine was called.

250

The Flags field currently uses only the least significant bit. All other bits are set
to 0. If bit 0 is set, it specifies that the driver should retain data in the controller
prefetch buffers only until it has been read once. This prevents redundant
caching in the controller.

Request Control Functions

The EDDI device driver may optionally provide other services to allow OS/2 to
manage extended requests. The current implementation is OS/2 WARP defines
four functions that the device driver may support. The device driver exports
these functions by placing a 16:16 pointer to the functions in the DCS returned
from the Get Driver Capabilities call. If the pointer in the DCS structure is 0:0,
the function is not supported by the device driver. Since the request control
functions may be called at interrupt time, they must not block. Request control
functions are called by the OS/2 File System Driver, or FSD. Request control
functions must save and restore the segment registers, as the interrupt context
may not be the same as the device driver. The four request control functions are
summarized in Table 12-12.

251

Table 12-12. Request Control Functions

Request Control Function Description

SetFSDInfo Send the device driver 16:16 pointers to
the FSD's End of Interrupt and Access
Validation routines

ChgPriority Allows the FSD to change the priority of a
pending request

SetRestPos Allows the FSD to inform the device
driver where to send the disk drive heads
when there are no requests pending

GetBoundary The device driver returns a block number
greater than the block number passed to
the device driver

SetFSDInfo

This device driver function is called by the FSD with 16:16 pointers to the
FSD’s End of Interrupt and Access Validation routines. The driver is called
with ES:BX pointing to a FSDInfo structure, described in Figure 12-8.

typedef struct _FSDInfo {
 ULONG Reserved1; // reserved, must be 0
 FARPOINTER EndOfInit; // pointer to FSD's EOI
 ULONG Reserved2; // reserved, must be 0
 FARPOINTER AccValidate; // pointer to FSD's AccValidate
 } FSDInfo;

Figure 12-8. SetFSDInfo structure.

The device driver should allow this function to be called only once. If the call is
the first call, the device driver should return with the carry flag set (STC).

252

Subsequent calls should be ignored, and the device driver should return with the
carry flag clear (CLC).

If the EndOfInit pointer is 0, the FSD does not provide an End Of Interrupt
routine. All registers are preserved during the call to EndOfInit.

The device driver calls the FSD’s AccValidate with the AL register set to 0 for
a nondestructive operation, such as READ or VERIFY, and the AL register set
to 1 for a destructive operation, such as WRITE or FORMAT TRACK. The
FSD’s AccValidate function returns with the carry flag clear if access is
allowed, or the carry flag set if access is denied. The device driver should return
a write-protect violation to the caller if access is denied.

ChgPriority

The device driver’s ChgPriority routine is called with ES:BX pointing to the
request, and the AL register containing the new priority. The pointer in ES:BX
is always a valid pointer. The device driver should return with the carry flag set
if the Request Packet was not found or was no longer in the device driver’s
internal queue. If the priority change was successful, the device driver should
return with the carry flag clear.

SetRestPos

The device driver’s SetRestPos routine is called with AX:BX containing the
block to be used for the resting position. A value of FFFF:FFFF means rest at
the block where the heads end up. The device driver should return with the
carry flag set if the block number is out of the range for the volume, otherwise
it should return with the carry flag clear.

GetBoundary

253

The device driver’s GetBoundary routine is called with AX:BX containing the
block number to be used as a reference to calculate the next block number.
Using this information, the FSD can store files more optimally. If the next block
cannot easily be calculated or is not known, the device driver can return the
reference block'1. If the block number is out of the range, the device driver
must return with the carry flag set, otherwise it should return with the carry flag
clear.

255

Chapter 13 - Debugging OS/2 Device Drivers

The Kernel Debugger, or KDB, is generally used to debug device drivers as
well as the system kernel code. The KDB kernel, OS2KRNLD, is actually a full
function replacement OS/2 kernel, which contains the debugger and the
debugger support functions. KDB communicates with a standard ASCII
terminal through one of the COM ports. If the system contains only one COM
port, COM1, KDB uses COM1. If the system has two COM ports, COM1 and
COM2, KDB uses the second COM port, COM2. KDB defaults to 9600 baud,
no parity, 8 data bits and one stop bit.

The COM port is attached to an ASCII terminal via an RS-232 interface with
data leads only in a null modem configuration (pin 2 and 3 switched). Before
installing the debugger, the terminal link should first be verified by sending
some text out to the terminal using the DIR > COMn command. If the baud
rate of the COM port has not been previously initialized to 9600 baud, use the
command MODE COM1(or COM2):96,n,8,1 <enter>. The text of the directory
list should be displayed on the debugging terminal. You do not have to issue the
MODE command when KDB is installed, as KDB will initialize the port on
start-up to 9600,n,8,1.

To install the kernel debugger, the attributes of the OS2KRNL file are changed
to make it visible. This can be done by using a utility such a attrib. The
OS2KRNL file is renamed to OS2KRNL.OLD, and the debugging kernel,
OS2KRNLD, copied to OS2KRNL. The OS2KRNL.OLD file is kept to allow
reinstallation of the non-debug kernel when reinstalling OS/2. When the system
is rebooted, the debugger should sign on at the debug terminal with the
message “System Debugger 03/16/89 [80386]”.

The IBM OS/2 Warp Toolkit contains an install utility for the kernel debugger
which will perform the above steps automatically.

KDB can be entered normally in several ways. Three special keys entered on
the debugging terminal cause KDB to be entered prior to the complete boot of

256

OS/2. The “r” key causes the debugger to be entered at the beginning of DOS
initialization in real mode. The “p” key causes the debugger to be entered after
OS/2 goes into the protect mode for the first time. The “<space-bar>” causes
the debugger to be entered after most of DOS has been initialized. Symbols for
DOS have been loaded at this time.

After initialization is complete, the debugger can be entered at any time by
typing <cntl-c> at the debug terminal. The debugger is entered when and where
the next timer tick is taken after the key was pressed.

When KDB is entered, it will execute the current default command, usually the
“r” (register contents), and then display the debugger prompt, “##”. The system
will not run until the debugger is exited, usually by entering the GO command
(g). KDB will also be entered when the system detects an “INT 3” instruction.
A common debug technique is to insert INT 3 instructions in the driver source
code while debugging, which will cause KDB to be entered. Once KDB has
been entered, the KDB commands can be used to display the contents of
variables, system information, or memory contents, and to run from or single-
step from the breakpoint.

After any symbols files are loaded, an initialization file, called KDB.INI, is read
and executed. Any debugger command or list of debugger commands can be in
the KDB.INI file. A “g” command should usually be at the end of the
command list, unless the debugger is to remain stopped.

At any time during the display of data on the debug terminal, the display can be
stopped with a <cntl-s>, and restarted with a <cntl-q>. The GO command (g)
always resumes execution at the instruction displayed in the CS:IP register.

KDB displays information in machine code, and requires a thorough
understanding of machine language and processor architecture to fully utilize its
capabilities.

A complete list of the valid KDB commands can be displayed by entering the
“?” command at the KDB prompt for internal KDB commands, and “.?” for
external commands.

257

KDB obtains its symbolic debug information from a symbol file with the
extension of .SYM. These files can be created with the MAPSYM utility, which
creates a symbol file from the .MAP file created during the link operation.
When loading a device driver during system boot, the debug kernel looks for a
.SYM file with the same file name as the driver .SYS file, and in the same
directory as the driver .SYS file. If the device driver “TEST.SYS” were being
loaded, the debug kernel would look in the same directory as “TEST.SYS” for
the file “TEST.SYM”, and load the symbols. The symbol file is not necessary,
and the driver will load without it, but variables will not be able to be accessed
by name. Several drivers may be loaded, each with their own .SYM file.

If the KDB was supplied with the operating system SYM files, these will also
be loaded if they are placed on the root directory with the OS2KRNL file. The
system symbol files will allow access to system variables and structures by
name. Symbols are displayed using a KDB command such as display word
(dw), display byte (db), or display double word (dd). They are referenced by the
symbolic name preceded by the underscore (“_”), if the driver is written in C.
For example, to display the 16-bit variable “bytecount”, the command “dw
_bytecount” would be entered.

KDB Keywords

KDB supports the keywords in Table 13-1 which return their value when used
in expressions.

258

Table 13-1. KDB Keywords

[E]AX, [E]BX, [E]CX,
[E]DX, [E]SI, [E]DI, [E]BP,
DS, ES, SS, CS, [E]SP,
[E]IP

register values

FLG value of flags
GDTB value of GDT base physical address
GDTL value of GDT limit
IDTB value of IDT base physical address
IDTL value of IDT limit
TR, LDTR, MSW value of TR, LDTR, MSW registers
BR0, BR1..BR9 value of breakpoint address
FS, GS segment registers
EFLG value of extended flags
CR0, CR2, CR3 value of control registers
DR0, DR1, DR2, DR3, DR4,
DR5, DR6, DR7

value of debug registers

TR6, TR7 value of test registers

259

KDB Operators

KDB supports the binary operators described in Table 13-2.

Table 13-2. KDB Binary Operators

Operator Meaning
() Parentheses
+ Addition
- Subtraction
* Multiplication
/ Division
MOD Modulo
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to
== Equal to
AND Boolean AND
XOR Boolean exclusive OR
OR Boolean inclusive OR
&& Logical AND
|| Logical OR
: Address separator

260

KDB supports the unary operators described in Table 13-3.

Table 13-3. KDB Unary Operators

Operator Meaning
| Task number/address operator
&addr Interpret address using segment value
#addr Interpret address using selector
%addr Interpret address as 32-bit linear
%%addr 32-bit physical address
- Two's complement
! Logical NOT
NOT One's complement
SEG Segment address
OFF Address offset
BY Low byte of address
WO Low word of address
DW Doubleword from address
POI Pointer from address
PORT One byte from a port
WPORT Word from a port

261

The operator precedence is as follows:

()
| :
& # % %% - ! NOT SEG OFF BY WO DW POI PORT WPORT (unary
operators)
* / MOD
+ -
> < >= <=
==
!=
AND
XOR
OR
&&
||

KDB Command Reference

In the following command descriptions, the following rules apply:

• brackets ([]) mean the parameter is optional
• the “or” sign (|) means either of the parameters is valid
• parameters surrounded by carets (<>) are mandatory
• parameters may be separated by a comma (,) or blank
• multiple commands on the same line are separated by a semicolon (;)
• all numeric entry is defaulted to hexidecimal
• (...) means repeats

Table 13-4 lists the KDB parameter types and their meaning.
Expressions

262

Table 13-4. KDB Parameter Definitions

Parameter Definition

<expr> evaluates to an 8, 16, or 32-bit value
<number> a number in decimal, octal, hex or binary
<string> any number of characters between " " or ' '
<range> <addr> [<word>] | [<addr>] [L <word>]
<addr> [& | #][<word>:]<word> | %<dword>
<list> <byte>, <byte>, ... | "string"
<bp commands> a list of debugger commands, separated by ;
<string> "char" | 'char'
<dword>,<word>,<byte> expressions that evaluate to the size in <>

An expression (expr) is a combination of parameters and operators that evaluate
to an 8, 16 or 32-bit value.

Numbers

A number (number) parameter can be any number with hex as the default.
Numbers may be evaluated in a different radix by appending a special character
to the number. These special characters are y for binary, o for octal, T for
decimal and h for hex (default).

Strings

A string (string) parameter is any number of characters within double (“ ”) or
single (‘ ’) quotes. Double quotes within the string should be preceded by
another double quote to be correctly evaluated.

Ranges

263

A range (range) parameter specifies an address followed by either a length or an
end address. An additional parameter may also be used to specify the number of
times to perform the operation.

Addresses

An address (addr) parameter indicates a memory address in one of four modes.
The four modes are: real mode (&segment:offset), protect mode
(#selector:offset), linear address (%dword), and physical address (%%dword).
The operators preceding the address override the current address type.

Lists

A list is a list of two-character bytes separated by a space, or a string
surrounded by double quotes.

Commands

Commands (bp cmds) are one or more debugger commands, separated by
semicolons (;), to be executed when a condition is met, such as a breakpoint
encountered.

Strings

A string is a list of characters bounded by single or double quotes.

Dwords, words, bytes

Expressions that evaluate to the specified size.

Breakpoints

There are two kinds of breakpoints in the kernel debugger. Temporary
breakpoints are set as an option to the go (g) command, and disappear when the
go command is executed again. Sticky breakpoints are set with a KDB set

264

breakpoint command, and remain until cleared with a KDB command or the
system is rebooted. Sticky breakpoints are numbered 0-9, inclusive.

On a 386, the debug registers can be used in a sticky breakpoint (see the br
command).

When a breakpoint is encountered, the current default command is executed.
This command is set to r, or the dump registers command. The default
command may be changed by the zs command, and listed with the z command.

Internal Commands

Set Breakpoint

bp[bp number] [<addr>] [<passcnt>] [<bp cmds>]

Set a new sticky breakpoint, or change an existing old breakpoint. The number
parameter is an optional breakpoint number, which selects a new breakpoint by
the number or changes an existing breakpoint with the same number.
The passcnt parameter specifies how many times the breakpoint will be passed
by before it is executed. If passcnt is omitted or 0, the breakpoint will be
executed the first time that it is encountered.

The commands parameter is a list of KDB commands to be executed when the
breakpoint is encountered.

Set Register Breakpoint

br[<bp number>] e|w|r|1|2|4 [<addr>] [<passcnt>] [“<bp cmds>”]

Sets a 386 debug register. Debug registers can be used to break on data reads
and writes, and on instruction execution. Up to four debug registers can be set
and enabled at one time. Disabled br breakpoints don’t occupy a debug register.

265

The e parameter specifies a one-byte length (default)

The w parameter specifies break on write operation.

The r parameter specifies break on read operation

The 1 parameter specifies a one-byte length.

The 2 parameter specifies a word length. Word-length breakpoints must be on a
word boundary.

The 4 parameter specifies a doubleword length.

Set Time Stamping Breakpoint

bt[<bp number>] [<addr>]

Set a time stamping breakpoint.

Show Timestamp Entries

bs

Show the time stamp entries.

List Breakpoint(s)

bl

Lists the currently set breakpoints with current and original passcnt, and
breakpoint commands (bp cmds) associated with them.

266

An “e” after the breakpoint number means that the breakpoint is enabled; a “d”
means that it is disabled. After either one, there may be an “i”, which indicates
that the address was invalid the last time the debugger tried to set or clear the
breakpoint.

Clear Breakpoint(s)

bc[bp number],[bp number],...

Removes (clears) the list of breakpoint numbers from the debugger’s breakpoint
table.

Enable Breakpoint

be [bp number],[bp number],...

Enables the list of breakpoint numbers.

Clear Breakpoint(s)

bd[bp number],[bp number],...

Disables the list of breakpoint numbers. The breakpoint is not removed, but
disabled so that it can be re-enabled later.

Compare Bytes

c <range> <addr>

Compares the bytes in the memory location specified by <range> with the
corresponding bytes in the memory locations beginning at <addr>. If all
corresponding bytes match, the kernel debugger displays its prompt and waits

267

for the next command. If one or more corresponding bytes do not match, each
pair of mismatched bytes is displayed.

Dump Memory

d [<range>]

Dump memory in the last format selected (byte, word, doubleword).

Dump Bytes

db [<range>]

Dump memory in byte format and ASCII representation.

Dump Words

dw [<range>]

Dump memory in word format.

Dump Doublewords

dd [<range>]

Dump memory in doubleword format.

Dump GDT Entries

dg [a] [<range>]

268

Dump global descriptor table entries.

The a parameter specifies a dump of all entries, not just valid entries.

Without the a parameter, the dg command will display only the valid GDT
entries. If the range is an LDT selector, KDB will display “LDT” and the
associated entry.

Dump IDT Entries

di [a] [<range>]

Dumps the interrupt descriptor table.

The a parameter specifies a dump of all of the IDT entries.

The default is to display only the valid IDT entries.

Dump LDT Entries

dl [a|p|s|h] [<range>]

Dump local descriptor table entries.

The a parameter specifies a dump of all of the LDT entries.

The default is to display only the valid LDT entries.

The p parameter specifies the private selectors only.

The s parameter specifies the shared selectors only.

The h parameter specifies the huge segment selectors only.

269

Dump Page Directory/Page Table Entries

dp [a|d] [<range>]

Dump the page directory and page tables. Page tables are skipped if the
corresponding page directory entry is not present. Page directory entries with
an asterisk next to the page frame should be ignored.

The a parameter specifies a dump of all of the page directory and page table
entries.

The default is to skip entries that are zero.

The d parameter specifies a dump of page directory entries only.

Table 13-5. Page Bit Definitions (bit set/clear)

Dc Dirty/clean
Au Accessed/unaccessed
Us User/supervisor
Wr Writable/read-only
Pn Present/not present

The pteframe field contains the contents of the high 20 bits in the pte. If the
page is present, the value is the high 20 bits of the physical address that the
page maps to. To find out information about the physical address, use the .mp
command. If the page is not present, the pteframe field contains an index into
the Virtual Page (VP) structure. The .mv command can dump information from
the VP structure. A not-present page may still be cross-linked to a page of
physical memory via the VP, and if so, that physical address is in the frame
column.

270

Note: uvirt pages in the state column represent a direct mapping of physical
memory without any other page manager structures associated with them.

Dump Task State Segment (TSS)

dt [<addr>]

Dumps the TSS. If no address is given, the dt command will dump the current
TSS pointed to by the TR register, extracting the type (16- or 32-bit) from the
descriptor access byte. If an address is given, the type is determined by the
386env flag.

Dump Loadall Buffer

dx

Dump the 80286 loadall buffer.

Enter Data

e <addr> [<list>]

Enter one or more byte values into memory at the specified addr.

The list parameter specifies a list of bytes to be stored at addr and each
subsequent address, until all of the data in the list has been used.

If the list is omitted, KDB prompts the operator for a byte . If an error occurs,
the contents of memory are left unchanged. Each time the space bar is hit, the
address is incremented by one byte. The minus key (-) decrements the address.
The return key with no data terminates the entry and returns to the KDB
prompt.

271

Fill Memory With Pattern

f <range> <list>

Block fills the addresses in the range with the values in the list.

The list parameter specifies a pattern or list of bytes to be stored.

If the range specifies more bytes than the number of values in the list, the
pattern of bytes in the list is repeated until all bytes in the range are filled. If the
list has more values than the number of bytes in the range, the extra bytes are
ignored.

Go

g [s] [t] [=<start addr>][<break addr>],[<break addr>...]

Passes execution control to the code at the start addr. Execution continues to
the end of the code, or until the break addr or a breakpoint is encountered.

If no start addr is given, the command passes execution to the address specified
by the current CS:IP.

The equal sign (=) parameter is used only when a start addr is given.

The s parameter causes the number of timer ticks since the system was started
to be displayed.

The t parameter allows trapped exceptions to resume at the original trap
handler address without having to unhook the exception.

Up to 10 addresses may be used. Only the first address encountered during
execution will cause a break. All others are ignored. If more than 10
breakpoints are entered, an error message will be displayed.

272

When the breakpoint is encountered, the default command is executed.

Help/Print Expression

?[<expr>][|’string’]

If no arguments are entered, KDB displays the command syntax help for the
internal debugger commands.

The expr parameter is an expression to be evaluated. The evaluated expression
is displayed in hex, decimal, octal, and binary.

The string parameter prints the ASCII string on the debugger terminal.

Hex Arithmetic

h <number 1> <number 2>

Perform hex arithmetic in two values. KDB adds number 1 to number 2,
subtracts number 1 from number 2, multiplies number 1 by number 2, divides
number 1 by number 2, and displays the results.

Input Port

i <port>

Reads and displays one byte from the specified port.

273

List Near Symbols

ln [<addr>]

Lists the nearest symbol both forward and back from addr.

List Groups

lg [<mapname>]

Lists the selector or segment and the name for each group in the active maps or
the specified map mapname.

List Maps

lm

Lists all of the current symbol files loaded, and which ones are active.

List Absolute Symbols

la [<mapname>]

Lists all of the absolute symbols in the active maps or the specified map
mapname.

List Symbols

ls <addr>

Lists all of the symbols in the group that the address addr is in.

274

Add/Remove Active Map

wa <mapname> | *
wr <mapname> | *

Adds (wa) or deletes (wr) a map to the active map list. The active maps are
listed with the lm command.

The mapname parameter is the name of a map file to make active or an active
map to be removed.

The * parameter adds or removes all map files.

Conditional Execution

j <expr> [<command list>]

Executes the command list if the expression evaluates to TRUE (nonzero).
Otherwise, it continues to the next command in the command line, but not
including the ones in the command list. The command list is one or more
commands surrounded by single or double quotes. If more than one command
appears in the command list, the commands must be separated by the semicolon
(;) character.

The j command is normally used to set a conditional breakpoint at a particular
address.

Traces the bp chain on the stack and prints the address, 4 words/dwords of
parameters, and any symbol found for the address.

The s parameter specifies a 16-bit frame width.

The b parameter specifies a 32-bit frame width.

275

The ss:bp specifies a stack address other than the current ss:bp.

The cs:ip parameter specifies an execution address other than the current cs:ip
values.

Move Memory

m <range> <addr>

Moves the block of memory specified by a range to the location starting at
addr.

Ouput Byte

o <port> <byte>

Sends the byte to the specified output port.

Ptrace/Program Step

p [n|t] [=<start-addr>] [<count>]

Executes the instruction at the start address, then executes the current default
command.

The n parameter causes the register to be suppressed if the default command is
r.

The t parameter allows the original trap handler address to be traced without
having to unhook the exception.

276

The start addr parameter is an optional address to start at, otherwise execution
begins at the current cs:ip.

The count parameter specifies the number of instructions to execute before
stopping.

The p command is different than the t command, in that the p command will
allow a function call to complete before stopping again. A p command executed
at a call instruction will stop only after the call has been completed. The t
command will trace into the call and stop at every instruction.

Register

r [t][<register-name> [<value>]]

Displays the contents of CPU register and allows its contents to be changed.

The t parameter toggles the terse register display flag.

The register name is any one of the valid register names listed in Table 13-6.

277

Table 13-6. KDB Register Definitions

Register name Meaning
AX, BX, CX, DX, SI, DI,
BP, SP, IP

general registers

DS, ES, SS, CS segment registers
GDTB GDT base as a linear address
GDTL GDT limit
IDTB IDT base as a linear address
IDTL IDT limit
TR, LDTR TR, LDTR registers
IOPL iopl portion of flag registers
F flag register
MSW Machine status word
EAX, EBX, ECX, EDX,
ESI, EDI, EBP, ESP, EIP

extended general registers

FS, GS segment registers
EF extended flag register
CR0, CR2, CR3, CR4 control registers
DR0, DR1, DR2, DR3,
DR6, DR7

debug registers

TR6, TR7 test registers
IP, PC the Instruction Pointer
F the Flags register

If no register name parameter is supplied, the r command displays all of the
registers, flags, and the instruction at the current cs:ip.

If a register name parameter is supplied, the current value of the register is
displayed, and KDB prompts for a new value. If both the register name and
value are given, the command changes the register name to the value.

278

To change one of the flag values, supply the register name f when entering the
Register command. The f register parameter will display the current value of
each flag as a two-letter name. Table 13-7 contains a list of flag values by name.

Table 13-7. KDB Flag Register Definitions

Flag name Set Clear
Overflow OV NV
Direction DN (Decrement) UP (Increment)
Interrupt EI (Enabled) DI (Disabled)
Sign NG (Negative) PL (Plus)
Zero ZR NZ
Aux Carry AC NA
Parity PE (Even) PO (Odd)
Carry CY NC
Nested Task NT (toggles)

At the end of the list of values, the command displays a minus sign (-). The new
values for the flags can now be entered in any order. To terminate the flags
entry, press the return key.

To change the MSW (Machine status word), use names outline in Table 13-8.

Table 13-8. KDB Machine Status Word

Flag Set Clear
Protected Mode PM (toggles)
Monitor Processor Extension MP (toggles)
Emulate Processor Extension EM (toggles)
Task Switched TS (toggles)

279

Toggles means that if the flag is set, using the flag name will clear it. If the flag
is clear, it will be reset.

Search

s <range> <list>

Searches the memory range for a pattern matching the list parameter.

Trace

t [a|c|n|s|t|x][=<start addr>][<count>][<addr>]

Executes the instruction at the start address or current cs:ip.

The a parameter specifies an ending address for the trace.

The c parameter suppresses all output and counts the instructions traced.

The n parameter suppresses the register display. Only the assembly line is
displayed. This option works only if the default command is r.

The s parameter is a special trace that which causes the instruction and count
for every call and return to be displayed.

The t parameter allows the original trap handler address to be traced without
unhooking the exception.

The x parameter forces KDB to trace regions of code known to be untraceable.

280

Unassemble

u [<range>]

Display the instructions in a range in a mnemonic format. All of the 286 and
287 op-codes can be displayed.

List Real/Protect Mode Exceptions

vl[n | p | v | r | f]

Lists the real and protected mode exceptions that the debugger intercepts.

The n option specifies the traps that beep when hit.

The p option specifies only the protect mode vectors.

The r option specifies only the real mode vectors.

The v option specifies both real and protect mode vectors.

The f option directs the kernel to route fatal faults to the debugger and not to
display a pop-up message.

Vectors set with vt (as opposed to vs) will be printed with a star following the
vector number.

281

Add Interrupt/Trap Vector, All Rings

vt[n | p | v | r | f] n[,n,..]

Adds a new intercept vector that the debugger intercepts.

The r option will install a debugger handler in the real mode IDT.

The p option will install a debugger handler in the protect mode IDT.

The n option causes the intercepted traps to beep when hit.

The f option directs the kernel to route fatal faults to the debugger and not to
display a pop-up message.

Intercept Trap Vector Except Ring 0

vs[n | p | v | r | f] n[,n,..]

Identical to vt except that vs will not intercept ring 0 interrupts.

vsv or vtv intercepts V86 mode exceptions or traps.

For GP faults, vsf d is the same a vsp d. For page faults, vsp e would trap all
ring 3/2 page faults, but vsf e would trap only the invalid page faults.

Clear Interrupt/Trap Vectors

vc[n | p | v | r | f] n,[n],..

Clears the vectors indicated, reinstalling whatever address was in the vector
before the debugger grabbed the vector.

282

The n option causes the trap(s) not to beep when hit. The trap remains intact.

To intercept general protection faults before OS/2 does, use vtp d before the
fault is hit, examine the information about the fault, and do a vcp d and g, which
will let the OS/2 GP handler get control (and kill the process, etc). Another
option would be to enter a vcp d after hitting the fault and trace into the
exception handler. The tt or gt commands perform this automatically.

Debugger Options

y[?] [386env|dislwr|regterse]

Toggles one of the debugger option flags.

386env 386 environment
dislwr display lower case
regterse terse register display flag

The 386env flag controls the size of addresses, registers, and other information
when displayed. When 386env is on, the display format is 32 bits. When off, the
display format is 16 bits.

The dislwr flag, when enabled, displays assembler code in lower case. When
disabled, assembler code is shown in upper case.

The regterse flag determines the number of registers displayed with the r
command. If regterse is on, only the first three lines of registers are displayed. If
regterse is off, all six lines of registers, plus the unassembled instruction, are
displayed.

The ? parameter displays the currently supported options.

The y command without any parameters displays the current state of the option
flags.

283

Execute Default Command

z

Executes the current default command. The default command is a string of
debugger commands that are executed any time that the debugger is entered
and there is no breakpoint command attached to the entry. The r command is
initialized as the default command when the system is rebooted.

List Default Command

zl

Lists the current default command.

Change Default Command

zs <string>

Changes the default command to a string. Any errors will cause the default
command to be reset to r.

External Commands

Help

.?

Prints the help menu for the external debugger commands.

284

Baud Rate

.b <baud rate> [<port addr>]

This command will set the baud rate of the debugging port.

The legal baud rate values are 150t, 300t, 600t, 1200t, 2400t, 4800t, 9600t, and
19200t.

The port addr parameter is 1 for COM1 and 2 for COM2. The default port addr
is 2.

Dump ABIOS Common Data Area

.c

Dumps the ABIOS common data area.

Display Data Structure

.d <data struct name> [<addr>]

Displays an OS/2 data structure. The valid data structure names appear in Table
13-9.

285

Table 13-9. KDB Recognized Structures

Name Description
BPB BIOS Parameter Block
BUF File system buffer
DEV Device driver header
DPB Disk Parameter Block
MFT Master File Table entry
REQ Request Packet
SFT System File Table entry
CDS Current Directory Structure
SEM32 32-Bit Semaphore Structure
OPENQ 32-Bit Semaphore OPENQ chain
MUXQ 32-Bit Semaphore MUXQ chain
KSEM 32-Bit Kernel Semaphore Structure
DT Task State Segment Structure
VPB Volume Parameter Block

Swap In TSD or Page

.i[d|b] [<addr>]

.it[d|b] [<slot>]

Swaps in a TSD or Page.

The i command with an address will cause the page enclosing the address addr
to be swapped in. The address may contain an optional task slot number
override, such as %2|40000.

The it command swaps in the corresponding task’s TSD.

The d option queues up a single swap-in request to be acted upon by the KDB
daemon thread.

286

The slot parameter is the task’s slot number.

Trace User Stack

.k[s|b] [<ss:bp addr>] [<cs:ip addr>]

Traces the bp chain on the user stack and prints the address, 4 words/dwords of
parameters, and any symbol found for the address.

The s option specifies a 16-bit frame width.

The b option specifies a 32-bit frame width.

The ss:bp specifies a stack address other than the current ss:bp.

The cs:ip parameter specifies an execution address other than the current cs:ip
values.

Display MTE Segment Table

.lm[o][l|p|v|x] <hobmte|laddr|”module name”]

Prints module table entries and their associated object and segment table
entries.

The o option suppresses the object or segment table display.

The l option displays only library (.DLL) MTEs.

The p option displays only Physical Device Driver (PDD) MTEs.

The v option displays only Virtual Device Driver (VDD) MTEs.

287

The x option displays only executable (.EXE) MTEs.

If a nonzero hobmte is supplied, only those MTEs with a matching hobmte are
printed. If a nonzero linear address is given, only the MTE pointed to by the
linear address is printed. If a quoted string is given, only those MTEs with a
matching module name are printed.

The module name for a:\bar.dll and c:\foo\bar.exe are both “bar”. No drive,
path, or extension information should be given.

Dump Memory Arena Records

.ma[a|b|c|f|h|l|m|r] [<har|laddr>] | [<har|laddr> L<number of entries>]

This command displays the virtual memory manager’s arena records. If no
handle or linear address is given, the entire table is displayed. If a linear address
is given, it is taken to be a pointer to an arena record. One record or a range of
records can be displayed.

The a option displays all contexts.

The b option displays only busy entries (default).

The c option finds the corresponding object record, and displays the arena,
object, alias, and context record chains.

The h option walks hash links, displaying the entries.

The l option walks forward links, displaying the entries.

The r option walks reverse links, displaying the entries.

The m option specifies the display of all arena records whose linear address
encloses the supplied linear address to be displayed. A linear address must also
be supplied, and no count is allowed. Context information is ignored, so if the

288

linear address is valid in multiple contexts, multiple arena records will be
displayed. A physical address may be supplied instead of a linear address, to
allow not-present linear addresses to get past the debugger’s expression
analyzer. If a selector address type is used, it must be converted to a linear
address in the command line.

To find out who owns a selector because of a GP fault in some unknown LDT
or GDT segment or memory object, the following command is used:

.m or .mamc cs:eip

This will display the arena record and memory object record (and the owner) of
the code segment. It will also walk the context record chains and display them.
The cs can be substituted with any selector, and the eip with any offset. This
command converts the selector:offset into a linear address automatically, so the
resulting address can be used to find and interpret the arena record(s) and
memory object record(s).

Dump Memory Context Record

.mc[b|c|f] [<hco|laddr>] | [<hco|laddr> L<number of entries>]

Displays the virtual memory manager’s context records. If no parameters are
supplied, the entire table is displayed. If a linear address is given, it is taken to
be a pointer to a context record. One record or a range of records can be
displayed.

The b option specifies only busy files.

The f option displays only free entries.

The c option walks context record chains and displays them.

289

Dump Memory Alias Record

.ml[b|c|f] [<hal|laddr>] | [<hal|laddr> L<number of entries>]

Displays the virtual memory manager’s alias records.

If no parameters are supplied, the entire table is displayed.

If a linear address is supplied, it is taken to be a pointer to an alias record. One
record or a range of records can be displayed.

The b option displays only busy entries.

The f option displays only free entries.

The c option finds the corresponding object record, and displays the arena,
object, alias, and context record chains.

Dump Memory Object Record

.mo[b|c|f|m|n|p|s|v] [<hob|laddr>] | [<hob|laddr> L<number of entries>]

Display the virtual memory manager’s memory object records. If no handle or
linear address is supplied, the entire table is displayed. If a linear address is
given, it is taken to be a pointer to an object record. One record or a range of
records can be displayed.

The b option causes busy object records to be displayed.

The f option causes free object records to be displayed.

The c option displays the arena, object, alias, and context record chains.

290

The m option causes all pseudo-object records with an exactly matching linear
address to be displayed. A linear address must also be supplied, and no count is
allowed. If a selector address type is used, it must be converted to a linear
address on the command line. A physical address may be supplied instead of a
linear address, to allow not-present linear addresses to get past the debugger’s
expression analyzer.

The n option causes non-pseudo object records to be displayed.

The p option causes pseudo-object records to be displayed.

The s option causes object records with the semaphore busy or wanted to be
displayed.

The v option causes object record linear addresses to be displayed. It also
disables the owner interpretation. This command attempts to display what
process, MTE, or PTDA owns the segment. It will display the owner as a short
ASCII string, when appropriate. It will display the PID of the process and, if
possible, the name of the module that owns this segment. Code segments will
normally have only a module name and no process ID. If the segment is an
MTE, PTDA, or LDT, KDB will display the object name, process ID (if the
segment is a PTDA), and the module name, if possible.

Dump Memory Page Frame

.mp[b|f|h|l|r|s] [<frame|laddr>] | [<frame|laddr> L<number of entries>]

Displays the page manager’s page frame structures. If no handle or linear
address is supplied, the entire table is displayed. If a linear address is given, it is
taken to be a pointer to a page frame structure. One record or a range of
records can be displayed.

The b options displays only busy entries.

The f option displays only free entries.

291

The h option walks hash links, displaying entries.

The l option walks forward links, displaying entries.

The r options walks reverse links, displaying entries.

This data structure contains per-physical page information. To find out the
owner of a particular physical page, use .mp FrameNumber where
FrameNumber is the physical address shifted right by 12 (take off 3 zeros). If
the page isn’t free, the pVP field contains a flat pointer to the virtual page
structure. Use .mv %pVP where pVP is the value from the .mp dump, to get
the contents of the VP. The Hob field of the VP is a handle to the Object
Record. Use .mo Hob to dump it. That will display a readable string for the
owner on the right of the display. ma of the Har field in the object record will
give the base virtual address of the object containing the page (under va). Use
the HobPg field of the VP to get the page offset within the object.

Dump Virtual Page Structure

.mv[b|f|l|r] [<vpid|laddr>] | [<swapid|laddr> L<number of entries>]

Displays the swap manager’s swap frame structures. If no handle or linear
address is supplied, the entire table is displayed. If a linear address is given, it is
taken to be a pointer to a swap frame structure. One record or a range of
records can be displayed.

The b option displays only busy entries.

The f option displays only free entries.

The l option walks forward links, displaying entries.

The r option walks reverse links, displaying entries.

292

Process Status

.p[b|u] [<slot> | # | *]

Displays the current process and thread status. An asterisk (*) by the slot
number indicates the currently running task. A # by the slot number indicates
what the debugger thinks the current task is.

The .p command, with no options, displays the following information:

• slot number
• PID of the current process
• PID of the parent process
• command subtree number
• thread number
• current state
• priority
• Block ID
• Per Task Data Area (PTDA)
• Task Control Block (TCB) offset
• dispatch sp register value
• screen group
• name of the process or thread

The pb command directs KDB to display detailed block information including
the:

• slot
• Block ID
• name
• address blocked at
• symbol blocked on
• semaphore type.

The pu command directs KDB to display user state information including:

293

• cs:ip and ss:sp values at the time the kernel was entered
• number of arguments passed and their PTDA offset
• offset of the register stack frame
• thread number
• PTDA address
• name.

Display User Registers

.r [<slot> | # | *]

Displays the contents of the user’s CPU registers, flags, and the next instruction
to be executed for a specified slot, at time of entry to the kernel.

The slot parameter is the slot number to use.

The # parameter specifies the use of the current slot.

The * parameter specifies to use the currently scheduled slot or the last one
blocked.

Reboot

.reboot

Warm-boot the machine.

294

Change Task Context

.s[s] [<slot> | *]

Changes what the debugger thinks the current task context is. If no slot number
is passed, it will print the current task number.

The s option changes the ss and sp to the new task’s PTDA selector and
dispatch sp value. The original ss and sp is restored when the debugger exits or
when the ss command is used to switch back to the current task.

The * parameter changes the current debugger’s task number to the real OS/2
task number.

Dump RAS Trace Buffer

.t [<count>] [maj=<xx> [min=<yy>]]

Dumps the RAS trace buffer, optionally dumping only events with the specified
major and minor event codes.

295

Chapter 14 - OS/2 Display Drivers

Presentation Device Drivers (PMDDs) for OS/2 provide support for graphics
devices such as display terminals, printers, plotters, and scanners. Presentation
drivers provide hardware independence for application programs that perform
I/O to these devices.

The presentation driver in OS/2 Warp is a DLL, which runs at Ring 3, and has
the filename extension DRV. When an application needs to perform I/O to a
Presentation driver, it calls a system DLL, which in turn calls the Presentation
Manager graphics engine. The Presentation Manager graphics engine is
contained in PMGRE.DLL.

When a presentation driver is loaded, the graphics engine allocates a dispatch
table containing pointers to routines in the graphics engine. The first time that
the presentation driver is called at its OS2_PM_DRV_ENABLE entry point, it
replaces pointers in the dispatch table with pointers to functions supported by
the presentation driver. Some of the pointer replacements are mandatory, and
others are optional. The presentation driver is passed the pointer to the dispatch
table by the graphics engine with the FillLogicalDeviceBlock routine function
call.

Presentation drivers are called using the C (_cdecl) calling convention. The first
parameter passed is the function number and flags word. The function numbers
are defined in PMDDIM.H, and represent ordinals for graphics engine (Gre...)
calls. The flag bits are defined in Table 14-1.

296

Table 14-1. Presentation driver flag bits

Bit #define Description

0 COM_DRAW if set, draw the output at the device, if
clear, don't draw the data but update the
internal data

1 COM_BOUND if set, the driver calculates the bounding
rectangle for the output. When done, the
driver calls its own GreAccumulateBounds
to accumulate the bounding rectangle
(GPI_BOUNDS). All presentation drivers
must supply this function.

2 COM_CORR for display drivers only, if set, the
presentation driver must determine if the
output intersects a pick window, and
returns TRUE or FALSE.

3 COM_ALT_BOUND directs a display driver to accumulate
USER_BOUNDS in screen coordinates

4 COM_AREA if set, specifies that the function call is part
of an area.

5 COM_PATH if set, the function is part of a path
6 COM_TRANSFORM if set, the presentation driver must convert

the coordinates for the specified function
from world to device coordinates using
GreConvert.

7 COM_RECORDING this bit should be ignored.
8 COM_DEVICE if set, the driver should handle this

function and not pass it back to the
graphics engine for disposition.

9-15 N/A ignored.

297

Device Context

The presentation application usually makes a KDB, MOU, VIO, DEV, AVIO,
GPI, or WIN call to perform I/O. These functions exist in Ring 3 DLLs, and
they call the graphics engine in PMGRE.DLL. PMGRE.DLL, in turn, calls the
display or printer driver. The display driver may then access the adapter
hardware directly through memory-mapped I/O, or may call the OS/2 kernel via
the standard driver interface mechanism to perform the I/O.

The application program that needs to write to a Presentation Manager device
first opens a Device Context (DC), using the DevOpenDC call. The application
associates a presentation space with the DC and writes or draws in that space.
Each time DevOpenDC is called, a new instance of a DC is created. This
instance is destroyed when the application closes the Device Context with the
DevCloseDC function call. Each instance of a DC has:

• a device context type
• data type
• instance data
• stack

When the DC is enabled, the type of device that is being opened is passed to the
presentation driver, using one of the context types described in Table 14-2.

298

Table 14-2. Device Context Types

Type description

OD_INFO The context is for information only. The
driver does not generate output. All
Gre...... functions are processed by the
presentation driver.

OD_MEMORY The driver processes the output for the
device, but the output is written to a
device-compatible bitmap.

OD_DIRECT The presentation driver processes the
Gre...... routines to generate device
specific data. The data is passed to the
adapter PDD via the kernel (hard-copy
drivers only).

OD_QUEUED The output is spooled using the Spl...
interface (hard-copy drivers only).

Data Types

Presentation drivers that write to a spool file (OD_QUEUED) must support the
two data types described in Table 14-3.

299

Table 14-3. Data Types for Queued Date

Data type Description

PM_Q_STD the driver uses the spooler to create a
device-independent spool file using the
SplStd... and SplQm... functions

PM_Q_RAW the driver processes the Gre...... functions
to generate device-specific output data,
which is written to a spool file using the
SplQm... functions.

Instance Data

Each instance of a DC contains a double word pointer to information about the
current context. The pointer is returned to the system by the presentation driver
when the driver context is enabled. The pointer is passed back to the driver as a
parameter in every call through the dispatch table.

Program Stack

Presentation drivers get a 500-byte stack, but should allocate their own stack of
about 4K bytes.

DLL Functions

The initialization section of the presentation driver must be compiled and linked
to run in Ring 3, and must EXPORT the following functions:

• MoveCursor (display drivers only)
• MoveCursorForInterrupt (display drivers only)
• OS2_PM_DRV_ENABLE (all drivers)

300

• OS2_PM_DRV_DEVMODE (hard-copy presentation drivers only)
• OS2_PM_DRV_DEVICENAMES (hard-copy presentation drivers only)

Hard-copy presentation drivers should also export entry points for routines that
handle user interaction.

The graphics engine exports the entry points listed in Table 14-4.

Table 14-4. Graphics Engine Exports

Entry Point Description

InnerGreEntry main entry point for all Gre... ordinals
GETDRIVERINFO used by the presentation driver to get the

instance pointer for a device context or
pointer to a bitmap header

SETDRIVERINFO used by the presentation driver to set a
specific value in the instance pointer of a
device context

To access the graphics engine, the module definition file would have most of
the function references associated with the InnerGreEntry point by ordinal.

Presentation Driver Design Considerations

Presentation drivers must always return a 32-bit value.

Coordinate values are normally passed as 32-bit world coordinates, and can be
converted to other coordinate systems by calling the graphics engine function
GreConvert. Screen coordinates are device coordinates to which the DC origin
has been added.

301

Transform Matrix values are signed values represented by a 16-bit integer and
16-bit fraction. This resolution is maintained by the graphics engine matrix
functions.

Angles are 32-bit signed values, where 0 represents a positive X-axis and
FFFFFFFF represents 360 degrees.

Application bounds (COM_BOUND) are accumulated in model space, and user
bounds (COM_ALT_BOUND) are accumulated in device-coordinate space.

If the presentation driver hooks all of the Gre... path and area functions, it is
responsible for generating closures for figures within areas or paths. Otherwise,
the graphics engine will generate the closures.

The presentation driver must provide clipping for drawing and text functions
except GreDrawLinesInPath and GrePolyShortLine. Clipping for these two
functions is provided by the graphics engine.

Presentation Driver Errors

When an error occurs in a presentation driver, the driver should call the
WinSetErrorInfo functions to log the error. The presentation driver must
validate all symbol sets, fonts, bitmaps, and regions before calling the graphics
engine. The presentation driver must also verify all passed parameters and log
any errors detected. Four severity levels are provided for presentation driver
errors. The error levels are defined in Table 14-5.

302

Table 14-5. Presentation Driver Errors

Severity Description

Warning A problem was detected but a workaround
was found.

Error A problem was found, but no workaround
was available. The system state remains
intact.

Severe Error A problem occurred and the system cannot
reestablish its state.

Irrecoverable Error An error occurred and it is impossible for
the system to reestablish its state. It is also
impossible for the application to restore
the system to a known state.

Presentation Driver Error Codes

The presentation driver must call WinSetErrorInfo with the severity of the error
and error code. Some of the general error codes are defined in Table 14-6.
Refer to the Gre... function call reference in the IBM OS/2 Presentation Driver
Reference for error codes specific to each Gre... function.

303

Table 14-6. Presentation Driver Error Codes

Error Logged by

PMERR_COORDINATE_OVERFLOW functions requiring matrix
computations

PMERR_INSUFFICIENT_MEMORY functions that allocate memory
PMERR_INV_BITMAP functions with hbm as a parameter
PMERR_INV_HRGN functions with hrgn as a parameter
PMERR_INV_COORDINATE functions with coordinates as

parameters
PMERR_INV_IN_AREA functions valid inside an open area
PMERR_BASE_ERROR functions that call DOS routines
PMERR_DEV_FUNC_NOT_INSTALLED functions not supported by the

presentation driver

Additional Presentation Driver Functions

Presentation drivers must also provide correlation to identify whether an object
picked with the mouse, for example, lies within the pick aperture, and must
consider if the object is visible or invisible. Hard-copy presentation drivers may
need to support banding for raster technology hard-copy devices. Banding is
technique where the output page is broken up into one or more bands, recorded
in memory as a bitmap and sent to the device or the spooler.

Hard-copy presentation drivers must work with back-level and forward-level
drivers across a network. Hard-copy presentation drivers can also support
output to a file. They must also provide the user with the following push
buttons.

• Retry (default position)
• Abort
• Ignore

304

The hard-copy presentation driver should respond as described in Table 14-7 to
each of the returns.

Table 14-7. Job Error Returns

Return What the hard copy driver
should do

MBID_RETRY continue sending data to the
output buffer

MBID_ABORT issue a PrtAbort to notify the
spooler to delete the current
job.

MBID_IGNORE continue sending data to the
output buffer

Examples of presentation drivers can be found in the sample code included with
the IBM OS/2 Warp Toolkit. Refer to the OS/2 Warp Presentation Device
Driver Reference and the toolkit documentation for more information on
writing presentation drivers.

305

Chapter 15 - OS/2 Printer Drivers

307

Chapter 16 - Working With Pointers

OS/2 Warp exploits the flat memory model of the Intel 80x86 processors. This
permits applications to be written using a 32-bit compiler and/or a 32-bit
assembler. Memory is organized so that it can be utilized by flat-model
applications and also by 16-bit, segmented memory model applications. OS/2
accomplishes this by tiling, a method by which a any particular memory object
is addressable using a 32-bit linear address or 16:16 virtual address. Thus a 32-
bit application that references data can do so using native, linear addressing, and
a 16-bit application can also reference its data using native 16-bit pointers.

As outlined above, when the 32-bit application references a variable or function,
it uses a 32-bit linear or flat address. Applications written for OS/2 Warp can
be as large as 512MB, so it is likely that data items such as buffers and
structures will cross 64KB tiled boundaries. This represents somewhat of a
problem for driver writers, as the PDD is still operating in a 16-bit mode.
Fortunately, OS/2 Warp provides the necessary DevHlp routines to make it
easier for the device driver to deal with these large data objects.

C Set/2 and C Set++

The C Set/2 and C Set++ compilers are 32-bit flat model C compilers from
IBM. Both compilers utilizes full 32-bit linear addressing and pointer
manipulation. If the application that uses your 16-bit device driver is written
with a 32-bit compiler such as C Set/2 or C Set++, there are some special
considerations you should take into account.

You should also know if your driver will be called by a 16-bit C/2 or Microsoft
C 5.1/6.0 application. If you’re not sure, you should assume the application is a
16-bit application, and design your driver to work with either 16-bit or 32-bit
applications. However, if the application will be written in a 32-bit compiler
such as C Set/2 or C Set++, the device driver can optimize performance
somewhat by using 32-bit pointers.

308

In most cases, your driver will work fine if the application is 16-bit or 32-bit.
This is because the kernel converts most pointers, if necessary, into 16-bit
virtual addresses before it calls your device driver.

Applications written in MS C5.1/6.0 or IBM C/2 will require no changes when
they are run on OS/2 Warp and access your 16-bit PDD. The application’s
pointers are 16-bit virtual addresses which can be used directly by the device
driver.

With a 32-bit application, pointers within the application are 32-bit linear
addresses in the process address space. Linear addresses are special addresses
which include, as part of the address, page information which is decoded by
special page decoding hardware to produce a 32-bit physical address.

Your PDD, however, is a 16-bit program which must deal with the 32-bit
addresses generated by the 32-bit compiler. When a 32-bit application calls the
OS/2 kernel via a standard device driver request, the kernel converts the
addresses contained in the request packet to 16:16 addresses. Thus, the PDD
sees only 16:16 addresses, and has no direct knowledge if the application is a
16-bit or 32-bit application. The process of converting the pointers and/or
addresses from 32-bit to 16-bit is called thunking. Conversely, pointers may be
also converted from 16-bit to 32-bit by thunking. Thunking is accomplished by
invoking the DosSelToFlat and DosFlatToSel macros. There is a performance
penalty when you use thunks, however, so it is best to avoid thunking whenever
possible.

When your device driver receives a request packet for a DosRead or DosWrite,
the caller’s buffer address in the request packet is the 32-bit physical address of
the caller’s buffer. The conversion necessary to convert the caller’s 32-bit linear
address to a valid physical address has already been performed by the kernel.
When your device driver is called via an IOCtl request from a 32-bit process,
the caller’s data and parameter buffer pointers are also converted from linear
addresses to 16:16 virtual addresses. This is done automatically for you by the
OS/2 kernel.

309

If, however, you use the private IOCtl data or parameter buffers to pass the
linear address from the process to the driver, the address is not thunked. This is
because the data and parameter buffers in an IOCtl packet are private data areas
shared by the process and the driver, so the kernel has no way to differentiate
the address from a 32-bit data item. Before using linear addresses passed in this
fashion, you must convert them to an address which the device driver can use.

A 32-bit linear address, such as the address of a variable in a process, is said to
be in the process address space, or mapped into the LDT of the process.
Addresses within the process address space may be used freely by the
application, providing it has the proper access rights. However, the address is
not valid for a device driver. Since the device driver is operating in ring 0, it
needs an address which is global, or mapped to a GDT entry. Pointers which
are valid for the device driver are said to be in the global address space because
they utilize a GDT selector for access.

Sharing the pointers between the process and the device driver is easy. A linear
address in the process address space can be made valid for the device driver by
a call to the VMProcessToGlobal DevHlp function. Conversely, a linear address
in the global address space can be made valid for the process by calling the
VMGlobalToProcess DevHlp function. Thus, processes and device drivers can
share each other’s common memory areas. An example of this is shown in the
Figure 15-1.

// convert driver-relative address to a process address

if (VMGlobalToProcess(linaddr,0x1000,0x01,(FARPOINTER) &new_linaddr))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

// convert an application address to a global 32-bit address

if (VMProcessToGlobal(linaddr,0x1000,0x01,(FARPOINTER) &new_linaddr))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

Figure 15-1. VMGlobalToProcess and VMProcessToGlobal

310

Your driver may also allocate virtual memory with the VMAlloc DevHlp (see
Figure 15-2). VMAlloc will return a 32-bit linear address to the allocated
memory. Depending on the flags parameter passed the VMAlloc, the 32-bit
linear address returned will be in the process address range or the global
address range. Thus, a device driver may allocate a buffer and pass a 32-bit
pointer to that buffer to the 32-bit process. VMAlloc parameters can also
specify that the memory to be allocated is above or below the 16MB line, and
whether or not the memory is contiguous. This is especially helpful for DMA
buffers which for most clones, must be in the memory area under 16MB.

// use VMAlloc to map the adapter address to a linear address in the
// global address space

ULONG MapAddress = 0xd8000;
LINADDR LinAddress = 0; // linear address to MapAddress
LINADDR dev_linaddr = 0; // for global linear address

// VMalloc requires a linear address to the physical map address

VirtToLin((FARPOINTER)&MapAddress,(PLINADDR)&LinAddress);

if (VMAlloc(LinAddress,0x1000,0x30,(PLINADDR)&dev_linaddr))
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(AllocFailMessage), AllocFailMessage);
}
else
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(AllocPassMessage), AllocPassMessage);
}

Figure 15-2. Using VMAlloc

Virtual Addresses

A 16:16 virtual address which has be mapped to a 32-bit linear address is called
a tiled virtual address. It represents a selector/offset of the same physical
address as defined by the 32-bit linear address. The normal addresses used in
your device driver are 16:16 virtual addresses. Several DevHlp calls, such as
VMLock and LinToPageList, require the addresses of parameters to be 32-bit
linear addresses. If these data items or parameters exist in the driver’s data

311

segment, passing the pointer to these items will cause these DevHlps to fail.
You must first convert the 16:16 virtual addresses to linear by calling
VirtToLin, and then call the DevHlp function as shown in Figure 15-3.

Flags = 0x1a;

// first convert address arguements to linear

if (VirtToLin((FARPOINTER)PageList,(PLINADDR)
&lPageList));

if
(VirtToLin((FARPOINTER)LockHandle,(PLINADDR)&lLockHan
dle));

if (VMLock(linaddr,100,lPageList,lLockhandle,
 Flags,(FARPOINTER) &Elements))
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(LockFailMessage),
LockFailMessage);
}
else
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(LockPassMessage),
LockPassMessage);
}

Figure 15-3. Calling VMLock

Pointers In A VDM

DOS applications running in a VDM utilize real mode addressing. A 20-bit real
mode address in the segment:offset form can refer to a physical address within

312

the VDM’s one megabyte address space. If the VDM makes an IOCtl call to
your device driver with pointers in the private data and/or parameter buffers,
the driver must take an extra step to ensure the pointers are converted
correctly. The driver checks the TypeProcess variable in the local info seg
structure to determine of the application is a VDM application (bit 1 = 1).

If it is a DOS application, the driver allocates a GDT selector and convert the
segment:offset address to a VDM-relative physical address by shifting the
segment left 4 bits and adding in the offset. This is the same way the physical
address is calculated in real mode for a real-mode application. The driver then
calls LinToGDTSelector with the 20-bit physical address of the VDM
application’s buffer and/or parameter address. This call maps the 20-bit physical
address to the caller’s address using a GDT selector which can be accessed at
kernel or interrupt time. The selector should be released by a call to
FreeGDTSelector when the driver is finished with it. It is important to note that
normally, LinToGDTSelector requires a 32-bit linear address and not a 20-bit
physical address. This is possible only because LinToGDTSelector can
determine that the current process making the call is in a VDM. If
LinToGDTSelector determines that the caller is a VDM application, it converts
the 20-bit real address to a valid 32-bit linear address before mapping it to the
GDT selector.

313

Chapter 17 - PCMCIA Device Drivers

The latest technology to affect OS/2 device drivers is called the Personal
Computer Memory Card Interface Association, or PCMCIA, architecture. The
PCMCIA is an organization of hardware and software vendors who are
developing a set of standards for small, credit-card size adapters, dubbed
PCMCIA cards. The PCMCIA has attempted to define both the hardware and
software standards for the PCMCIA adapters, and the standards are still
emerging. In order to support this new emerging technology, OS/2 Warp has
introduced support for the current PCMCIA standards.

The information supplied here either exists or is planned, and is therefore
subject to change. Since the PCMCIA specifications are still evolving, it is
possible that some of the information presented in this chapter is may not be
accurate at the time of publication. In addition, OS/2 Warp does not support,
nor is it planned to support, the full implementation of the PCMCIA 2.00
services. Future versions of OS/2 2.x may provide additonal support for
PCMCIA services. Please refer to the latest publications from IBM for the most
accurate description of the OS/2 Warp PCMCIA support.

At the time of this writing, the hardware specification outlines three different
size PCMCIA adapters, although more may be added. The different sizes, or
form factors, specify the thickness of the adapter. The current sizes defined by
the PCMCIA specification are 3.3, 5, and 10 millimeters. The adapters are
inserted into a PCMCIA slot (called a socket) with the power on. The adapter
hardware must therefore accommodate inrush currents associated with power-
on insertion. Although the PCMCIA adapter is usually inserted into a slot
without latches or hardware restraints, the PCMCIA specification does not
preclude such additional hardware. Up to 256 PCMCIA adapters can be
installed on a system, and each adapter can have up to 16 sockets. PCMCIA
adapters can be such things as RAM, flash RAM, hard disks, modems, LAN
adapters, or any other device which can fit within the PCMCIA form factor.
Whatever the size or type device, OS/2 regards the PCMCIA device as just
another device, and is not aware of the PCMCIA architecture.

314

The PCMCIA Software Trilogy

The software specification outlines three major software components. The OS/2
PDD that deals with the specific device characteristics is called the client. There
must be a client for each adapter type, but the driver may handle multiple
instances of the same adapter type. This is analogous to a device driver for a
multiport serial adapter, which can handle each port with the same driver. The
client driver is usually supplied by the PCMCIA card vendor, although its
possible that generalized OS/2 PCMCIA drivers will be available from other
sources. The client driver may also have a VDD counterpart for operation in a
VDM.

The second part of the PCMCIA software architecture is called card services.
Card services is responsible for providing the client an interface to the operating
system In OS/2 Warp, card services is implemented as a ring 0 PDD, called
PCMCIA$. The PCMCIA client performs an AttachDD DevHlp to PCMCIA$,
which yields a 16:16 pointer to the PCMCIA$ device driver's IDC entry point.
Subsequent calls to card services are performed by setting up the proper
registers and calling the IDC entry point from the client. Since card services
needs hooks into OS/2, card services is supplied by IBM.

Card services, like the DevHlp routines, are register based, so in order to write
your PCMCIA driver in C, you'll need to provide a library of C callable
functions similar to the DevHlp library. The optional PDD driver library (see
order form at the end of this book) contains the C callable routines for the
PCMCIA card services, allowing you to write your PCMCIA drivers in C.

The third component of the PCMCIA software is socket services. Socket
services is a hardware-specific layer of software which isolates the socket
specific architecture from the other the software components. It is expected that
the supplier of the system will supply this driver in software form or in the
BIOS. The simplified architecture is shown in Figure 16-1. It should be noted,
however, that the PCMCIA specification allows the client to perform direct I/O

315

and memory-mapped operation with the adapter, avoiding the card services or
socket services layer.

Client PDD

Card Services
PCMCIA$

Socket Services
PDD or BIOS

PCMCIA Adapter
Hardware

Figure 16-1. PCMCIA software architecture.

OS/2 Warp PCMCIA Initialization

The first component loaded in CONFIG.SYS is the card services PDD. The
card services PDD assumes that the following system resources are available:

• Non-system memory from C0000h to DFFFFh
• IRQ 2-15
• I/O ports 0x108-0xffff, except 0x3b4, 0x3b5, 0x3bah, ox3bbh, 3c0-3dfh,

and 3f0-3f7h

These are the default resources that card services expects to be available. To
determine what is actually available, another PDD, called the Resource Map
Utility or RMU, is loaded from CONFIG.SYS. When the RMU receives the

316

InitComplete strategy command, The RMU pokes around the system and
verifies the actual resources available, opens the card services driver
PCMCIA$, and calls the card services driver with the AdjustResourceInfo
function. The card services PDD then adjusts the information on the available
resources so it can more intelligently respond to a subsequent client request for
those resources. It is important to note that the RMU driver has the special bit
(bit 4) in the capabilities bit strip word set, informing the kernel to call it with
the InitComplete strategy command. It is also important to note that if no RMU
is loaded, or the RMU fails to call the card services driver, that the card
services driver will assume that all the default resources are available.

Next, the socket services driver is loaded, and when processing the
InitComplete strategy command, the socket services driver calls DevHlp
AttachDD with PCMCIA$, which returns a 16:16 pointer to the PCMCIA$
driver's IDC entry point. It then calls the card services AddSocketServices to
establish bidirectional communications with card services. When card services
receives the socket services AddSocketServices request, it must:

• identify the socket services resources required by calling socket services
GetSetSSAddr, GetSSInfo, InquireAdapter, GetAdapter, InquireSocket and
GetSocket. The socket services are provided by the socket service PDD
when the card services driver calls the socket service driver's IDC entry
point.

• allocate resources, if necessary, from the current resource map.
• install any necessary client interrupt handlers by calling DevHlp SetIRQ.
• program socket service hardware with SetAdapter and SetSocket socket

services.

Next, the client PDD is loaded to support the particular adapter. The client
establishes communications with card services by calling the AttachDD DevHlp
during InitComplete processing. It is possible that the AttachDD call might fail
in the case that the card services driver is not yet loaded (out of proper
sequence in CONFIG.SYS). In this case, the client driver should enter a
dormant state, waiting for the card services driver to be loaded. When the client
driver detects that the card services driver is loaded, it issues a RegisterClient
request and commences normal operation.

317

Note that the sequence these drivers appear in CONFIG.SYS will determine if
processing occurs normally. Therefore, each driver should be sensitive to that
fact and execute accordingly. The card services driver must be loaded first, but
the other drivers may appear out of sequence. Note also that the InitComplete
strategy command is issued in the reverse order of the way they appear in
CONFIG.SYS.

Client Device Driver Architecture

The client driver is a normal OS/2 PDD, but contains additional resource
allocation logic not usually found in a PDD. First, since the client driver exports
its entry points, those entry points must never move or be relocated. This means
all of the exported entry points must exist in the first 64KB code segment. This
segment must also contain the strategy, interrupt, timer, and IDC entry points.
Second, although a normal PDD allocates resources using the device helper
routines, the client PDD allocates its resources by calling the card services
driver. Since the client driver is activated only be an inserted card or insertion
event, it should not allocate extra memory or resources until the card is actually
detected.

When the user inserts a card into a PCMCIA slot, the card services interrupt
handler is called to signal the insertion. The card services driver acknowledges
the card insertion interrupt by calling the socket services driver with the
AcknowledgeInterrupt function, which returns the identification of the socket
that caused the interrupt. The card services driver sets up a timer handler to
handle the card insertion event.

The timer handler calls the socket services driver's GetStatus, GetSocket, and
SetSocket functions to determine the cause of the interrupt. The timer handler
then calls each client that has previously registered for a card insertion event for
that particular socket.

The client processes the card insertion event by calling the card services
function GetConfigurationInfo to determine if the card was previously claimed

318

by another client driver. The client may get more detailed information from the
card by calling the card service tuple functions GetFirstTuple, GetNextTuple,
and GetTupleData. If the card cannot be supported by the client, the client just
returns. If the card can be supported, the client calls the card services functions
RequestIO and RequestConfiguration to allocate the resources. The card
services driver then calls the socket services SetSocket function to program the
card for the proper configuration. The client then calls the SetIRQ DevHlp
routine to hook its interrupt handler like a normal PDD.

Under normal operation, the client driver processes requests like any other
PDD.

When the PCMCIA card is removed, the card causes a status change interrupt
to the card services driver. Card services calls the socket services driver's
AcknowledgeInterrupt function to get the socket that generated the interrupt.
The card services driver then sets up a timer handler like it did in the card
insertion event.

When the timer handler is entered, it processes the interrupt by calling the
socket service GetStatus, GetSocket, and SetSocket function to determine the
cause of the interrupt. The timer handler then calls all the clients that have
registered for the particular socket.

The client drivers process the event by calling the card services
ReleaseConfiguration, ReleaseIO, and ReleaseIRQ functions. When the card
services driver receives the ReleaseConfiguration command, it calls socket
services to reprogram the card to stop generating interrupts or other events.

If the client previously claimed a system interrupt with a SetIRQ call, the must
call UnSetIRQ to give back to interrupt to OS/2.

319

OS/2 Warp Restrictions

The OS/2 Warp card services driver contains the following restrictions:

• a maximum of 4 adapters
• a maximum of 8 sockets
• a maximum of 16 clients
• a maximum of 4 socket services drivers
• a maximum of 16 Memory Technology Drivers (MTDs)
• a maximum of 16 memory handles
• a maximum of 16 erase queues
• a maximum of 16 memory regions
• a maximum of 16 disk partitions
• a maximum of 7 memory windows (5 memory and 2 I/O)

In addition, card services provides no power management support or write
protection. For PCMCIA disk drivers, the following restrictions apply:

• the client must claim all the logical drives it supports, even if the DASD
card is not currently inserted

• disks with multiple partitions must have a driver letter assigned to each
partition

• PCMCIA disk cards do not support HPFS or disk caching

Card Services Functions

Card services provides for the following client services:

• function
• callbacks
• events
• MTD helpers
• media access routines
• return code information

320

The OS/2 PCMCIA implementation also has reserved IOCtl category 13 for a
PCMCIA application interface. OS/2 Warp supports or is planned to support
the card services functions shown in Table 16-1.

Table 16-1. OS/2 PCMCIA Card Services

Function Code

CloseMemory 0x01
DeregisterClient 0x02
GetClientInfo 0x03
GetConfigurationInfo 0x04
GetFirstPartition 0x05
GetFirstRegion 0x06
GetFirstTuple 0x07
GetNextPartition 0x08
GetNextRegion 0x09
GetNextTuple 0x0a
GetCardServicesInfo 0x0b
GetStatus 0x0c
GetTupleData 0c0d
GetFirstClient 0x0e
RegisterEraseQueue 0x0f
RegisterClient 0x10
ResetCard 0x11
MapLogSocket 0x12
MapLogWindow 0x13
MapMemPage 0x14
MapPhySocket 0x15
MapPhyWindow 0x16
ModifyWindow 0x17
OpenMemory 0x18
ReadMemory 0x19
RegisterMTD 0x1a

321

Table 16-1. OS/2 PCMCIA Card Services (cont'd)

Function Code

ReleaseIO 0x1b
ReleaseIRQ 0x1c
ReleaseWindow 0x1d
ReleaseConfiguration 0x1e
RequestIO 0x1f
RequestIRQ 0x20
RequestWindow 0x21
RequestSocketMask 0x22
ReturnSSEntry 0x23
WriteMemory 0x24
CheckEraseQueue 0x26
ModifyConfiguration 0x27
SetRegion 0x29
GetNextClient 0x2a
ValidateCIS 0x2b
RequestExclusive 0x2c
ReleaseExclusive 0x2d
GetEventMask 0x2e
ReleaseSocketMask 0x2f
RequestConfiguration 0x30
SetEventMask 0x31
AddSocketServices 0x32
ReplaceSocketServices 0x33
AdjustResourceInfo 0x35

322

Calling Card Services

Card services, like the OS/2 DevHlps, are register-based. The current registers
assigned to these functions under OS/2 Warp are shown in Tables 16-2 and 16-
3.

Table 16-2. Card Services Register Interface (input)

Register Contents

AL function number
AH set to AFh
DX handle
DI:SI pointer
ES:BX arg pointer
CX arg length

Table 16-3. Card Services Register Interface (output)

Register Contents

AX status argument
CF pass/fail carry flag

All addresses must be in 16:16 form, and the caller must set DS to the DS value
returned from the AttachDD call before calling card services. Card services are
not reentrant, so a function request may be returned BUSY.

323

Callbacks

Client device drivers can be called by card services when certain events occur.
The action of calling the client device driver from card services is called a
callback. The callbacks that are supported or planned to be supported by OS/2
Warp are described in Table 16-4.

Table 16-4. OS/2 Warp Callbacks

Function Function Code

BATTERY_DEAD 0x01
BATTERY_LOW 0x02
CARD_LOCK 0x03
CARD_READY 0x04
CARD_REMOVAL 0x05
CARD_UNLOCK 0x06
EJECTION_COMPLETE 0x07
EJECTION_REQUEST 0x08
INSERTION_COMPLETE 0x09
INSERTION_REQUEST 0x0a
EXCLUSIVE_COMPLETE 0x0d
EXCLUSIVE_REQUEST 0x0e
RESET_PHYSICAL 0x0f
RESET_REQUEST 0x10
CARD_RESET 0x11
MTD_REQUEST 0x12
CLIENT_INFO 0x14
SS_UPDATED 0x16
CARD_INSERTION 0x40
RESET_COMPLETE 0x80
ERASE_COMPLETE 0x81
REGISTRATION_COMPLETE 0x82

324

The callback interface is described in Table 16-5. The ClientData structure is
shown in Figure 16-2.

Table 16-5. Callback Register Interface (input)

Register Contents

AL function argument
CX socket argument
DL card status
DH socket status
DI ClientVal from ClientData struct
DS ClientDS from ClientData struct
SI ClientOff from ClientData struct
ES:BX buffer argument
BX misc argument when no buffer argument

Table 16-6. Callback Register Interface (output)

Register Contents

AX status argument
CF pass/fail carry flag

325

#typedef struct _ClientData
{
 USHORT ClientVal; // client specific data value
 USHORT ClientDS; // clients DS value
 USHORT ClientOff // client's callback offset
 USHORT Reserved // for future use
} ClientData;

Figure 16-2. ClientData structure.

327

Chapter 18 - OS/2 File System Device Drivers

File System Drivers are probably the most misunderstood and feared OS/2
device drivers, yet depending on their functionality, they can be some of the
easiest device drivers to write. IBM has done a terrible job of supporting file
system drivers. First, there are no samples of FSDs other than the few samples
posted on the public bulletin boards. Second, the file system I/O routines are
largely undocumented. IBM, it seems, did not bother documenting the calls
because they claimed they might change, and decided that no one needed to
write an FSD anyway. Third, there are only a handful of FSD experts, and
they’re usually not available to answer questions or help developers.

These three reasons combine to make the task of writing FSDs appear to be
nearly impossible. What I’ve attempted to do in this chapter is to explain just
how an FSD works, how it interfaces to the rest of OS/2, and provide examples
of actual FSD routines to aid in your FSD development efforts. When you’ve
finished this chapter, I’m sure you’ll agree that FSDs are no more difficult to
write than any other OS/2 device driver.

File System Overview

The file system directs requests for device I/O via the file system router. The
router receives requests from the kernel in response to API calls generated by
an application. The router directs the call to various types of device drivers. The
call can be routed to a network driver, a physical device driver, or a file system.
An extended file I/O API can be implemented to funnel file I/O requests to
specific file systems such as HPFS. This is accomplished by placing a file
system-specific DLL between the application and the standard file I/O API,
DosFsCtl. See Figure 18-2.

328

Figure 18-1. File I/O Block Diagram

File system drivers are physical device drivers, therefore have access to the
physical DevHlps and an additional set of helper routines called FSD Helps.
They may be local, that is, installed on the PC, or they might be remote. Their
primary purpose is to perform physical I/O with the device, and they have no
knowledege of the actual format of the information accessed by the device. The
FSD, however, must be able to create and maintain a volume label and a unique
32-bit volume serial number. The FSD supplies this unique information to the
kernel in the Volume Parameter Block, or VPB, when it calls an FSD helper.
The kernel compares this volume serial number with the one it maintains for the
device. If the serial number is different, the user is asked to insert the correct
media. The kernel obtains this unique number for the first time by calling the
FS_MOUNT entry point of each FSD. If no FSD identifies a file system, the
current file system is defauled to FAT.

Each FSD must provide its own set of device management support utilities
which are called by OS/2’s FORMAT, CHKDSK, SYS, and RECOVER
utlities. The utlilities must reside in a DLL with the reserved name of U<fsd
name>.DLL. <fsd name> must be the the exact name returned by the call to the
DosQFsAttach API. The file should follow the 8.3 naming convention if it will
exist on a FAT partition, limiting the <fsd name> to seven characters. The OS/2
utility performs no special functions before calling the FSD’s entry points,
allowing the FSD to selectively perform parts of the operation. The utilities
must support the standard command-line switches for these utlities, however.
The supplied functions (see Figure 18-2) are passed the command line and
number of parameters (argc, argv) and must parse the parameters. They must
also display the proper error messages and allow for recovery in the same way
existing FSDs do.

329

Figure 18-2. FSD-supplied Utility Entry Points

Eas, SEAs, FEAs, and GEAs

OS/2 uses what are called Extended Attributes to hold additional information
associated with a file object. This information can be used to describe the file
object in detail for use by applications, OS/2, or a file system driver. EA data is
expressed in ASCII, and stored in a binary format in a hidden file. Data in EAs
is accessed through a set of EA APIs. A standard set of EAs, or SEAs, have
been defined to allow access to common EA values by applications. Eas come
in two flavors - Full EAs (FEAs) and Get Eas (GEAs).

FEAs are pairs of names and values. The data in the value portion follows no
particular format, so the application must know the format of the data. The
structure of an FEA is shown in Figure 18-3. The maximum length of the EA
name is 255 characters, and it must be at least one character long. The EA
names are no case sensitive. FSDs should call FSH_CHECKEANAME to
check the EA name, and FSH_UPPERCASE to convert the characters to upper
case.

typedef struct _FEA
{
 UCHAR fEA; // flags
 UCHAR cbName; // length of EA name (not
including null)
 USHORT cbValue; // length of value
 UCHAR szName; // ASCIIZ EA name
 UCHAR sValue; // format value
} FEA;

330

Figure 18-3. FEA Structure

The fEA flags variable determines whether or not the particular EA is necessary
for proper operation of the file it is associated with. DOS programs cannot
access the EA data unless he EA bit is set in the program’s EXE header.
Applications should not alter the contents of the flags variable.

EAs are packed in a list, called appropriately an FEA list. The FEA list is
nothing more than a structure containing a length and a variable number of Eas.
See Figure 18-4.

typedef struct _FEAList
{
 ULONG flength; // length of FEAs
 struct FEA Flist[]; // FEA structure
} FEAList;

Figure 18-4. FEAList Structure

A GEA (See Figure 18-5) is a shortened version of an FEA, and contains only
an attribute name.

typedef struct _GEA
{
 ULONG length; // length of GEA name
 UCHAR szName; // ASCIIZ name of GEA
} GEA;

Figure 18-5. GEA Structure

Like FEAs, GEAs are packed into a GEAlist structure (see Figure 18-6).

typedef struct _GEAList
{
 ULONG glength; // length of list
 struct GEA Glist; // ASCIIZ name of GEA
} GEAList;

331

Figure 18-6. GEA Structure

Manipulation of EAs is performed by a structure containing pointers to both
lists (see Figure 18-7).

typedef struct _EAOP
{
 struct GEAList far * fpGEAlist; // pointer to GEAList
 struct FEAList far * fpFEAList; // pointer to FEAList
 ULONG offError;
} EAOP;

Figure 18-7. EAOP Structure

FSD Interfaces

FSD Exported Functions

The Bootable IFS

The Mini File System

The OS/2 boot volume contains the boot record and the basic file system. In the
root of the boot volume, you’ll find the mini file system in OS2BOOT, the
kernel loader in OS2LDR, the OS/2 kernel in OS2KRNL, and CONFIG.SYS.
This is the minimum configuration necessasry to boot.

Mini File System Exported Functions

HPFS

332

A Sample File System Driver

333

Chapter 19 - The OS/2 SCSI Device Driver
Architecture
While developing OS/2 1.x, Microsoft and IBM realized that writing OS/2
device drivers was not an easy task, especially if those drivers were for hard
disks or tape drives. These device drivers turned out to be monolithic in nature,
in which critical sections of code were scattered throughout the driver. There
was, however, a great deal of commonality among these device drivers. Each
took commands in the form of request packets from the file system, and each
then in turn sent commands to their specific devices. Microsoft decided to
implement a layered approach to these device drivers, separating the software-
specific portion from the hardware-specific portion. They dubbed this new
architecture LADDR, for Layered Device Driver Architecture.

The LADDR model was developed primarily for SCSI device drivers, but the
basic philosophy was applicable to almost every type of device driver. The
LADDR architecture specified that the driver be broken up into two separate
sections, one that handled the software interface, and one that dealt with the
specific hardware. The top section or layer of the device driver was identical for
each SCSI device. It received commands in the form of request packets from
the file system, converted them to SCSI commands, and then routed them to
the device-specific portion of the LADDR driver (see Figure 19-1) via an I/O
Request Block, or IORB. The device specific-portion of the device driver
performed the register I/O, memory transfers, and interrupt handling specific to
the device. The device-specific portion then sent the result back to the top
layer, which in turn sent the result back to the kernel.

Figure 19-1. LADDR block diagram.

334

When Microsoft and IBM split over the responsibilities for OS/2 2.0, IBM
decided to develop their own alternative to LADDR. It was called it the
Adapter Device Driver, or ADD architecture, and was used for the floppy and
hard disk drivers for OS/2 2.1. Using the same general idea as the LADDR
architectecture, IBM separated the software portion of the driver, the Device
Manager, from the hardware portion of the driver, the ADD. The Device
Manager, or DMD, receives commands from the OS/2 kernel or file system,
and formats these commands into SCSI commands, placing them into IORBs.
The IORBs are then sent to the ADD for disposition. If the application
performs standard reads and writes (DosRead, DosWrite), the file system sends
the request packets to OS2SCSI.DMD, the IBM SCSI device manager. This
DMD converts the file system commands into SCSI-II commands, then sends
the SCSI commands via the IORB to the specific ADD. This architecture
allows the same device manager to service one or more ADDs.

The ADD acrchitecture also allows for the commands from the DMD to be
massaged before being sent to the ADD, giving the ADD a new personality.
This is accomplished by another piece of code called a filter which fits logically
in between the DMD and the ADD (see Figure 19-2).

Figure 19-2. The OS/2 ADD Architecture

The OS/2 DMD

OS/2 DMDs are 16-bit characater mode device drivers with the extension of
DMD that are loaded with the BASEDEV= statement in CONFIG.SYS. The
DMD extension is important because the extension causes the DMD to get

335

loaded as a base device driver, and last after other BASEDEVs with the .SYS,
.BID, .VSD, .TSD, .ADD, .I13, and .FLT (in that order) extension. DMDs are
loaded last since they manage classes of devices which are controlled by
previously loaded adapter device drivers (ADDs) or filters (FLTs). The Device
Manager determines which ADDs to call (and their entry point addresses) by
calling DevHlp GetDOSVar. The ADD drivers register their entry points with
OS/2 by calling DevHlp RegisterDeviceClass.

DMDs in OS/2 include OS2CDROM.DMD for CDROM devices,
OS2SCSI.DMD for generic SCSI devices, OS2DASD.DMD for SCSI disks,
and OS2ASPI.DMD for applications which write to the ASPI specification.
DMDs are sometimes referred to as Class Drivers.

ASPI

The Advanced SCSI Programming Interface, or ASPI, was created by Adaptec
to create a standard, consistent interface to SCSI devices. Applications which
use the ASPI interface can be easily moved to other platforms such as DOS or
Windows with very little changes, while applications written to the standard
OS/2 APIs can only be run on OS/2. OS/2 ASPI is actually a device manager
that converts application I/O APIs to SCSI Request Blocks (see Figure 19-3),
or SRBs, then passes them to the ADD for disposition. SRBs are passed to the
OS/2 ADD via a structure called an I/O Requesst Block, or IORB. Since ADD
drivers support SCSI commands through IORBs, they are not aware of which
device manager called them, thus the ADD driver can be written independent of
the particular device manager. A virtual ASPI device driver is also provided to
allow DOS and Windows applications that use ASPI commands to access the
SCSI devices through the appropriate device manager.

336

typedef struct _SRBHEADER
{
 UCHAR Command; // Command code
 UCHAR Status; // Status returned
 UCHAR HostAdapter; // Host adapter, 0 based
 UCHAR Flags; // SCSI request flags, cmd specific
 ULONG Reserved; // Reserved
} SRBHEADER;

typedef struct _SRB
{
 SRBHEADER SrbHeader; // SRB header
 SRBCMD SrbCmd; // Command-specific structure
} SRB;

Figure 19-3. SCSI Request Block

Table 19-1. ASPI Command Codes

Command Description
0x00 Host adapter inquiry
0x01 Get device type
0x02 Execute SCSI I/O
0x03 Abort SCSI I/O
0x04 Reset SCSI device
0x05 Set host adapter parameters
0x06-0x7f Reserved for future use
0x80-0xff Vendor specific

337

Table 19-2. ASPI Status Byte Returned

Byte Value Meaning
0x00 SCSI request in progress
0x01 SCSI request completed, no error
0x02 SCSI request aborted by host
0x03 Abort SCSI I/O command
0x04 Reset SCSI device
0x80 Set host adapter parameters
0x81 Invalid host adapter number
0x82 SCSI device not installed

Device drivers call directly into OS2ASPI.DMD by getting the 16:16 address of
the ASPI entry point from the AttachDD DevHlp call (see Figure 19-4). The
driver calls AttachDD with the ASCII name of the ASPI manager, SCSIMGR$.
If the call succeeds, it returns the 16:16 selector and offset of the ASPI entry
point. You should note that AttachDD uses a GDT selector to map the entry
point, so you cannot call the ASPI manager entry point during INIT using this
method. To allow you to call the ASPI manager duing INIT, the ASPI manager
provides an IOCtl interface to perfrorm the operation (see Figure 19-5).

More detailed information about ASPI can be found in the Advanced SCSI
Programming Interface (ASPI) specification, available from Adaptec.

 if (AttachDD(“SCSIMGR$”, pAttachArea))
 error;

 ptr = MAKEP(AttachArea.protCS, Attacharea.protOFF);
 call [ptr];

Figure 19-4. Calling The ASPI Manager

 if ((rc = DosOpen("SCSIMGR$",
 &driver_handle,
 &ActionTaken,
 FileSize,
 FileAttribute,

338

 FILE_OPEN,
 OPEN_SHARE_DENYNONE | OPEN_FLAGS_FAIL_ON_ERROR |
 OPEN_ACCESS_READWRITE, Reserved))
 error;

 if (rc = DosDevIOCtl(&Data1,&Data2,0x01,OUR_CAT,driver_handle))
 error;

 DosClose (driver_handle);

Figure 19-5. Calling ASPI During Init

339

typedef struct AspiCommand
{
 UCHAR ACCommand; // header
 UCHAR ACStatus; // status
 UCHAR ACHostAdapterNumber; // host adapter number
 UCHAR ACFlags; // command-specific flags
 UCHAR ACReserved[4]; // set to 0
 union
 {
 UCHAR ACCmdSpecific[??]; // command-specific length

 // host inquiry command

 struct
 {
 UCHAR NumAdapters; // number of host adapters
 UCHAR TargetID; // target ID of host adapter
 UCHAR SCSIMgrID[16]; // SCSI manager ID
 UCHAR HostID[16]; // host adapter ID
 UCHAR Parameters[16]; // host adapter parameters
 } HostInquiry;

 // get device type command

 struct
 {
 UCHAR TargetID; // target ID
 UCHAR LUN; // logical unit
 UCHAR PDT; // peripheral device type
 } GetDeviceType;

 // execute SCSI request

 struct
 {
 UCHAR TargetID; // target ID
 UCHAR LUN; // logical unit
 ULONG DataAllocLength; // number of bytes xferred
 UCHAR SenseAllocLength; // num of sense data bytes in SRB
 PHYSADDR DataBufferPtr; // ptr to data buffer
 ULONG SRBLinkPtr[4]; // link ptr to next SRB
 UCHAR CDBLength; // length of SCSI CDB
 UCHAR HostAdapterStatus; // host adapter status
 UCHAR TargetStatus; // target status
 OFF RealModePostOffset; // real mode post routine offset
 SEL RealModePostCS; // real mode post routine CS
 SEL RealModePostDS; // real mode post routine DS
 OFF ProtModePostOffset; // protect mode post routine offset
 SEL ProtModePostCS; // protect mode post routine CS
 SEL ProtModePostDS; // protect mode post routine DS
 PHYSADDR SRBPhysAddress; // physical address of SRB
 UCHAR Reserved[16]; // reserved
 UCHAR SCSI_CDB[256]; // variable length request block
 } ExecSCSIIO;
 struct
 {
 ULONG SRBPhysAddr;
 } AbortSCSIIO;
 struct
 {

340

 UCHAR TargetID;
 UCHAR LUN;
 UCHAR Reserved[14];
 UCHAR HostAdapterStatus;
 UCHAR TargetStatus;
 OFF RealModePostOffset;
 SEL RealModePostCS;
 SEL RealModePostDS;
 OFF ProtModePostOffset;
 SEL ProtModePostCS;
 SEL ProtModePostDS;
 UCHAR ReservedASPI[22];
 } ResetSCSIDevice;
 struct
 {
 UCHAR HostParms[16];
 } SetHostParms;
 }
}

Figure 19-6. OS/2 ASPI Command Structures

ADD Driver Design

An ADD driver is an OS/2 16-bit PDD, however, ADD drivers differ from
normal PDDs in several ways.

ADD drivers get initialized at ring 0, not at ring 3. This creates a few problems
for the device driver writer, in that the ADD driver cannot call any OS/2 APIs
druing Init. Add drivers cannot do file I/O, nor can they map physical addresses
to a process LDT. Unlike normal PDDs, however, they can access GDT-based
addresses.

An ADD cannot display a message using the conventional DosPutMessage API,
since the Init runs at ring 0. The ADD driver must call DevHlp SaveMessage
with the text to be output.

ADD drivers receive an Init packet that is different in structure from the
standard Init packet discussed in previous chapters. In addition, the Init request
packet code is 1Bh, not 0 (see Figure 19-7).

341

Figure 19-7. ADD Init Packet Structure

ADD drivers must have the correct bits set in the Device Attribute Word that
identifies the device driver as an ADD, and must also set bit 3 in the capabilities
bit strip. Setting this bit tells the OS/2 kernel to send the alternate Init packet.

ADD drivers must fail quielty when they do not complete initialization by
returning ERROR_QUIET_FAIL.

ADD drivers receive their commands and lists of work to do via a data
structure called the IORB.

Since ADD drivers may be called in the interrupt context, ADD drivers must
never block.

ADD drivers must register their main entry points by calling DevHlp
RegisterDeviceClass, making the entry points accessible to other ADDs and
device managers. The ADD service entry point can be called in either kernel
(task) mode or interrupt mode, so context cannot be assumed.

ADD drivers should read and parse parameters from the BASDEV= statement
in CONFIG.SYS, looking for SCSI-specific switches.

IORBs

The I/O Request Block, or IORB, is the medium by which SCSI commands are
sent from the device manager to the ADD. IORBs may be modified on the way
to the ADD by a Filter (see Figure 19-8).

342

Figure 19-8. SCSI IORB

Filters

A Filter is another variey of an ADD driver which allows the SCSI commands
being sent to the ADD driver (via an IORB) to massaged or modified for a
custom device. When the ADD driver is loaded, it calls RegisterDeviceClass to
register its IORB entry point for later use by a device manager. The device
manager uses this entry point to call with the IORB for processing. The filter
driver locates the IORB in the class table, and inserts itself in the IORB
chain.The filter’s entry point is inserted in the class table, and the filter uses the
entry point that it found in the table to call the ADD. This is analogous to the
way DOS interrupts were intercepted by replacing the interrupt vector with a
new one,, then chaining to the original vector. The filter receives the IORBs
from the device manager, who thinks the IORB is being sent to an ADD. The
filter modified the data for its requirements, then calls the ADD for processing.
When the ADD has completed its work, it calls the original post routine as
originally specified by the device manager.

343

Chapter 20 - CDROMs and Optical Disks
One of the most popular media to emerge for the personal computer has been
the CDROM. Once used only for high quality digital music recordings, the
CDROM is now the preferred media for the delivery of volume software. The
standard ISO 9660-formatted CDROM holds over 600 megabytes, a capacity
of more than 400 diskettes. CDROM mastering, the creation of the CD “mold”,
is expensive, and can run upwards of $1500-$2000. Once mastered, however,
the CDROM can be produced for less than one dollar in quantities. The
CDROM is also lighter, and takes up less space than diskettes. The traditional
jewel case costs about a buck, more than the actual CDROM, so to keep costs
down, manufacturers have begun shipping CDROMs in paper sleeves. Because
of its large capacity, the CDROM has become the preferred media for the
storage of games that contain large amounts of video and audio clips.

CDROM drive manufactures have continued to push the performance envelope.
The first CDROMs with 500 millisecond access times and 150Kbps transfer
rate seem like model Ts compared with todays triple and quadruple speed
drives (at the time of this writing, several companies were developing CDROM
drivers with almost a megabyte per second throughput). Several manufacturers
have developed mini-CD drives in several form factors, primarily for use in
notebook and subnotebook computers. It should not be long before we see
these mini CDROMs in a one inch or less form factor, and with a capacity of
over one gigabyte.

The CDROM Device Manager

The CDROM ADD

Non-SCSI CDROMs

Many CDROMs, especially the lower cost variety, use proprietary interfaces.
Some use a special adapter card that plugs into the system, while others use an
existing IDE interface.

344

CDROM Filters

345

Chapter 21 - Keyboard And Mouse Drivers
Keyboard and mouse drivers, usually referred to as pointer device drivers, are
some of the most obscure device drivers you’ll encounter. One of the main
reasons for this is the limited number of device drivers that are written for this
class of device. For example, as long as your keyboard is IBM-compatible, it
should plug into your IBM-compatible system and work using the keyboard
device drivers that come with OS/2. It is not likely you will ever have to write a
keyboard device driver, but you may certainly wish to modify one of the
existing device drivers on the DDK for your application. This might include a
special trackball or pointing device built in to the keyboard, or a special
keyboard type such as a point-of-sale device.

The same assumptions hold true for mouse drivers in that there are only a few
mouse drivers actually written, and the ones that are should work fine with
most every mouse available. The most common requirement for a mouse-type
pointing device driver might be a special digitizer or touch screen device.

Keyboard Device Driver Architecture

Mouse Device Driver Architecture

347

Chapter 22 - OS/2 Warp SMP Drivers
OS/2 SMP was introduced in the middle of 1994 in response to the need for a
robust, high performance server operating system. Several vendors had
introduced systems with 2, 4, 8 and 16 processor configurations, and with
prices continuing to spiral downward, it made the wish of a low-cost
multiprocessor system a reality. For under $10,000, users could now buy a
quad Pentium system with 4GB of disk.

Another reason for the introduction of OS/2 SMP was clearly to compete with
Windows NT in the server market. While Windows NT was designed to handle
multiple processors, OS/2 originally was not. OS/2 carried an additional burden
in that if the OS/2 SMP platform were to be successful, it had to support all
existing applications and device drivers, while at the same time allowing MP-
exploitive applications and device drivers to take advantage of the
multiprocessor hardware.

OS/2 SMP Architecture

The OS/2 SMP architecture is actually quite simple. Only one copy of OS/2 is
ever running at one time no matter how many processors are present, so there’s
no need to synchronize multiple copies of the operating system. Access to the
operating system is synchronized and serialized using processor spinlocks.

A spinlock is nothing more than a small section of code that executes in a tight
loop until a variable is cleared. If you’ve ever had a bug in your OS/2 device
driver where your code executed in a loop at ring 0, you know exactly what a
spinlock is. You couldn’t interrupt that loop with the debug kernel, and you
usually had to power off and power on to reboot. OS/2 SMP spinlocks work
the same way.

Transforming the OS/2 2.x uniprocessor (UP) code base into SMP was mostly

348

a matter of copying the vital system data structures for the number of
processors and adding support for spinlocks. During system initialization, OS/2
determines the number of processors present and generates the appropriate
number of data structures, including new control blocks and per-processor data
structures.

A single kernel spinlock serializes access to the OS/2 kernel. All entry points
into the OS/2 kernel obtain a single spinlock, and that spinlock is released when
the kernel is exited.

The interrupt manager was redesigned to handle interrupts from multiple
processors, and to synchronize non MP-exploitive device drivers and other
operating system code running at ring 0.

The memory manager was modified to maintain cache consistency for the
Translation Lookaside Buffer (TLB) across multiple processors.

The paging system was modified to update the Page Directory Entries (PDE)
across multiple processors that are running threads common to the process.

A Global Descriptor Table, or GDT, is created for each processor.

OS/2 SMP isolates the underlying hardware platform using a new, 32-bit device
driver called a Platform Specific Driver, or PSD. PSDs are explained in detail
later in this chapter.

The OS/2 kernel was modified to detect CLI/STI from ring 2 threads, and to
synchronize CLI/STI across multiple processors using a CLI/STI spinlock.

In OS/2 2.x SMP, each processor has its own a kernel thread. This thread
belongs to the system process and will never execute at ring 3 or ring 2. This
same concept is used in MACH and Windows NT, and provides support for
bringing processors online and offline.

Many applications rely upon information from the Local Info Seg or LIS. Each
processor maintains a copy of the Local Info Seg (LIS). This is a hard-coded

349

selector across processes. At context switch time, the LIS is updated with the
current process information. Since the LIS is contained in the PDE, the LIS is
automatically updated across processors during a context switch.

Each processor maintains a processor-specific data area called the Processor
Control Block or PCB. A PCB is allocated during system initialization for each
processor that is online.

OS/2 contains a new Lock manager to handle mutual exclusion primitives.

On an MP system, it is likely that multiple floating point coprocessors are
present. OS/2 SMP updates each floating point coprocessor’s context buffer at
context switch time to insure the coprocessor data is valid in the event the data
is used by another processor.

OS/2 SMP utilizes several different classes of spinlocks to accommodate MP-
safe kernel operation. One of these classes of spinlocks is called the CLI/STI
spinlock.

Some applications use CLI/STI to synchronize access to global data or to
guarantee one particular thread runs in favor of any other thread in the process.
They may implement simple semaphores using the IN instruction to grant
access to critical resources. Still other applications serialize I/O to adapter ports
by issuing a CLI, performing the INs or OUTs, then re-enabling the interrupts.
In a single-processor environment, the programmer is assured that no other
operation or I/O will interrupt the I/O in progress with interrupts disabled.

In a single-processor environment, these operations work fine, but they fail in a
multiprocessor environment. This is because it is possible for multiple threads of
the same process to be running on different processors, unaware of the
operation of any related threads.

OS/2 maintains the I/O permission bitmap in the Task State Segment, or TSS.
OS/2 does not enforce this however, and grants access to all I/O ports for ring
2 code. This is why you no longer have to call DosPortAccess to gain access to
I/O ports.

350

OS/2 implements the CLI/STI spinlock by not allowing CLI/STI instructions
from ring 2. An attempt to perform a CLI instruction from a ring 2 thread will
generate a protection violation. OS/2 traps the protection fault, and if the
instruction that caused the fault is a CLI, the kernel acquires the CLI/STI
spinlock. When OS/2 detects the next CLI, it releases the CLI/STI spinlock.
While one processor has the CLI/STI spinlock, any other processor attempting
to acquire the CLI/STI spinlock will spin waiting for the spinlock. Thus only
one processor may be executing a CLI/STI ant any one given time on the
system. For this reason, programs should limit use of CLI/STI whenever
possible.

One area of concern should be video and printer device drivers, which may
serialize access to adapter RAM using CLI/STI.

The OS/2 SMP Scheduler

The OS/2 SMP scheduler can operate on any processor, but only one copy of
the scheduler can be executing at any one given time. Each time a thread enters
the ready list, OS/2 compares the priority of the threads running in each
processor to the current candidate to be run.

If the candidate thread has a higher priority than the currently running thread,
the PCB of the associated processor is updated, and OS/2 sends that processor
an IPC message to dispatch the thread. Each thread is given a time slice, and
when its time slice is exhausted, the scheduler checks to see if there are any
other threads at the same priority waiting to run. If so, it dispatches them to a
processor. This allows OS/2 SMP to support compute bound threads of the
same priority across several processors.

Calls to DosEnterCritSec to request a critical section by a thread cause OS/2
SMP to first purge any other threads of the same process from other processors
to insure that thread is the only one running.

351

Interrupts

The interrupt architecture for SMP machines varies by the manufacturer. The
majority of current SMP machines use a simplistic form of interrupt routing
using the 8259-compatible interrupt mechanism, where all interrupts are
reflected to the first configured processor. It turns out that for compatibility
reasons, this is the best choice because it allows existing device drivers to run
unchanged. This method is commonly referred to as Asymmetric Interrupt
Distribution, and is the current interrupt method used in OS/2 SMP.

Some machines use Static Interrupt Distribution. This method allows interrupt
to be statically assigned to the available processors. For instance, processor 1
could handle interrupts 0, 4, 5, 10, 12, and 15, while processor 2 could handle
interrupts 1, 2, 3, 6, 7, 8, 9, 11 and 14. Although this method allows
simultaneous interrupts to be handled on more than one processor, it would
cause problems with existing device drivers.

A third method will use Intel’s Advanced Programmable Interrupt Controller,
or APIC. This powerful interrupt architecture is capable of dynamic interrupt
distribution, allowing processors to handle simultaneous interrupts and have
them dynamically allocated to a particular processor. Thus processors which
handle a high volume of interrupts can have one or more of its interrupt levels
moved to another processor to increase performance. The APIC architecture is
an integral part of the Pentium processor. At this time, existing device drivers
will not work because they can’t handle simultaneous interrupts on more than
one processor. A future version of OS/2 SMP that supports the APIC
architecture may be released by the time you read this.

352

Platform Specific Drivers

OS/2 provides a level of hardware abstraction via the Platform Specific Driver,
or PSD. Like a device driver that shields an application from the specifics of a
particular device, the PSD isolates the OS/2 kernel from the specific processor
hardware. To provide this layer of abstraction, the PSD exports generic
functions which the kernel can call. These functions are translated by the PSD
into operations which are specific to the hardware platform.

PSDs are special flat-model device drivers, and are actually 32-bit DLLs loaded
with the DEVICE= statement in CONFIG.SYS. Like OS/2 ADDs, they must
conform to the 8.3 naming convention, and the name must not contain any drive
or path information.

OS/2 will load each PSD listed in succession until the correct matching PSD is
found. CONFIG.SYS may include a list of 10 PSDs, and only the correct one
will be loaded.

Like other drivers, the DEVICE= statement may contain several parameters and
can be up to 1024 characters long. When the PSD’s install function is called,
OS/2 passes the address of the parameters, just the same as OS/2 PDDs pass
the address of their parameters. PSD statements are processed before
BASEDEV, IFS, and DEVICE statements.

Platform Specific Driver Architecture

PSDs may contain multiple code and data objects. All objects are fixed (not-
swappable or movable) in low physical memory, with virtual addresses in the
system arena. Objects are loaded in low physical memory to allow the use of
real mode or bi-modal code.

The PSD must be capable of handling multiple requests simultaneously. This
means that global variables should be used only when necessary, and that local
variables should be used whenever possible.

353

OS/2 does not preempt a thread in the PSD, but it may block as a result of
using a PSD help, or it may be interrupted by a hardware interrupt.

PSDs register for a particular interrupt level using the SET_IRQ PSD help. The
PSD’s interrupt handlers are guaranteed to be called before any device driver's
interrupt handler. If the PSD's interrupt handler returns NO_ERROR, the
interrupt manager assumes the interrupt has been handled, and will end the
interrupt. If a -1 is returned, the interrupt manager assumes that the interrupt
has not been handled, and will call each device driver which has a registered
interrupt handler for that particular level until one claims the interrupt. If the
interrupt is unclaimed, the IRQ level will be masked off. This is the same was
the normal DevHlp SetIRQ works for normal OS/2 PDDs.
.
All PSDs must use the SET_IRQ PSD Helper to indicate which IRQ level they
will be using for inter-processor interrupts (IPI). If the PSD's IPI IRQ level is
shared, it must register a handler which detects if the IRQ is an IPI or another
interrupt. The handler must return NO_ERROR if the interrupt was caused by
an IPI, otherwise it should return a -1. If the IPI IRQ level is unique, an
interrupt handler need not be installed but SET_IRQ must still be called to
notify OS/2 which IRQ level will be used for the IPI.

The OS/2 kernel saves the state of all the registers (except EAX) around calls
to the PSD functions. All PSD functions run at Ring 0. Upon invocation, SS,
DS, and ES will be flat. The PSD functions must conform to the C calling
convention. They receive parameters on the stack (4 bytes per parameter), and
must return an return code in EAX.

The PSD functions are classified into three distinct categories:

• Functions that the PSD must have for OS/2 to operate (required functions)

• Functions that the PSD does not need to have (optional functions)

• Functions that the PSD must have for OS/2 to use multiple processors (MP
functions).

354

The OS/2 kernel provides default handling for some of the PSD functions. PSD
functions can also chain to a kernel default handler by returning a -1 for a return
code. If a return code other than -1 is returned by a PSD function, the default
handler will not get called. The PSD function glossary later in this chapter
details the categories of all the functions, as well as any default handlers they
may have.

PSD function are exported by using the EXPORTS keyword in the PSD’s DEF
file. All functions must be exported in upper case. The initial CS and EIP in the
PSD's executable image is ignored. The image should also not contain a stack
object. OS/2 allocates a per-processor PSD stack and sets SS and ESP
correctly before invoking any of the PSD functions. OS/2 invokes all PSD
functions in protect mode, but there is also a PSD help which allows the PSD
developer to call a PSD function in real mode.

OS/2 services are provided through the PSD help interface. Access to these
services are obtained upon PSD installation. All the definitions (e.g. defines,
structures, etc.) that are required for building a PSD are in the header file
PSD.H.

PSD Contexts (Modes)

The PSD operates in three contexts or modes: Kernel, Interrupt and Init.

Init Mode

During Init, the kernel passes to the PSD a pointer to a small area of processor-
specific scratch memory kept in the Processor Local Memory Area or PLMA.
During Init, a limited set of PSD helpers are available for use.

OS/2 SMP requires a PSD for system initialization. The system will display an
error message if a valid PSD for the current platform cannot be installed. The
following is a list of steps, in the order in which they occur, that are executed

355

after a PSD is installed. If any step does not complete successfully, the system
initialization process will stop, and an error message will be displayed.

1. After a PSD is successfully installed, its Init function is invoked. This
function is used to allocate and initialize any resources that the PSD may
require, as well as initializing the state of the hardware.

2. The kernel determines the number of usable processors on the current
platform by using the PSD_GET_NUM_OF_PROCS function. The kernel
allocates all resources required to support the additional processors. This
step determines what to allocate based on the results of the previous step.

3. The PSD's processor initialization function is invoked on the current
processor (CPU0).

4. An MP daemon is created for CPU0. An MP daemon is a thread that never
goes away, which is used for MP operations by a specific processor.

5. An MP daemon is created for the next logical processor.

6. The PSD's start processor call is invoked to start the next logical
processor. The PSD should only start the specified processor, and then
return (see the PSD_START_PROC function for more detail). The started
processor will spin in a tight loop waiting for a variable to be cleared. This
variable is referred to as the processor initialization real mode spinlock.

7. Upon return from the PSD's start processor call, the processor initialization
real mode spinlock is cleared.

8. CPU0 will spin in a tight loop waiting for a variable to be cleared. This
variable is referred to as the CPU0 spinlock.

9. The started processor continues execution of the kernel's real
mode processor initialization code now that processor's initialization
real mode spinlock has been cleared.

356

10. The started processor sets up all protect mode and paging information,
and switches into protect mode with paging enabled.

11. Up to this point, the started processor has been running on a small
processor initialization stack (It has not been running as an OS/2 thread).
The current context is switched to that of this processors MP daemon.

12. OS/2 calls the PSD's processor initialization function for the current
processor.

13. The PSD indicates that the processor has been initialized.

14. The started processor will spin in a tight loop waiting for a variable to be
cleared. This variable is referred to as the processor initialization
protect mode spinlock.

15. The CPU0 spinlock is cleared.

16. System initialization continues on CPU0 now that its spinlock has
been cleared.

17. Steps 6 through 17 are repeated until all processors have been started. The
rest of system initialization continues normally, on CPU0.

18. After the system is fully initialized, the processor initialization protect
mode spinlock is cleared. This allows CPU1 through CPU-N to start
executing code.

Kernel Mode

The OS/2 kernel calls the PSD for task-time operations, that is, it will execute
as a thread within a process. Kernel mode is also referred to as the task context.

357

Interrupt Mode

The OS/2 kernel calls the PSD for interrupt-time operations. Interrupt time is a
generic term that refers to executing code as a result of a hardware interrupt.
The code does not execute as a thread belonging to a process.

Terms

All addresses used in PSD functions must be 32-bit flat addresses.

Required means the function is required for OS/2, and can not be omitted

Optional means the function is not required, but can be implemented.

MP means the function is required to be supported in an MP environment.

Default means the kernel supplies a default handler for this function.

Can Block means that a call to the PSD can be blocked.

Can’t Block means that the call to the PSD may not block.

Output mean that the PSD should return values in the specified field.

PSD Function Glossary

The following functions are exported by the PSD. All addresses are flat, and
functions return 0 for success and -1 for failure.

358

PSD_INSTALL Mode: Kernel, Init Can Block Required

This function is the first function called when the PSD is loaded, and it checks
to see if this PSD supports the current hardware platform. No other operations
should be performed in this function. The Init function may be called after OS/2
has finished initialization by the Dos32TestPSD API, so be careful not to use
any Init-mode-only PSD helpers. The Init section must save the information
passed in the install structure for later use. The install structure is shown below.

Input: flat pointer to install structure.

typedef struct _INSTALL
{
 P_F_2 pPSDHelpRouter; /* pointer to PSD
Helps router */
 char *pParmString; /* pointer to
parameters */
 void *pPSDPLMA; /* linear addr to
PSD’s PLMA */
 ulong_t sizePLMA; /* size of PLMA
*/
} INSTALL;

Output: None

Return: NO_ERROR or -1

359

PSD_DEINSTALL Mode: Kernel, Init Can Block Required

This function is called to release any resources that may been allocated for the
PSD during initialization. A PSD is never deinstalled after its Init routine has
been called. The deinstall function may be called after OS/2 has finished
initialization by the Dos32TestPSD API, so be careful not to use any Init-mode-
only PSD helpers.

Input: None

Output: None

Return: NO_ERROR or -1

360

PSD_INIT Mode: Init Can Block Required

This function is called to initialize the PSD. The PSD should allocate any
resources in needs in this function, as well as initializing the state of the
hardware. CPUs should be initialized in PROC_INIT. This function returns the
address of a structure, described below.

Input: Flat pointer to Init structure

Output: None

Return: NO_ERROR or -1

The flag INIT_GLOBAL_IRQ_ACCESS indicated that the current platform
can support PIC masking on any processor. If the flag is omitted, the IRQ
functions will only be called on CPU0, otherwise they may called on any
professor other than CPU0 If the flag is omitted, and an IRQ operation is
initiated on an processor other than CPU0, the OS/2 kernel will route the
request to CPU0.

The flag INIT_USE_FPERR_TRAP indicates the Trap 16 will be used to
report floating point errors instead of IRQ 13 (the kernel sets the NE flag in the
CR0 register of all processors). The PSD is responsible for all housekeeping
associated with the change.

The flag INIT_EOI_IRQ13_ON_CPU0 specifies that the EOI for a floating
point error using IRQ 13 should only be done by CPU0. On CPUs other than 0,
the hardware is responsible for resetting the interrupt.

The version indicates the version of the PSD.

361

PSD_PROC_INIT Mode: Init Can Block MP

This function initializes the current processor. It is called in protect mode on a
per-processor basis. The PSD may initialize variables in the PSD’s PLMA in
addition to initializing the actual processor hardware.

Input: None

Output: None

Return: NO_ERROR or -1

PSD_START_PROC Mode: Init Can Block MP

This function is used to start a particular processor. OS/2 fills in address of the
started processor’s initial real mode CS:IP in the warm reboot vector of the
BIOS data area (0x40:0x67). OS/2 does not allow another processor to be
started until the current processor has finished its real-mode initialization and
has gone into protect mode. The processor started is held in real mode until the
PSD_START_PROC function is completed. All processors are started before
the first device driver is loaded.

Input: Processor number (0-based)

Output: None

Return: NO_ERROR or -1

362

PSD_GET_NUM_OF_PROCS Mode: Init Can Block Required

This function detects and returns the number of usable x86 processors that exist
on the current hardware platform. If any of the processors are defective or not
operational, the PSD should insure that the processors are ordered logically.

Input: None

Output: None

Return : Number of working processors

PSD_GEN_IPI Mode: Kernel, Interrupt Can’t Block MP

This function generates an inter-processor interrupt. All inter-processor
initialization should be done before the first call to GEN_IPI. OS/2 insures that
a processor currently servicing an IPI is not interrupted by another IPI.

Input: Processor number to interrupt (0-based)

Output: None

Return : NO_ERROR or -1

363

PSD_END_IPI Mode: Kernel, Interrupt Can’t Block MP

This function ends an inter-processor interrupt that was previously generated by
a GEN_IPI. The processor number must be the same as the current processor.

Input: Processor number to end interrupt on (0-based)

Output: None

Return : NO_ERROR or -1

364

PSD_PORT_IO Mode: Kernel, Interrupt Can’t Block Optional, Default

This function performs local port I/O specific to the hardware platform. I/O can
be routed to a specific processor to increase performance. This function is
invoked as a result of a driver calling DevHlp_PortIO. Device drivers should
use DevHlp_PortIO (which invokes this function) to perform port I/O, and not
do it directly.

Input: Flat pointer to PortIO structure

typedef struct _PORTIO
{
 ulong_t port; /* port to write to or read
from */
 ulong_t data; /* data read or to write
*/
 ulong_t flags; /* operation, see below
*/
} PORTIO;

Operation Flags

IO_READ_BYTE Read byte from port
IO_READ_WORD Read word from port
IO_READ_DWORD Read dword from port
IO_WRITE_BYTE Write byte to port
IO_WRITE_WORD Write word to port
IO_WRITE_DWORD Write dword to port

Output: None

Return : NO_ERROR or -1

365

PSD_IRQ_MASK Mode: Kernel, Interrupt Can’t Block Optional, Default

This function masks and unmasks interrupt levels. I should save the state of the
interrupt flag, disable interrupts, perform the mask/unmask, then restore the
state of the interrupt flag. If this function is not supplied, OS/2 will perform
these operations based on a standard 8259 PIC architecture. If the
INIT_GLOBAL_IRQ_ACCESS is not set or supplied (see PSD_INIT) the
operations will be performed on CPU0.

Input: Flat pointer to PSD_IRQ structure

typedef struct _PSD_IRQ
{
 ulong_t flags;
 ulong_t data;
 ulong_t procnum;
} PSD_IRQ;

The flags variable states what operation to perform.

IRQ_MASK Mask an interrupt (disable it)
IRQ_UNMASK Unmask an interrupt (enable it)
IRQ_NEWMASK Specify a new mask
IRQ_GETMASK Retrieve mask for all IRQs

The data variable contains the logical IRQ levels to mask or unmask.

The procnum variable contains the processor number where the operation is to
take place.

Output: None

Return : NO_ERROR or -1

366

PSD_IRQ_REG Mode: Kernel, Interrupt Can’t Block Optional, Default

This function allows access to IRQ registers. If this function is omitted, OS/2
will assume an 8259 PIC architecture. If the INIT_GLOBAL_IRQ_ACCESS
flag is not set or omitted, the requests will be performed on CPU0.

Input: Flat pointer to PSD_IRQ structure

typedef struct _PSD_IRQ
{
 ulong_t flags;
 ulong_t data;
 ulong_t procnum;
} PSD_IRQ;

The flags variable states what operation to perform.

IRQ_READ_IRR Read the interrupt request register
IRQ_READ_ISR Read the interrupt service register

The data variable contains the data read or the data to write.

The procnum variable contains the processor number where the operation is to
take place.

Output: None

Return : NO_ERROR or -1

367

PSD_IRQ_EOI Mode: Kernel, Interrupt Can’t Block Optional, Default

This function is used to issue an End-Of-Interrupt (EOI) to the interrupt
controller. Device drivers should always use DevHlp_EOI to perform an EOI,
and not attempt to perform the EOI directly to the interrupt controller. If this
function is omitted, OS/2 will assume an 8259 PIC architecture. If the
INIT_GLOBAL_IRQ_ACCESS flag is not set or omitted, the requests will be
performed on CPU0.

Input: Flat pointer to PSD_IRQ structure

typedef struct _PSD_IRQ
{
 ulong_t flags;
 ulong_t data;
 ulong_t procnum;
} PSD_IRQ;

The flags variable states what operation to perform.

IRQ_READ_IRR Read the interrupt request register
IRQ_READ_ISR Read the interrupt service register

The data variable contains the interrupt level to end.

The procnum variable contains the processor number where the operation is to
take place.

Output: None

Return : NO_ERROR or -1

368

PSD_APP_COMM Mode: Kernel Can Block Optional

This function performs generic application-to-PSD communications. The
communications protocol is private, and not examined in any way be OS/2.

Input: Function number, argument

Output: None

Return : NO_ERROR or -1

PSD_SET_ADV_INT_MODE Mode: Init Can’t Block Optional

This function enables the PSD to do its own checking and verification for
spurious interrupt. The PSD may register an interrupt handler for the interrupt
level and decide what to do with it. A NO_ERROR return from the PSD’s
interrupt handler informs the kernel that the interrupt has been handled by the
PSD. If the PSD’s interrupt handler returns -1, the kernel assumes the PSD did
not own the interrupt, and passes it on to any device driver that had registered
for it.

Input: None

Output: None

Return : NO_ERROR or -1

369

PSD Helpers

OS/2 provides system services to the PSD developer via PSD helpers. Similar
to the DevHlp router address, the PSD Helper router address is passed in the
install structure when the PSD’s install function is called. OS/2 preserves the
state of all registers and flags except the EAX register. Macros are provided in
the header file PSD.H to simply the calling of PSD helpers. May Block indicates
that the PSD Helper may block, and Can’t Block specifies that the function can
not block.

370

PSDHLP_VMALLOC Mode: Kernel, Init May Block

This function allocates virtual memory, or maps a physical adapter address to a
linear address. This function works similar to DevHlp VMAlloc, except that all
addresses are allocated in the global address space.

Input: Pointer to a VMALLOC structure

typedef struct _VMALLOC
{
 ulong_t addr;
 ulong_t cbsize
 ulong_t flags;
} VMALLOC;

The variable addr contains the physical address to be mapped or the linear
address returned.

If VMALLOC_PHYS is specified in the flags variable, addr must contain the
32-it physical address to map.

The cbsize variable contains the size of the mapping in bytes.

If VMALLOC_FIXED is specified in the flags variable, the allocated memory is
to be fixed in memory, not movable or swappable. If this flag is omitted, the
memory will be swappable by default.

If VMALLOC_CONTIG is specified in the flags variable, the memory allocated
my be in physically contiguous memory. VMALLOC_LOCSPECIFIC must
also be set.

If VMALLOC_LOCSPECIFIC is specified in the flags variable, it indicates that
the request is to map a virtual address. The addr variable must contain the
virtual address to map.

371

If VMALLOC_PHYS is specified in the flags variable, the physical address
passed in the addr field is mapped to a virtual address. This flag can be used
with the VMALLOC_LOCSPECIFIC flag to map memory where linear =
physical.

If VMALLOC_1M is specified in the flags variable, the request is for memory
below the 1MB region.

Output: Linear address in addr

Return: NO_ERROR or -1

PSDHLP_VMFREE Mode: Kernel, Init May Block

This function frees virtual memory previously allocated with
PSDHLP_VMALLOC.

Input: Linear address to free

Output: None

Return: NO_ERROR or -1

372

PSDHLP_SET_IRQ Mode: Init Won’t Block

This function sets up IRQ information. The PSD calls this function to register
for an interrupt handler at any IRQ. The PSD’s interrupt handler is guaranteed
to be called before a device driver’s handler that has registered for the particular
interrupt. If the PSD’s interrupt handler returns 0, the kernel assumes the
interrupt has been handled. If the PSD’s interrupt handler returns -1, the kernel
calls any interrupt handlers that have registered for that particular IRQ. If the
interrupt is not claimed, it is masked off.

The PSD must use this function to specify the IRQ it will be using for an Inter-
processor Interrupt, or IPI. If the PSD’s IPI interrupt handler is entered, and
the interrupt was not caused by an IPI, the interrupt handler should return -1. If
the IPI interrupt level is unique, i.e., not previously used by any other driver,
and interrupt handler does not have to be installed, but SET_IRQ must be
called anyway to indicate the IPI interrupt level.

This function can also be used to set or re-map a particular interrupt vector.

Input: Pointer to IRQ structure

typedef struct _IRQ_STRUCT
{
 ushort_t irq;
 ushort_t flags;
 ulong_t vector;
 P_F_2 handler;
} IRQ_STRUCT;

The irq variable specifies the IRQ level.

If IRQf_IPI is specified in the flags variable, the IRQ level is to be used for
Inter-Processor Interrupts.

If IRQf_LSI is specified in the flags variable, the IRQ level is to be used as a
local software interrupt. (not currently used)

373

If IRQf_SPI is specified in the flags variable, the IRQ is to be used as a system
priority interrupt. (not currently used)

The vector variable specifies the interrupt vector the IRQ level will use

The handler variable contains the address of an interrupt handler. If the PSD is
just specifying that a specific IRQ level is of a special type such as IPI, it does
not need a handler, and the handler variable should be NULL.

PSDHLP_CALL_REAL_MODE Mode: Init Won’t Block

This function is used by the PSD to call a PSD function in real mode.

Input: Pointer to CALLREALMODE structure.

typedef struct _CALLREALMODE
{
 ulong_t function;
 ulong_t pdata;
} CALLREALMODE;

The function variable contains the linear address of the function to be called in
real mode.

The pdata variable contains the linear address of a parameter to be passed to the
real mode function. The pointer is mapped to DS:SI upon entry to the called
function. The real mode function may specify a return code in EAX. No PSD
helpers can be called in real mode.

Output: None

Return: NO_ERROR or -1

374

PSDHLP_VMLINTOPHYS Mode: Init, Kernel, Interrupt Won’t Block

This function converts a linear address to a physical address.

Input: Linear address to convert

Output: Physical address

Return: NO_ERROR or -1

PSD APIs

OS/2 SMP provides two APIs to support PSDs.

375

DosCallPSD Perform Application-to-PSD Communications

This function calls directly into the PSD from an application. DosCallPSD must
be called is protect mode only. The protocol is private.

Input: Function number, argument

Output: None

Return: NO_ERROR or -1

Dos32TestPSD Determine if PSD is valid for hardware

This function loads the specified PSD, calls the PSD’s install and deinstall
functions, and removes the PSD from memory. It returns the code returned
from the PSD’s install routine, or any other error it may have received. This
function is used primarily by OS/2’s install.

Input: Pointer to full-qualified path and PSD file name

Output: None

Return: NO_ERROR or -1

376

Device Drivers For OS/2 SMP

OS/2 SMP was designed to allow existing device drivers and applications to run
unchanged. Like applications, device drivers should be designed to be MP-safe,
that is, they should serialize access to critical resources. Applications can use
system semaphores to serialize access to a chuck of global memory, but device
drivers have no such supported mechanism to do the same at ring 0. Remember
that like an application, a device driver blocked on one processor can be started
up on another processor. A section of device driver code can be executing on
more than one processor, so sections of code reading from or updating the
same global driver memory will certainly cause problems. Try to use a many
local variables as possible to minimize use of any global resources.

In OS/2 SMP, the device driver should, at a minimum, obey two basic rules.
The first is that the device driver should never issue an EOI directly, rather they
should call DevHlp EOI to perform the task. The second is that the device
driver should never mask or unmask interrupts directly. Following these two
rules should make the majority of device drivers safe. Of course, there are
exceptions and hardware race conditions that cause problems.

The device driver lets the kernel know that it is MP-exploitive, that is, that it
can run on multiple processors, by a special bit set in the Capabilities Bit Strip.
OS/2 records this information during system boot.

If the device driver must serialize access to a critical resource, it can do so by
calling DosCreatSpinLock. The driver should allocate as many spinlocks as
necessary in the Init routine where time is not a consideration. When the driver
is closed, the spinlocks should be freed up with a call to DosFreeSpinLock.
Spinlocks are very small data structures, 30 bytes or so, so they represent a
small memory overhead. OS/2 SMP contains several device helper routines to
allow the device driver to utilize spinlocks.

377

OS/2 SMP DevHlps

The following new DevHlps were introduced with OS/2 SMP. Information on
how and when to call these helpers can be found in Appendix A.

Table 22-1. SMP Device Helper Functions

DevHlp Function Code Description

CreateSpinLock 0x6f Create a subsystem spinlock
FreeSpinLock 0x70 Free a subsystem spinlock
AcquireSpinLock 0x71 Acquire a spin lock
ReleaseSpinLock 0x72 Release a spin lock
PortIO 0x76 Processor-independent port I/O
SetIRQMask 0x77 Set/UnSet an IRQ mask
GetIRQMask 0x78 Get state of current IRQ mask
VDHPortIO VDH Perform port I/O from a VDD

OS/2 SMP Applications

Applications should, for the most part, run without problems on SMP. There
are a few things that can cause problems under SMP, however.

First, some programs use the clear interrupts/set interrupts, or CLI/STI
instruction combination to serialize access to a critical resource. On a
uniprocessor machine, performing a CLI disables interrupts as intended. On an
SMP system, however, the CLI disables interrupt only on the current processor.
Other processors continue to operate normally and are unaffected by the CLI.

To maintain compatibility with these applications, OS/2 SMP implements a
CLI/STI spinlock. The kernel sets up the processor to generate a general
protection violation if an application attempts to perform port I/O. If a general
protection fault is generated, OS/2 checks to see if the instruction that caused it

378

was a CLI. If it was, the kernel requests ownership of the CLI/STI spinlock. If
its available, the CLI is executed, and the application performs its operations.
When the application is finished, it issues a CLI which is also trapped by the
kernel. The kernel releases the CLI/STI spinlock when the protection fault is
caused by an STI following a CLI. Other processors that needed to perform a
CLI/STI would spin waiting for the CLI/STI spinlock to become available.
Using this method, only one thread is allowed to perform CLI/STI at any one
given time.

Another technique that applications employ is access to global memory using a
RAM semaphore which fails in an MP environment. Applications which use this
technique must be modified to used the new spinlock APIs introduced with
OS/2 SMP.

Applications must not use the INC instruction as a semaphore without the
LOCK prefix. The INC instruction microcode specifies a load, increment and
restore operation which cannot be interrupted. However, more than one thread
can be executing the same INC instruction at the same time, thus thinking that
each thread owns the semaphore. The CMPXCHG instruction on 486 and
higher machines can behave the same way, and should be preceded by the
LOCK prefix.

Applications which rely on priorities to guarantee execution of a particular
thread will not work in an MP environment. Since each thread can be executing
on a separate processor, there’s no guarantee that the thread with the higher
priority will monopolize the CPU.

DOS and Windows applications are not affected since they are by design single-
threaded.

There is a set of applications which may not run correctly on OS/2 SMP for
some of the reasons explained above. For these applications, OS/2 SMP
provides a special utility called EXEMODE which can mark the executable
(EXE) file to run in a uniprocessor mode. When running in a uniprocessor
mode under OS/2 SMP, only one thread of the current process can be active at
one time.

379

Multithreading an SMP application will improve performance dramatically,
since more than one thread of the application can be running at one time.
Applications which are multithreaded make the most efficient use of the
processor’s cache, while single thread applications cause more cache flushes.
Applications can also be modified to use the new SMP APIs introduced with
OS/2 SMP. The following is a list of the new APIs and their parameters. The
following is a list of the APIs and their functionality. This information is subject
to change.

Table 22-1. Spinlock APIs

API Function

DosCreateSpinLock Create a subsystem spinlock
DosFreeSpinLock Free a subsystem spinlock
DosAcquireSpinLock Acquire a subsystem spinlock
DosReleaseSpinLock Release a subsystem spinlock
DosGetProcessorCount Get count of processors online
DosGetProcessorIdleTime Get idle time of a processor
DosGetProcessorStatus Get status of a processor
DosSetProcessorStatus Take a processor on or offline
DosAllocThreadLocalMemory Alloc memory for a thread
DosFreeThreadLocalMemory Free memory allocated for a thread
DosQuerySysInfo (changed) Return system information

380

DosCreateSpinLock Create a subsystem spinlock

Calling Sequence

APIRET DosCreateSpinLock (PHSPINLOCK pHandle)

Parameters

pHandle: pointer to the spinlock handle returned

Returns

NO_ERROR
ERROR_NO_MORE_HANDLES

Comments

DosCreateSpinLock returns a long handle. This handle can be passed to
DosAcquireSpinLock to acquire a spinlock and to DosReleaseSpinLock to
release the spinlock. The spinlock is created in kernel data space.

Example Code

#define INCL_BASE
#define OS2_API16
#define INCL_DOSSPINLOCK
#include <os2.h>
#include <stdio.h>
#include <string.h>
main()
{
 APIRET rc; /* Return code */

 HSPINLOCK Handle; /* Handle to
spin lock */
 PHSPINLOCK pHandle = &Handle; /* pointer to
spin lock handle */

381

 /* Create a spin lock */

 rc = DosCreateSpinLock(pHandle);
 if (rc !=0)

 {
 printf("DosCreateSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Acquire spin lock */

 rc = DosAcquireSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosAcquireSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Code that needs serialization */
 /* Release spin lock */

 rc = DosReleaseSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosReleaseSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Free spinlock */

 rc = DosFreeSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosFreSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);

382

 }
 }

383

DosFreeSpinLock Free a subsystem spinlock

Calling Sequence

APIRET DosFreeSpinLock (HSPINLOCK Handle)

Parameters

Handle: the spinlock handle returned from DosCreateSpinLock

Returns

NO_ERROR
ERROR_INVALID_HANDLE

Comments

DosFreeSpinLock frees a spinlock created by a call to DosCreateSpinLock.

Example Code

#define INCL_BASE
#define OS2_API16
#define INCL_DOSSPINLOCK
#include <os2.h>
#include <stdio.h>
#include <string.h>
main()
{
 APIRET rc; /* Return code */

 HSPINLOCK Handle; /* Handle to
spin lock */
 PHSPINLOCK pHandle = &Handle; /* pointer to
spin lock handle */

 /* Create a spin lock */

384

 rc = DosCreateSpinLock(pHandle);
 if (rc !=0)

 {
 printf("DosCreateSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Acquire spin lock */

 rc = DosAcquireSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosAcquireSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Code that needs serialization */
 /* Release spin lock */

 rc = DosReleaseSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosReleaseSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Free spinlock */

 rc = DosFreeSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosFreSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }
 }

385

386

DosAcquireSpinLock Acquire ownership of a spinlock

Calling Sequence

APIRET DosAcquireSpinLock (HSPINLOCK Handle)

Parameters

Handle: spinlock handle returned by DosCreateSpinLock

Returns

NO_ERROR
ERROR_INVALID_HANDLE

Comments

DosAcquireSpinLock obtains ownership of a subsystem spinlock. If the
spinlock is in use, the call spins until it becomes available. When the call returns,
the spinlock has been acquired and interrupts are disabled. A call to
DosReleaseSpinLock should be made soon after the call to
DosAcquireSpinLock so that interrupts may be re-enabled.

Example Code

#define INCL_BASE
#define OS2_API16
#define INCL_DOSSPINLOCK
#include <os2.h>
#include <stdio.h>
#include <string.h>
main()
{
 APIRET rc; /* Return code */

387

 HSPINLOCK Handle; /* Handle to
spin lock */
 PHSPINLOCK pHandle = &Handle; /* pointer to
spin lock handle */

 /* Create a spin lock */

 rc = DosCreateSpinLock(pHandle);
 if (rc !=0)

 {
 printf("DosCreateSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Acquire spin lock */

 rc = DosAcquireSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosAcquireSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Code that needs serialization */
 /* Release spin lock */

 rc = DosReleaseSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosReleaseSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Free spinlock */

 rc = DosFreeSpinLock(Handle);
 if (rc !=0)

388

 {
 printf("DosFreSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }
 }

389

DosReleaseSpinLock Create a subsystem spinlock

Calling Sequence

APIRET DosReleaseSpinLock (HSPINLOCK pHandle)

Parameters

Handle: spinlock handle returned from the call to DosCreateSpinLock

Returns

NO_ERROR
ERROR_INVALID_HANDLE

Comments

DosReleaseSpinLock gives up ownership of a subsystem acquired from a
previous call to DosAcquireSpinLock.

Example Code

#define INCL_BASE
#define OS2_API16
#define INCL_DOSSPINLOCK
#include <os2.h>
#include <stdio.h>
#include <string.h>
main()
{
 APIRET rc; /* Return code */

 HSPINLOCK Handle; /* Handle to
spin lock */
 PHSPINLOCK pHandle = &Handle; /* pointer to
spin lock handle */

390

 /* Create a spin lock */

 rc = DosCreateSpinLock(pHandle);
 if (rc !=0)

 {
 printf("DosCreateSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Acquire spin lock */

 rc = DosAcquireSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosAcquireSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Code that needs serialization */
 /* Release spin lock */

 rc = DosReleaseSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosReleaseSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

 /* Free spinlock */

 rc = DosFreeSpinLock(Handle);
 if (rc !=0)
 {
 printf("DosFreSpinLock failed -- rc =
%1d",rc);
 DosExit(0,1);
 }

391

 }

APIs are provided to provide support for the SMP Performance monitor and
other third-part applications.

DosGetProcessorCount Get count of usable processors

Calling Sequence

APIRET DosGetProcessorCount (PULONG pCount)

Parameters

pCount: pointer to returned count of usable processors

Returns

NO_ERROR
ERROR_INVALID_PARAMETER

Comments

DosGetProcessorCount returns the count of usable processors.

392

DosGetProcessorIdleTime Get idle time in milliseconds

Calling Sequence

APIRET DosGetProcessorIdleTime (ULONG proc, PULONG pTime)

Parameters

proc: processor number
pTime: pointer to time returned

Returns

NO_ERROR
ERROR_INVALID_PARAMETER

Comments

DosGetProcessorIdleTime returns the idle time of the specified processor in
milliseconds.

393

DosGetProcessorStatus Get status of specified processor

Calling Sequence

APIRET DosGetProcessorStatus (ULONG procnum, PULONG status)

Parameters

procnum: the specified processor
status: the status returned

Returns

NO_ERROR
ERROR_INVALID_PARAMETER

Comments

DosGetProcessorStatus returns the status for the specified processor, 1 =
online, 0 = offline.

394

DosSetProcessorStatus Set status of specified processor

Calling Sequence

APIRET DosSetProcessorStatus (ULONG procnum, PULONG status)

Parameters

procnum: the specified processor
status: the status to set the processor to

Returns

NO_ERROR
ERROR_INVALID_PARAMETER

Comments

DosSetProcessorStatus sets the status of a processor online (1) or offline(0).

395

DosAllocThreadLocalMemory Allocate block of thread-local memory

Calling Sequence

APIRET DosAllocThreadLocalMemory(ULONG words, PPVOID pMem)

Parameters

words: the number of 32-bit dwords to allocate
pMem: pointer to the allocated block of memory

Returns

NO_ERROR
ERROR_INVALID_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Comments

DosAllocThreadLocalMemory allocates a block of local memory for use by a
thread in an MP environment. When a process is started, it may allocate a small
block of memory for use as a thread-local memory area. Each thread accesses
the memory with the same virtual address, but the actual physical addresses are
different, allowing each thread to have a unique block of memory local to that
thread.

Up to 8 dwords can be allocated per call. If more memory is needed, more calls
to DosAllocThreadLocalMemory can be made. The memory is freed by calling
DosFreeThreadLocalMemory.

The following example illustrates a call to allocate and then free 6 dwords of
thread-local memory.

#define INCL_DOSPROCESS /* Memory Manager values
*/

396

#include <os2.h>
#include <stdio.h> /* For printf */
PVOID pMemBlock; /* Pointer to the memory

block returned */
APIRET rc; /* Return code */

 rc = DosAllocThreadLocalMemory(6, &pMemBlock);
/* Allocate 6 DWORDs */
if (rc != NO_ERROR)
{

 printf("DosAllocThreadLocalMemory error:
return code = %ld", rc);
 return 1;
 }

 /* ... Use the thread-local memory block ... */

 rc = DosFreeThreadLocalMemory(pMemBlock); /*
Free the memory block */
 if (rc != NO_ERROR)
 {
 printf("DosFreeThreadLocalMemory error:
return code = %ld", rc);

return 1;
 }

 return 0;

397

DosFreeThreadLocalMemory Free block of thread-local memory

Calling Sequence

APIRET DosFreeThreadLocalMemory(pMem)

Parameters

pMem: pointer to thread-local memory block

Returns:

NO_ERROR
ERROR_INVALID_PARAMETER

Comments

DosAllocThreadLocalMemory allocates a block of local memory for use by a
thread in an MP environment. When a process is started, it may allocate a small
block of memory for use as a thread-local memory area. Each thread accesses
the memory with the same virtual address, but the actual physical addresses are
different, allowing each thread to have a unique block of memory local to that
thread.

Up to 8 dwords can be allocated per call. If more memory is needed, more calls
to DosAllocThreadLocalMemory can be made. The memory is freed by calling
DosFreeThreadLocalMemory.

The following example illustrates a call to allocate and then free 6 dwords of
thread-local memory.

#define INCL_DOSPROCESS /* Memory Manager values
*/
#include <os2.h>
#include <stdio.h> /* For printf */

398

PVOID pMemBlock; /* Pointer to the memory
block returned */
APIRET rc; /* Return code */

 rc = DosAllocThreadLocalMemory(6, &pMemBlock);
/* Allocate 6 DWORDs */
if (rc != NO_ERROR)
{

 printf("DosAllocThreadLocalMemory error:
return code = %ld", rc);
 return 1;
 }

 /* ... Use the thread-local memory block ... */

 rc = DosFreeThreadLocalMemory(pMemBlock); /*
Free the memory block */
 if (rc != NO_ERROR)
 {
 printf("DosFreeThreadLocalMemory error:
return code = %ld", rc);

return 1;
 }

 return 0;

DosQuerySysInfo returns three system variables associated with the SMP
environment.

399

Avoiding Device Driver Deadlocks

Deadlock can be defined as an unresolved contention for use of a critical
resource. Simply stated, it is a condition that exists when one thread requests a
resource that it cannot get because another thread owns the resource. The other
thread can’t release the resource until notified by the original thread. The result
is a common condition in MP systems. Whenever any mutual exclusion
primitive is used, the possibility of deadlock is introduced. In uniprocessor
OS/2, its possible to have a deadlock condition using semaphores. The
condition might be that thread one is camped on a semaphore that thread two
has control of, and thread two is blocked waiting for thread one to clear a
semaphore.

In an MP environment, the possibilities of deadlock are much greater. Besides
the normal deadlock conditions, sections of your code can now be executed by
more than one processor at the same time.

OS/2 SMP uses spinlocks to serialize access to critical kernel resources. Just
like an application, using spinlocks incorrectly in a device driver can result in a
deadlock condition. Once in a deadlock, there is no recovery other than to
reboot, and in some cases, power off and on.

Writing device drivers for OS/2 for SMP V2.11 requires you to think about the
conditions in the code which might cause a deadlock condition, and then
use spinlocks to protect against those conditions. It would be impossible to list
every cause of deadlock, but a few of the most common code examples are
shown below (in pseudo-code) that can result in deadlock. These examples
certainly do not represent all of the conditions that may cause deadlock, but
they are a good start. As you read through the examples, you’ll begin to
understand the types of problems you may encounter under OS/2 SMP.

One of the most common causes of deadlocks is spinlocks taken out of order.
Take a look at Figure 22-1 to see how taking spinlocks out of order can cause a
deadlock.

400

Code section 1 Code section 2

1 Lock spinlock1 1 Lock spinlock2
2 Do some processing 2 Do some processing
3 Lock spinlock2 3 Lock spinlock1
4 More processing 4 More processing
5 Unlock spinlock2 5 Unlock spinlock1
6 Unlock spinlock1 6 Unlock spinlock2

Figure 22-1. Spinlocks Taken Out Of Order

In section 1, line 1 locks spinlock1. In section 2, line 1 locks spinlock2. Both
sections will successfully lock their respective locks and continue normally.
Next, section 1 on line 3 tries to lock spinlock 2. It finds it already in use, and
spins waiting for it to be released. Section 2, line 3 tries to lock spinlock 1, but
finds it in use and spins waiting for it. Both threads are hung. To fix the
problem requires a simple recoding, shown in Figure 22-2.

Code section 1 Code section 2

1 Lock spinlock1 1 Lock spinlock1
2 Do some processing 2 Lock spinlock1
3 Lock spinlock2 3 Do some processing
4 More processing 4 More processing
5 Unlock spinlock2 5 Unlock spinlock2
6 Unlock spinlock1 6 Unlock spinlock1

Figure 22-2. Correct Spinlock Usage

Another cause of deadlock is blocking with spinlocks locked. Take a look at the
following pseudo-code in Figure 22-3 for an example of another deadlock

401

condition. In the example, section 1 is a task-time (kernel mode) section, while
section 2 is an interrupt mode section.

Code section 1 Code section 2

(Task time) (Interrupt time)
Lock spinlock1 Interrupt received
Start I/O Lock spinlock1
Block (ProcBlock) Unblock (ProcRun)
Release spinlock1 Return from block
Do some processing
(May include a re-block)
Release spinlock1

Figure 22-3. Another Spinlock Usage Error

In this example, code section 1 locks spinlock1 and then blocks (with
the spinlock still locked) by calling DevHlp Block. Code section 2 will execute
when the I/O completion interrupt is received. When the operation is complete
and the interrupt is received, the interrupt code tries to lock spinlock 1.
However, because spinlock 1 is already locked by the task time code the
interrupt code spins on the spinlock. The lock will never become available
because the task time code will not release it until is becomes unblocked.

To solve this particular problem, DevHelp_Block has been modified to release
all spinlocks that are owned on the current processor. The device driver should
call DevHlp Block with spinlocks locked. The thread will first be blocked, but
before dispatching the next thread, the kernel will release all locked spinlocks
for the current processor. Because the thread is in the blocked state, it is valid
for another processor to execute interrupt code that will do the DevHelp_Run.
Thus the deadlock is eliminated.

When a spinlock is locked, the Lock Manger will disable interrupts before
returning to the device driver. This insures that no interrupt will occur, on the

402

same processor, between when the spinlock is requested and when the kernel
returns to the device driver with the spinlock locked. The device driver must
leave interrupts disabled while owning the spinlock. If interrupts were left
enabled, an interrupt might occur that would cause a deadlock by trying to lock
a spinlock that was already owned in the interrupt code.

The Single Processor Utility Program

Some programs may not work in an SMP environment. Applications which
depend on priorities for access to critical resources or implement private
semaphore mechanisms will fail in an SMP environment. to maintain
compatibility with existing applications, OS/2 SMP can run an application on
one processor only. Only one thread of the selected application may be active at
one time, and will allow to application to run MP-safe. The EXEMODE
program marks the EXE file of the program to be run in a uniprocessor mode.
This bit is detected by the OS/2 loader and handled according.

The EXEMODE utility can also be used to list EXE files that have been marked
for uniprocessor operation and those which can run in an MP mode.
EXEMODE can also reset the mode bit to allow an EXE file that had
previously been marked as uniprocessor to be run in the MP mode. The
EXEMODE program syntax is shown below.

EXEMODE [/f] [/v] [/q] [/d] [/t] [/l] [/s] [x: [\path\]] [filename.ext]

/sp Set file to single-processor mode (default)
/mp Set file to multi-processor mode
/l List files matching sp or mp
/s Enable subdirectory searching
/f Force changes on read-only files
/v Set verbose mode on
/q Set for quiet mode
/d Display debug messages
/t Set test mode (do not write to disk)

403

Chapter 23 - Plug and Play
How many times have you installed a new board in your system, only to find
out that your system would no longer boot, or your sound board would no
longer work? As an experienced developer, you know this is most likely caused
by a conflict of interrupt assignments, DMA channels or memory-mapped
regions. Imagine the pain that a normal user undergoes when attempting to
upgrade a system with no knowledge of these details or how to change the
settings, or the number of hours that customer support personnel have spent on
the phone helping neophyte users with hardware conflict resolution. As systems
became more powerful and complex, it was clear that a solution had to be
found for these types of configuration problems.

Actually, IBM had a solution for these problems back in the mid-’80s, and they
called it Micro Channel. Unfortunately, restrictive licensing provisions and a
closed architecture doomed the Micro Channel bus to an early death. IBM’s
PS/2 systems with Micro Channel used a unique system for identifying and
resolving configuration conflicts. Each adapter card contained several bytes of
non-volatile RAM (NVRAM) that contained the current interrupt, DMA
channel and memory-mapped settings. To help identify the exact adapter type,
each card also had a unique 16-bit identifier stored in NVRAM. Micro Channel
slots were made addressable so a configuration program could “walk” the bus,
verifying proper configuration.

When the PS/2 was booted, the POST checked the current settings recorded in
NVRAM on the motherboard to the current settings of all the adapters. If no
difference was found, the system booted normally. If, however, the two sets of
data did not compare, the BIOS POST code directed the user to run the PS/2
setup program on the PS/2 Reference Diskette. The setup program allowed the
user to change configuration parameters for the offending adapter using a
template of valid settings which were placed in a file with the ADF extension on
the reference diskette. Once set, the parameters were recorded in NVRAM on
the motherboard. The next time the system was booted, the POST code again
compared the adapter settings with the settings on the motherboard to verify

404

that the system configuration was correct. The setup program would also check
for conflicting resource assignments and protect against them. This was just one
of the superb features which made Micro Channel an architecture years ahead
of its time.

Micro Channel machines comprised a relatively small part of the PC market, so
very few Micro Channel adapter cards were available. There were no adapters
for stereo sound, for instance, or for industry standard CDROM drives.
Eventually, IBM did provide a handful of Micro Channel adapters, but at
generally double the price of the industry-standard adapters. While IBM
continued marketing and selling the PS/2, the market was buying ISA bus
machines in greater and greater quantities. In 1993, IBM finally admitted its
mistake by reintroducing a line of ISA bus machines. The company that had
invented the ISA bus and then tried to replace it, came full circle back to the
bus that started it all. The market had spoken.

The ISA bus, however, had several drawbacks. ISA adapters cards did not
contain any information about the adapter. Interrupts, DMA channels and
memory-mapped settings were derived from user-installable jumpers or
switches located on the adapter. Another drawback was the lack of addressable
slots. There was absolutely no way to tell what type of card was in a particular
slot on the motherboard except by a complicated method of poking and
prodding the bus with some predetermined knowledge of how certain adapters
would respond. Although these programs were better than nothing, they
frequently made mistakes and in some cases, caused even more grief for the
user.

In 1993, Microsoft set about solving this dilemma for the ISA bus by
introducing a standard by which adapters could be identified and configured
programatically without switches or jumpers. This standard was called Plug and
Play, or PnP. The implementation of PnP requires the addition of a few
inexpensive components on the ISA adapter, and some software changes in
BIOS and system configuration.

While this is the official definition, the words Plug and Play have been one of
the most abused set of words in the PC industry. CDROM vendors use it to

405

describe add-on CDROM drives, PCMCIA vendors use it to describe their
cards, and suppliers of parallel-port attached disks and CDROMs use the term
to describe their product lines. The official use of the term however, is used to
describe the class of adapters that support the hardware and software
architecture defined in the Plug and Play specification.

ISA PnP Hardware

The hardware changes necessary for an adapter to support PnP are relatively
minor, with the parts costing a total of less than $5 per adapter. The actual
hardware consists of a 72-bit shift register, some non-volatile memory, and
some tri-state buffers. The 72-bit shift register is used to identify the particular
adapter, and contains 32 bits of vendor data, 32 bits of serial number and an 8-
bit checksum. PnP adapters also contain several bytes of configuration data
stored in non-volatile RAM. This data can be read and changed one the PnP
card has been placed in the config state.

Access to PnP cards and resource data is provided by a special set of registers
on each PnP adapter (see Figure 23-1), contained in a PnP Applications
Specific Integrated Circuit, or ASIC. Even though the ISA bus is not
addressable, the PnP chipset provides for a method to isolate PnP cards on the
bus, one at a time, until all cards have been identified. It does this by placing the
adapter card in a low or high impedance mode, depending on the data written
to the card and the contents of the LFSR on the adapter. Cards are isolated,
selected, and configured, then placed in a high impedance mode. This allows
one card to be selected and configured, then placed into a high impedance mode
so that it will no longer take part in the iterative process of adapter isolation.

Each PnP card contains a unique 72-bit identifier consisting of a 32-bit Vendor
ID, a 32-bit Serial Number, and an 8-bit Checksum. This number is specific to
the adapter, and is used to isolate the particular PnP adapter from other PnP
adapters in the same system (see Figure 23-2). The 72-bit identifier is read
during the isolation sequence, and also exists as Resource Data in the PnP card
memory. During the isolation process, the 72-bit identifier is shifted out one
byte at a time, low to high, starting at the LSB of the Vendor ID.

406

Figure 23-1. PnP Register Map

7:0

Byte 0

7:0

Byte 3

7:0

Byte 2

7:0

Byte 1

7:0

Byte 0

7:0

Byte 3 Byte 2 Byte 1 Byte 0

7:0 7:0 7:0

Vendor IDSerial Number
Checksum

Direction
of Shift

Figure 23-2. PnP 72-Bit Identifier

Two specific I/O ports have been reserved for PnP operation. The first is
0x279, which is actually the printer status port, normally a read-only register.
The second is 0xa79, the printer status port + 0x800. These two ports provide

407

accessibility to the PnP hardware on each adapter using a special software
sequence of reads and writes to these ports. A third port is used to read data
from and write data to the card. This third port, however, is relocatable by the
PnP isolation software. The PnP specification defines that this port should start
at 0x203, but in practice, you should begin at 0x20B, since a standard joystick
occupies the lower port addresses. See Table 23-1. All PnP register I/O is
performed using 8-bit transfers. 16-bit transfers are not supported.

Table 23-1. Plug and Play I/O Port Assignments

Port Name I/O Address Read/Write
ADDRESS 0x279 (printer status) Write only
WRITE_DATA 0xa79 (status + 0x800) Write only
READ_DATA 0x20b (relocatable) Read only

Plug and Play registers are not accessed directly, rather, they are accessed
indirectly through the ADDRESS port. The ADDRESS port is merely a register
used to set up access to plug and play registers. The value of the register to be
read is first written to the ADDRESS port, then the actual data to be read is
read from the READ_PORT. To write data to a plug and play register, the
value of that register is first written to the ADDRESS port, then the data
written to the WRITE_DATA port.

408

Table 23-2. Plug and Play Control Registers

Register Name Set ADDRESS to this
value

Definition/Arugument

Set READ_DATA port 0x00 determines the ISA port
to read from. The actual
port address should be
shifted right two places
before setting the port
address since the value
written to ADDRESS
represents bits 9 through
2 of the actual port
address. For example, to
set the READ_DATA
port to 20B, write (20b
>> 2) to the ADDRESS
port.

Serial Isolation 0x01 Writing this value to the
ADDRESS port causes a
read from the
READ_DATA port to
return the next bit of the
serial identifier.

Config Control 0x02 This register performs
reset functions. Bit 2 =
Reset CSN to 0, bit 1 =
return to Wait For Key
state, bit 0 = reset all
logical devices to their
power-up state. First
write 0x02 to the
ADDRESS port, then
write one or more of
these bits to the
WRITE_DATA port.

409

Table 23-2. Plug and Play Control Registers (cont’d)

Register Name Set ADDRESS to this
value

Definition/Arugument

Wake 0x03 Wake up a card or cards.
First, write 0x03 to the
ADRESS port, then
write the argument
(which happens to be the
CSN number of the card
to wake up) to the
WRITE_DATA port. If
the argument is 0, the
card will move from the
sleep state to the
isolation state.

Resource Data 0x04 Setting the ADDRESS
port to this value causes
the next byte of PnP
card resource data to be
read from the card with
a read from the
READ_DATA port.
Before reading the
resource data, the
program should verify
the data is ready by
polling the Status port.

Status 0x05 Bit 0 of this register is
polled to indicate that
resource data is ready.
To read the status, first
write 0x05 to the
ADDRESS port, then
read from the data from
the READ_DATA port.

410

Table 23-2. Plug and Play Control Registers (cont’d)

Register Name Set ADDRESS to this
value

Definition/Arugument

Card Select Number
(CSN)

0x06 Used to set the card
number in a PnP card’s
Card Select Number
register. The CSN must
be an integer from 1 to
99. To set a cards CSN,
while in the config state,
write a 0x06 to the
ADDRESS port, then
write the CSN to the
WRITE_DATA port.

Logical Device Number
(LDN)

0x07 A PnP device may have
more than one logical
device. This register is
used to select a
particular logical device.
If the device has only
one logical device, the
value of this register will
be 0.

Card Level Reserved 0x08-0x1f Reverved for future use
Card Level, Vendor
Defined

0x20-0x2f Vendor specific
information

Activate 0x30 A PnP card can have
more than one logical
device. Each device can
be activated or
deactivated by a register
on the PnP card. Bit 0,
when set to 1, activates
the logical device, bit 0
disables it.

411

Table 23-2. Plug and Play Control Registers (cont’d)

Register Name Set ADDRESS to this
value

Definition/Arugument

I/O Range Check 0x31 Bit 0, if set, forces the
logical device to send
0x55 in response to
reads of the logical
device’s I/O range while
the I/O range check is
enabled. If bit 0 is clear,
the logical device
responds with 0xff. Bit 1
enables or disables the
I/O range check feature.
This functions operates
only if the card is not
activated.

Logical Device Control
Reserved

0x32-0x37 Reserved for future use

Logical Device Control
Vendor Defined

0x38-0x3f Vendor defined registers

Various 0x40-0xff Memory, DMA, I/O map
address, interrupt
configuration registers

Refer to Table 23-2. Lets assume you wanted to issue a reset to all plug and
play cards during the isolation sequence. The reset command is performed by a
write of 0x03 (RESET | WAIT_FOR_KEY) to the Config Control register.
What this means is that you first write the value of the Config register, 0x02, to
the ADDRESS port, then write the 0x03 (RESET | WAIT_FOR_KEY) to the
write data port. See Figure 23-3 for the actual C language code to perform this
operation.

412

 {
 out (0x279,0x02); // set config register
 out (0xa79,0x03); // write to config register
 }

Figure 23-3. Issuing A Reset To The Config Control Register

PnP BIOS

True Plug and Play support requires BIOS changes to detect and configure PnP
cards at boot time. Newer machines with Flash BIOS should be easily modified,
while older machines with ROM BIOS may not be accommodated as easily.

Upon boot, the BIOS performs the isolation sequence to insure at that the cards
necessary for boot are enabled. It is assumed that those cards will always
remain active. In most cases, this is accomplished by a single jumper or switch
on the adapter card. Cards which are in the active state do not take part in the
isolation sequence. If a new card is inserted, the next time the machine is
powered on, the BIOS should perform an auto-configuration sequence enabling
the new card with acceptable settings.

Along with BIOS, PnP vendors will supply a PnP configuration utility which
can be used to setup adapters and perform conflict resolution (providing the
system is up, that is). These utilities will rely upon a special file with the
extension .INF. This file contains the acceptable values for an adapter, which
mirrors the acceptable setting on the adapter memory.

ISA PnP Isolation

In order to check the configuration of a system, or to change the values in a
card’s on-board memory, the ISA cards must first be placed into the isolation
state (see Figure 23-4). Once placed in the isolation state, the cards can be
enumerated one by one, then separately identified and configured. The method
for performing PnP card isolation is quite simple.

413

When power is applied to a PnP adapter, the card is placed in the inactive state.
The only exception to this are adapters that must come up in the active state
because they are necessary for booting the system. Cards which must remain in
the active state usually contain a jumper or switch which forces the card to
remain in the active state at all times.

While in the inactive state, the PnP adapter ignores all normal bus activity until
it is woken up by a special set of I/O operations called the Initialization Key.
The Initialization Key is a special pattern of 32 bytes (see Figure 23-5) which is
sent to all cards simultaneously on the ISA bus. All cards in the inactive state
“listen” for this special sequence of bytes in the exact order, and if the special
sequence is detected, the PnP cards will wake up and enter the isolation state.
Once in the isolation state, PnP cards can be isolated one by one, using a special
isolation protocol consisting of 72 pairs of reads. See Figure 23-6. The code
snippet to perform isolation is shown in Figure 23-8. A complete listing of a
sample isolation and configuration program is shown in the Listings section.

Figure 23-4. PnP State Diagram

UCHAR
LFSR_init_key[32]={0x6a,0xb5,0xda,0xed,0xf6,0xfb,0x7d
,0xbe,

0xdf,0x6f,0x37,0x1b,0x0d,0x86,0xc3,0x61,

0xb0,0x58,0x2c,0x16,0x8b,0x45,0xa2,0xd1,

0xe8,0x74,0x3a,0x9d,0xce,0xe7,0x73,0x39};

Figure 23-5. Initialization Key

414

Figure 23-6. ISA PnP Isolation Sequence Block Diagram

Once the PnP cards have been placed in the isolation state, the PnP isolation
software issues exactly 72 pairs of 8-bit reads to the READ_DATA port
through the Serial Isolation Register. To do this, the value of the Serial
Isolation Register, 0x01, is loaded into the ADDRESS register, then data is
read from the READ_DATA port.

The PnP hardware on the adapter card uses its 72-bit serial identifier to help
perform isolation. If the current bit of the adapter’s identifier is a 1, the adapter
sends a 0x55 in response to the read. All adapters currently in the high
impedance state check to see if another adapter is driving the bus with a 0x55.
If the current bit of the adapter’s serial identifier is 0, the adapter places its data
bus into a high impedance mode, causing a 0xff to be read.

An the second read, if the current value of the adapter’s serial identifier is a 1,
the adapter drives the data bus with a 0xaa. All adapters currently in the high
impedance mode check to see if another card is driving the bus with a 0xaa.
(Only bits 0 and 1 are really checked for both of the high impedance conditions,
the higher bits are ignored by the PnP hardware). If an adapter in the high
impedance mode senses the 0x55 followed by the 0xaa, it “bows out” of the
running and returns to the sleep state. If the current adapter was the one that
drove the bus with the 0x55 and 0xaa, or it did not sense another card driving
the bus, it prepares for the next pair of reads. Only one adapter will remain after
the isolation sequence.

The adapter is selected by setting the Card Select Number, or CSN on the PnP
adapter. This is done by writing the CSN to the proper PnP register on the
selected adapter. The Card Select Register is selected by first sending 0x06
(Card Select Number register) to the ADDRESS port, then writing the actual

415

CSN to the WRITE_DATA register. The CSN must be an integer from 1 to 99.
When a valid CSN is written to an adapter, that adapter enters the config state.
Once in the config state, the adapter’s configuration registers can be read and
programmed. The adapter is placed back in the sleep state when the
configuration software issues a Wake[0] by first writing the Wake register
value, 0x03 to the ADDRESS port, then writing a 0 to the WRITE_DATA
port.

Once a card has been isolated, it can be placed back into the sleep state where it
will no longer take part in the isolation sequence. The isolation protocol is
repeated until no more PnP cards are detected. A flow chart of the complete
isolation sequence can be found is shown in Figure 23-7. The complete source
for PnP isolation under OS/2 can be found in Appendix C. Since PnP isolation
requires only simple port I/O, a device driver is not needed and isolation can be
done from a ring 2 or ring 3 segment.

416

 Reset (WAIT_FOR_KEY | RESET_DEVICE); // reset +
wait for key
 SendInitKey(); // send Init key
again
 Wake(0); // wake up all
cards
 SetReadDataPort(port); // set up read data
port
 Wake(0); // wake up cards
again
 out_port (ADRESS,SIR); // set up serial
isolation reg
 delay(5); // small delay

 // begin isolation process

 for (i=0; i< 72; i++)
 {

 // do two consecutive reads looking for 0x55
and 0xaa

 char_1 = in_port (port);
 delay(5);
 char_2 = in_port (port);
 delay(5); // 250 usec delay
 if ((char_1 == 0x55) && (char_2 == 0xaa))
 {
 bits[i] = 1;
 }
 else
 {
 bits[i] = 0;

 } // for i

 // card detected and in isolation state, all
others sleeping
 // set Card Select Number (CSN) to a unique
number. This operation

417

 // sets the card to the CONFIG state

 SetCSN(card_number); // write CSN

 // get resource info

 for (i=0; i < 256; i++)
 {
 while (!Status());
 SetResourceRead(); // set up to read
resources
 ResourceData[card_number-1][i] = in_port
(READ_DATA);
 }

 Wake (0); // everyone goes
back to sleep

 // sending a Wake[0] puts this card back into
sleep mode, and the
 // other cards with a 0 CSN to the isolation
state

Figure 23-7. PnP Isolation Code Example

Resource Data

Plug and Play configuration data is stored on the adapter card, and referred to
as resource data. Resource data is nothing more than the information about the
current configuration of the PnP card, along with some specific parameters on
how the card should be configured for correct operation.

The PnP specification falls short in a few areas, however, and one is the
Resource Data. First, there’s no set length of the resource information. While
this provides for expansion and flexibility, there’s no way to tell just how long
the resource data is without actually reading it. Second, reading the Resource

418

Data requires the program doing the reading to wait on a bit for the data to be
ready. While this may be okay for DOS and Windows programs, it leaves open
the chance for a system hang in OS/2 if the resource data is gathered at ring 0
by a PDD.

Resource data also includes data items such as the vendor ID, a list of
compatible devices, and several ASCII strings that can be displayed or printed
to verify the card’s manufacturer and functionality. PnP resources are retrieved
by reading data indirectly from the Resource Data register, 0x04. To read the
resource data, first output the register value (0x04) to the ADDRESS port,
0x279. Then perform 8-bit inputs from the READ_DATA port. For each
subsequent read, and new byte of resource data is returned. To read the
resource data, the PnP card must be in the config state. If the config state was
entered immediately following isolation (default), then the first byte of data
returned will be the the first byte following the 72-bit identifier. In most cases,
this will be the PnP version number supported by the adapter, but the Plug and
Play specification does not dictate the this data item be first.

The resource data items are in a packed binary format to save space. The
resource data is classified into two separate data structures, small data items
and large data items. The first byte of a data item determines the type. If bit 7
of the first byte is a 1, the item is a large data item. If bit 7 is 0, it is a small data
item. All data items are variable length records. The length of the record is
stored in packed binary format in the first byte, along with the small/large item
bit.

Each large and small data item has a packed binary number which represents the
item name, thus there are large data names and small data names which have
been previously defined by the Plug and Play specification. In the case of a
small item, the first byte contains the small/large bit (bit 7) set to 0, bits 3 to 6
contain the small item name, and bits 0 to 2 contain the size of the data item.
The actual data immediately follows this byte. PnP software must decode this
byte and read only the number of bytes for the item (as determined by bits 0 to
2).

419

In the case of a large data item, the first byte also contains the small/large bit
(bit 7 set to 1), but bits 0 through 6 are used for the large item name. The size
of the large data item is stored in the two bytes immediately following the large
item name. The first byte following the large item name contains the lower 8
bits (bits 0 through 7) of the large data item size, and the second byte following
the large item name contains the upper 8 bits (bits 8 through 15) of the large
data item size. PnP software must assemble these two bytes into a word to be
used for reading the resource data. Refer to Figure 23-8 and 23-9, and Table
23-3 and 23-4 for a description of the valid small and large item names. For
detailed information regarding the small and large item names, please refer the
latest Plug and Play specification, which can be downloaded from the
PLUGPLAY forum on Compuserve.

0 n n n n n n n

Data

Data +n

Item
Bit Item LengthItem Name

Bit 0Bit 7

Figure 23-8. Small Data Item Tag Structure

420

Table 23-3. PnP Small Item Names

Small Item Name Item Name Value

Plug and Play version number 0x1

Logical device ID 0x2

Compatible device ID 0x3

IRQ format 0x4

DMA format 0x5

Start dependent Function 0x6

End dependent Function 0x7

I/O port descriptor 0x8

Fixed location I/O port descriptor 0x9

Reserved 0xA - 0xD

Vendor defined 0xE

End tag 0xF

421

1 n n n n n n n

Item
Bit Item Name

Bit 0Bit 7

Large Item Length Bits 7:0

Large Item Length Bits 15:8

Data

Data + n

Figure 23-9. Large Data Item Tag Structure

422

Table 23-4. PnP Large Item Names

Large Item Name Value

Memory range descriptor 0x1

Identifier string (ANSI) 0x2

Identifier string (Unicode) 0x3

Vendor defined 0x4

32-bit memory range descriptor 0x5

32-bit fixed location memory range
descriptor

0x6

Reserved 0x7 - 0x7F

PnP Configuration

PnP configuration involves writing configuration data to the logical device’s
registers. Registers are assigned ports 0x4e to 0xfe (see Table 23-5), and are all
8-bit ports. In general, 16-bit values occupy two contiguous ports, and 32-bit
values occupy four contiguous ports. Most of these ports are read/write, so you
can look at the current configuration as well as update it while the card is on the
config state.

Recall that during isolation, the Card Selecet Number, or CSN, is written to the
currently isolated card. Setting a card’s CSN forces it into the sleep state. Once
in the sleep state, the card no longer participates in the isolation process. To
place the card in the config state, the program issues a Wake with the CSN of
the selected card as the argument. If you had set the CSN of a particular card to
1 for example, issuing a Wake(1) would move that particular card to the config

423

state where you could access the configuration registers. Cards in any state
respond to the Wake command (see Figure 23-8).

After the configuration registers have been examined or modified, the card can
be put back in the sleep state by issuing a Wake(0). Only one card can be active
at one time. If you modify a register or registers, you should always read back
the new value and compare it to the new value to insure the change was made.

SCAM

425

Chapter 24 - Tips and Techniques

I get a large number of questions from driver writers on how to perform certain
driver-related tasks. This chapter outlines some of the things you might want to
do in your device driver. Some of these may seem apparent, but to my
knowledge, this information does not appear anywhere else.

Q. I have an application that allocates a local buffer which is semaphore
protected for access by several threads. I want the driver to send data to this
buffer from my interrupt handler, but I don’t want to keep calling the device
driver. How can I do this?

A. The application sends the device driver, via an IOCtl, the address of the
buffer. The device driver calls VMProcessToGlobal to get a pointer to the
buffer, and VMLock to lock the buffer. The driver then calls
LinToGDTSelector to gain GDT access to the buffer. The device driver calls
VMLock to prevent the buffer from being paged. The driver then transfers data
freely from the interrupt handler.

Q. How can I get control of the floppy disk controller registers to support an
add-on tape drive that uses the floppy disk controller?

A. Call IOCtl Category 8, function 0x5d. This function toggles the floppy disk
driver and Sets/UnSets the floppy IRQ.

Q. My company sells ISA bus adapters which can be jumpered to one of several
memory-mapped addresses. I only want to supply one device driver. How can I
dynamically configure the device driver for the particular system?

A. Place the configuration information on the same line as the DEVICE=
statement in the CONFIG.SYS file. During initialization, the kernel sends the
driver a 16:16 virtual address of the DEVICE= command buffer. The driver can
use this pointer to parse driver-specific information and use it to configure the
device driver. For instance, the CONFIG.SYS file entry might contain

426

DEVICE=MYDRIVER.SYS d8000 3e8 5, where d8000 is the memory-
mapped address, 3e8 is the base port address, and 5 is the IRQ.

Q. My company supplies an ISA and Micro Channel version of the same
adapter. How can I tell if the machine contains an ISA bus or Micro Channel
bus, and can I use the same device driver for both systems?

A. Using the same driver for ISA and Micro Channel machines is a common
occurrence. The first thing your device driver should do is determine the bus
type. You can do this by calling GetLIDEntry, requesting a POS LID. If the call
fails, its not a Micro Channel machine. If the call succeeds, the system is Micro
Channel-based. You can then take the appropriate action. For Micro Channel,
scan the planar for your target adapter ID, and call SetIRQ with the share flag
to verify your interrupt level. For ISA bus systems, call SetIRQ with the no-
share flag.

Q. How can I reboot my machine from the command line?

A. Write a simple device driver that calls the SendEvent DevHlp with the
parameter to reboot for IOCtl function 1. Then write an application that calls
the IOCtl.

Q. My driver needs to identify the caller and determine its PID. How can I do
this?

A. From your driver, call GetDOSVar, which returns a pointer to the
application’s local infoseg. Using that pointer, you can extract the necessary
information.

Q. My Micro Channel initialization section is setting up the wrong memory-
mapped address from the POS registers. How can I check the value of the POS
registers while debugging?

A. First, you must know what slot the particular adapter is in. The slots are
number 0-7, with 0 being the motherboard, and 1-7 the 8 slots on the
motherboard. Slot 1 is the slot closest to the power supply. Once the slot

427

number is known, turn on the -CD SETUP line for that slot using the debugger,
by issuing the command o 96,slot+7. If the adapter was located in slot 2, the
command would be o 96,9. Once enabled, the adapter POS register contents
can be read by an input of address 0x100, 0x101, 0x102, etc. The adapter ID is
located in POS register 0 and 1, located at 0x100 and 0x101, in the low-high
format. To make the POS registers invisible again and bring the system back to
normal, issue the o 96,0 command.

Q. I need to change the contents of the adapter POS registers while my driver is
running. How can I read or write the Micro Channel POS registers “on the fly”
with my device driver?

A. Call GetLIDEntry to get a POS LID. Next, get the size of the LID Request
Block by calling ABIOSCall. Initialize the Request Block for the request and
call ABIOSCall. The ABIOS routines will fill in the Request Block with the
POS register data. Change the data and Request Block command field and call
ABIOScall again to write the data. Remember that the POS register information
is kept in two places. The first is the adapter itself, and the second is the
motherboard’s NVRAM. When the POST is run on power-up, the system
compares the NVRAM configuration with the actual POS register configuration
to determine if an adapter was reconsidered or removed. If you’re going to
make the POS register change permanent, be sure to write to both places.

Q. My adapter requires a program be downloaded to it during Init. How can I
get access to my adapter’s memory during Init, and how can I download the
program to the adapter?

A. To access the adapter during Init, you’ll need to create LDT access, since
Init is a ring 3 thread. Call PhysToUVirt to get a selector to the adapter
memory. Then call DosOpen and DosRead to read the adapter’s program from
a binary file, and move it to the adapter using the pointer from the PhysToUVirt
call.

Q. I need to delay for 5 seconds during the Init of my driver so my adapter can
get set up. I can’t call DosSleep, so how can I do this?

428

A. Call the Beep DevHlp with a duration of 5 seconds, and a frequency out of
the audible range.

Q. How can I return specific errors from my driver?

A. If you return an error via one of the standard driver calls, the system adds a
hex 13 to the value. If you use an IOCtl, the lower 8 bits are your’s to set as
you please. The system will not touch the value. The error code returned to
your program will have 0xff in the upper 8 bits. Thus, returning a 0x14 from an
IOCtl will yield a 0xff14 at the application level.

Q. When my driver times out, I get a coffin on my screen. How can I suppress
this?

A. Be sure to set the OPEN_FLAGS_FAIL_ON_ERROR bit in the DosOpen
call.

Q. I need GDT-based access during Init. Don't tell me I can't do it, what's the
trick?

A. In your Init section, start a timer handler. No more than 32 milliseconds
later, your timer handler will get called - in ring 0. You have GDT access from
the timer handler.

Q. I need to unblock a blocked C Set/2 thread in my interrupt handler, but I
notice this call is not valid in an interrupt context. How can I do this?

A. Allocate a context hook, arm it, and when you exit to the kernel, OS/2 will
run your context hook function in kernel mode, where you can issue the 32-bit
semaphore DevHlp calls.

Q. I need to access a GDT-based pointer or routine during Init. Can this be
done?

429

A. Yes. Start a timer and call your special function from your timer handler.
Since the timer handler is always entered at ring 0, you’ll have GDT access
from within your function.

Q. Even though my PDD is 16-bit, I’d like to use the 32-bit block move
routines provided by the processor which use EDI and ESI as operands. I can’t
seem to get it to work.

A. The block move instructions must be preceeded by an override instruction,
0x67. You’ll notice the code generated by a REP MOVSW is F3 A5. Using a
DB pseudo op, insert the 0x67 between the REP and the MOVSx. The 32-bit
offsets will now be used. The result should be F3 67 A5.

*********tips from DevCon ***********

431

Appendix A - Device Helper Reference

Device Helper Functions

Table A-1. Device Helper Functions

DevHlp Function Code Description

SchedClockAddr 0x00 Get system clock routine address
DevDone 0x01 Device I/O complete
Yield 0x02 Yield the CPU
TCYield 0x03 Yield the CPU to a time-critical thread
Block 0x04 Block thread on event
Run 0x05 UnBlock a previously Blocked thread
SemRequest 0x06 Claim a semaphore
SemClear 0x07 Release a semaphore
SemHandle 0x08 Get a semaphore handle
PushReqPacket 0x09 Add a Request Packet to list
PullReqPacket 0x0a Remove a Request Packet from list
PullParticular 0x0b Remove a specific Request Packet

from list
SortReqPacket 0x0c Sort Request Packets
AllocReqPacket 0x0d Allocate a Request Packet
FreeReqPacket 0x0e Free a Request Packet
QueueInit 0x0f Initialize a character queue
QueueFlush 0x10 Clear a character queue
QueueWrite 0x11 Put a character in the queue
QueueRead 0x12 Get a character from the queue
Lock 0x13 Lock segment
Unlock 0x14 Unlock segment
PhysToVirt 0x15 Map physical to virtual address

432

DevHlp Function (cont'd) Code Description

VirtToPhys 0x16 Map virtual to physical address
PhysToUVirt 0x17 Map physical address to user virtual

address
AllocPhys 0x18 Allocate physical memory
FreePhys 0x19 Free physical memory
SetIRQ 0x1b Attach a hardware interrupt handler
UnSetIRQ 0x1c Detach a hardware interrupt handler
SetTimer 0x1d Register a timer handler
ResetTimer 0x1e Deregister a timer handler
MonitorCreate 0x1f Create a device monitor
Register 0x20 Install a device monitor
DeRegister 0x21 Remove a device monitor
MonWrite 0x22 Pass data records to a device monitor
MonFlush 0x23 Remove all data from device monitor

stream
GetDOSVar 0x24 Return a pointer to DOS variable
SendEvent 0x25 Indicate an event
VerifyAccess 0x27 Verify Memory Access
RAS 0x28 Add trace record to system trace

buffer
ABIOSGetParms 0x29 Get ABIOS parameters for LID
AttachDD 0x2a Establish communications with another

Physical Device Driver
InternalError 0x2b Signal an internal error
AllocGDTSelector 0x2d Allocate GDT Descriptors
PhysToGDTSelector 0x2e Map physical address to GDT virtual
EOI 0x31 Issue an end-of-interrupt to the PIC
UnPhysToVirt 0x32 Mark physical to virtual complete
TickCount 0x33 Modify/Create timer setting
GetLIDEntry 0x34 Get a Logical ID (PS/2 only)
FreeLIDEntry 0x35 Release a Logical ID (PS/2 only)
ABIOSCall 0x36 Invoke an ABIOS function (PS/2

only)

433

DevHlp Function (cont'd) Code Description

ABIOSCommonEntry 0x37 Invoke an ABIOS Common Entry
Point (PS/2 only)

GetDeviceBlock 0x38 Get ABIOS Device Block (PS/2 only)
RegisterStackUsage 0x3a Indicate Stack Usage
LogEntry 0x3b Place data in log buffer
VideoPause 0x3c Suspend/resume video active threads
SaveMsg 0x3d Display a message (base drivers)
SegRealloc 0x3e Realloc DD protect mode segment
PutWaitingQueue 0x3f Place I/O request on waiting queue
GetWaitingQueue 0x40 Get I/O request from waiting queue
RegisterDeviceClass 0x43 Register an ADD device class
RegisterPDD 0x50 Register a 16:16 drv for PDD-VDD

comm.
RegisterBeep 0x51 Register a PDDs Beep Entry Point
Beep 0x52 Create a Beep
FreeGDTSelector 0x53 Free allocated GDT selector
PhysToGDTSel 0x54 Map physical address to GDT selector
VMLock 0x55 Lock linear address range in segment
VMUnlock 0x56 Unlock linear address range
VMAlloc 0x57 Allocate a block of physical memory
VMFree 0x58 Free memory or mapping
VMProcessToGlobal 0x59 Map process address space into global
VMGlobalToProcess 0x5a Map global address into process

address
VirtToLin 0x5b Convert sel:offset to linear address
LinToGDTSelector 0x5c Convert linear address to virtual

address
GetDescInfo 0x5d Get descriptor info
LinToPageList 0x5e Get physical pages mapped to the

linear address
PageListToLin 0x5f Map physical pages to linear address
PageListToGDTSelector 0x60 Map physical address to a selector

434

DevHlp Function (cont'd) Code Description

RegisterTmrDD 0x61 Get kernel address of the Tmr value
AllocateCtxHook 0x63 Allocate a context hook
FreeCtxHook 0x64 Free a context hook
ArmCtxHook 0x65 Arm a context hook
VMSetMem 0x66 Commit/decommit physical memory
OpenEventSem 0x67 Open a 32-bit shared event semaphore
CloseEventSem 0x68 Close a 32-bit shared event semaphore
PostEventSem 0x69 Post a 32-bit shared event semaphore
ResetEventSem 0x6a Reset a 32-bit shared event semaphore
DynamicAPI 0x6c Create a ring 0 callgate to a worker
RegisterKernelExit 0x6f*** Hook the kernel NMI handler
CreateSpinLock 0x6f*** Create a subsystem spinlock
FreeSpinLock 0x70 Free a subsystem spinlock
AcquireSpinLock 0x71 Acquire a subsystem spinlock
ReleaseSpinLock 0x72 Release a subsystem spinlock
PortIO 0x76 Perform port I/O
SetIRQMask 0x77 Set IRQ level mask
GetIRQMask 0x78 Get IRQ mask status

435

DevHlp Services and Device Contexts

OS/2 device drivers may run in one of three modes or contexts. These three
contexts are:

1. Kernel mode - the context in which the device driver Strategy section
runs. This is sometimes referred to as "Strategy time" or "task time".

2. Interrupt mode - the context in which the driver's interrupt handler runs
while servicing hardware interrupts.

3. INIT mode - the context in which the device driver runs when called by
the kernel to INIT the driver. This is a special mode at Ring 3 with I/O
privileges.

Not all DevHlp services are available in each mode. Table A-2 describes which
DevHlp functions are available in the various modes.

436

Table A-2. Device Helper Contexts

DevHlp Function Code Kernel Interrupt INIT

SchedClockAddr 0x00 X X
DevDone 0x01 X X
Yield 0x02 X
TCYield 0x03 X
Block 0x04 X
Run 0x05 X X
SemRequest 0x06 X
SemClear 0x07 X X
SemHandle 0x08 X X
PushReqPacket 0x09 X
PullReqPacket 0x0a X X
PullParticular 0x0b X X
SortReqPacket 0x0c X
AllocReqPacket 0x0d X
FreeReqPacket 0x0e X
QueueInit 0x0f X X X
QueueFlush 0x10 X X
QueueWrite 0x11 X X
QueueRead 0x12 X X
LockSeg 0x13 X X
UnlockSeg 0x14 X X
PhysToVirt 0x15 X X X
VirtToPhys 0x16 X X
PhysToUVirt 0x17 X X
AllocPhys 0x18 X X
FreePhys 0x19 X X
SetIRQ 0x1b X X
UnSetIRQ 0x1c X X X
SetTimer 0x1d X X
ResetTimer 0x1e X X X

437

Table A-2. Device Helper Contexts (continued)

DevHlp Function Code Kernel Interrupt INIT

MonCreate 0x1f X X
Register 0x20 X
DeRegister 0x21 X
MonWrite 0x22 X X
MonFlush 0x23 X
GetDOSVar 0x24 X X
SendEvent 0x25 X X
VerifyAccess 0x27 X
RAS 0x28 X X
ABIOSGetParms 0x29 X X X
AttachDD 0x2a X X
InternalError 0x2b X X X
AllocGDTSelector 0x2d X
PhysToGDTSelector 0x2e X X X
EOI 0x31 X X
UnPhysToVirt 0x32 X X X
TickCount 0x33 X X X
GetLIDEntry 0x34 X X
FreeLIDEntry 0x35 X X
ABIOSCall 0x36 X X X
ABIOSCommonEntry 0x37 X X X
GetDeviceBlock 0x38 X
RegisterStackUsage 0x3a X
LogEntry 0x3b X X
VideoPause 0x3c X X X
SaveMsg 0x3d X
RegisterDeviceClass 0x43 X*
RegisterPDD 0x50 X X
RegisterBeep 0x51 X X
Beep 0x52h X X X

438

Table A-2. Device Helper Contexts (continued)

DevHlp Function Code Kernel Interrupt INIT

FreeGDTSelector 0x53 X X
PhysToGDTSel 0x54 X X X
VMLock 0x55 X X
VMUnlock 0x56 X X
VMAlloc 0x57 X X
VMFree 0x58 X X
VMProcessToGlobal 0x59 X
VMGlobalToProcess 0x5a X
VirtToLin 0x5b X X X
LinToGDTSelector 0x5c X X X
GetDescInfo 0x5d X X** X
LinToPageList 0x5e X X X
PageListToLin 0x5f X X X
PageListToGDTSelector 0x60 X X X
RegisterTmrDD 0x61 X
AllocateCtxHook 0x63 X X
FreeCtxHook 0x64 X X
ArmCtxHook 0x65 X X X
VMSetMem 0x66 X X
OpenEventSem 0x67 X
CloseEventSem 0x68 X
PostEventSem 0x69 X
ResetEventSem 0x6a X
DynamicAPI 0x6c X X
CreatSpinLock 0x6f*** X X X
RegisterKernelExit 0x6f*** X X
FreeSpinLock 0x70 X X X
AcquireSpinLock 0x71 X X X
ReleaseSpinLock 0x72 X X X

439

Table A-2. Device Helper Contexts (continued)

DevHlp Function Code Kernel Interrupt INIT

PortIO 0x76 X X X
SetIRQMask 0x77 X X X
GetIRQMask 0x78 X X X

* ADD initialization is performed at ring 0
** This function can return information on a Global Descriptor only at

interrupt time.
***In OS/2 SMP, 0x6f is CreateSpinLock, with the standard kernel 0x6f is

RegisterKernelExit.

Device Helper Categories

The OS/2 DevHlp Functions can also be grouped by functionality into 13 major
categories.

Category 1 - System Clock Management

• SchedClockAddr

Category 2 - Process Management

• Block
• DevDone
• Run
• TCYield
• Yield

440

Category 3 - Semaphore Functions

• CloseEventSem
• OpenEventSem
• PostEventSem
• ResetEventSem
• SemClear
• SemHandle
• SemRequest

Category 4 - Request Queue Functions

• AllocReqPacket
• FreeReqPacket
• PullParticular
• PullReqPacket
• PushReqPacket
• SortReqPacket

441

Category 5 - Memory Management Functions

• AllocGDTSelector
• AllocPhys
• FreeGDTSelector
• FreePhys
• LinToGDTSelector
• LinToPageList
• Lock
• PageListToGDTSelector
• PageListToLin
• PhysToGDTSel
• PhysToGDTSelector
• PhysToUVirt
• PhysToVirt
• Unlock
• UnPhysToVirt
• VerifyAccess
• VirtToLin
• VirtToPhys
• VMAlloc
• VMFree
• VMGlobalToProcess
• VMLock
• VMProcessToGlobal
• VMSetMem
• VMUnlock

Category 6 - Device Monitor Functions

• DeRegister
• MonFlush
• MonitorCreate
• MonWrite
• Register

442

Category 7 - Character Queue Functions

• QueueFlush
• QueueInit
• QueueRead
• QueueWrite

Category 8 - Interrupt Management

• EOI
• SetIRQ
• UnSetIRQ

Category 9 - Timer Functions

• RegisterTmrDD
• ResetTimer
• SetTimer
• TickCount

Category 10 - System Functions

• Beep
• SaveMsg
• DynamicAPI
• GetDescInfo
• GetDOSVar
• LogEntry
• RAS
• RegisterBeep
• RegisterDeviceClass
• SendEvent
• VideoPause
• RegisterKernelExit

443

Category 11 - Advanced BIOS (ABIOS) Functions (PS/2 Only)

• ABIOSCall
• ABIOSCommonEntry
• ABIOSGetParms
• FreeLIDEntry
• GetDeviceBlock
• GetLIDEntry

Category 12 - PDD - VDD Communications Services

• RegisterPDD

Category 13 - Context Hook Services

• AllocateCtxHook
• ArmCtxHook
• FreeCtxHook

Category 14 - Symmetric Multiprocessing Services

• CreateSpinLock
• FreeSpinLock
• AcquireSpinLock
• ReleaseSpinLock
• PortIO
• SetIRQMask
• GetIRQMask

444

DevHlp Routines

The DevHlp functions are register based calls to the OS/2 kernel to perform
functions necessary for OS/2 device driver operation. All parameters are passed
and returned in registers. To provide an environment in which to write OS/2
Warp device drivers in C, you will have to provide a C-language interface to the
DevHlp routines. You can write your own, or you can order them using the
order form at the back of the book. All C callable routines use the PASCAL
calling convention.

445

__
ABIOSCall Mode: Kernel, Interrupt, Init
Invoke an ABIOS function

This routine is used to invoke an ABIOS service for the Operating System
Transfer Convention.

C Calling Convention

if (ABIOSCall(USHORT Lid,USHORT Subfunction,(FARPOINTER) &ABIOSReqBlock)) error

Lid = The LID obtained by a previous GetLIDEntry call
Subfunction = ABIOS define subfunction
&ABIOSReqBlk = far pointer to DS-relative ABIOS request block

COMMENTS

The indicated ABIOS function is called according to the Operating System
Transfer Convention. ABIOSCall will clean up the stack before returning to the
device driver.

446

EXAMPLE

// Get the size of the LID request block

ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
ABIOS_l_blk.f_parms.LID = lid;
ABIOS_l_blk.f_parms.unit = 0;;
ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_l_blk.f_parms.ret_code = 0x5a5a;
ABIOS_l_blk.f_parms.time_out = 0;

if (ABIOSCall(lid,(FARPOINTER)&ABIOS_l_blk,0))
return 1;

lid_blk_size = ABIOS_l_blk.s_parms.blk_size; /* Get the block size */

/* Fill POS regs and card ID with FF in case this does not work */

*card_ID = 0xFFFF;
for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] = 0x00; };

/* Get the POS registers and card ID for the commanded slot */

ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
ABIOS_r_blk.f_parms.LID = lid;
ABIOS_r_blk.f_parms.unit = 0;;
ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
ABIOS_r_blk.f_parms.ret_code = 0x5a5a;
ABIOS_r_blk.f_parms.time_out = 0;

ABIOS_r_blk.s_parms.slot_num = (unsigned char)slot_num & 0x0F;
ABIOS_r_blk.s_parms.pos_buf = (FARPOINTER)pos_regs;
ABIOS_r_blk.s_parms.card_ID = 0xFFFF;

if (ABIOSCall(lid,(FARPOINTER)&ABIOS_r_blk,0))
rc = FAILURE;

else
{ /* Else */

card_ID = ABIOS_r_blk.s_parms.card_ID; / Set the card ID value */
rc = SUCCESS;

}
FreeLIDEntry(lid);
return(rc);

447

__
ABIOSCommonEntry Mode: Kernel, Interrupt, Init
Invoke ABIOS Common Entry Point

This service is used to invoke an ABIOS Common Entry Point according to the
Advanced BIOS Transfer Convention.

C Calling Convention

if (ABIOSComm(USHORT Subfunction,(FARPOINTER) &ABIOSReqBlk)) error

Subfunction = ABIOS defined subfunction
&ABIOSReqBlk = far pointer to DS-relative ABIOS request block

COMMENTS

ABIOSCommonEntry invokes the indicated ABIOS common entry point.

EXAMPLE

if (ABIOSCommonEntry(0,(FARPOINTER)&ABIOS_r_blk)) error;

448

__
ABIOSGetParms Mode: Kernel, Interrupt, Init
Get ABIOS Parameters

C Calling Convention

if (ABIOSGetParms(USHORT Lid,(FARPOINTER) &ABIOSParmBlock)) error

Lid = The LID obtained by a previous GetLIDEntry call
&ABIOSParmBlk = far pointer to DS-relative ABIOS parameter block

COMMENTS

Refer to the IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference, part number S68X-2341-00, for more detailed
information on the use of ABIOS and its associated data structures.

449

__
AcquireSpinLock Mode: Kernel, Interrupt, Init
Acquire A Subsystem Spinlock

AcquireSpinLock acquires s a subsystem spinlock previously created by a call
to DevHlp CreateSpinLock.

C Calling Convention

if (AcquireSpinLock(HSPINLOCK hSpinLock)) error

hSpinLock = handle spinlock returned from call to CreateSpinLock

COMMENTS

The handle to a subsysten spinlock is obtained by calling DevHlp
CreateSpinLock. Once created, a spinlock can only be destroyed by calling
DevHlp FreeSpinLock. The device driver may acquire and release the spinlock
(without destroying it) by calling DevHlp AcquireSpinLock and DevHlp
ReleaseSpinLock.

The spinlock is represented by a very small data structure (about 22 bytes), so
spinlocks should be used freely without concern for system overhead or storage
incurred by the spinlock.

450

__
AllocateCtxHook Mode: Kernel, Init
Allocate a context hook

AllocateCtxHook allocates a context hook for use by a device driver that needs
task time processing, but has no task time thread available to complete it.

C Calling Convention

if (AllocateCtxHook((OFF)&HookHandler,ULONG Val,(PLHANDLE) &NewHandle)) error

&HookHandler = 16 bit offset to context hook handler
Val = 0xffffffff (reserved value)
NewHandle = far pointer to returned handle

COMMENTS

When the context hook is armed and triggers, the Hook Handler function is
called with register EAX equal to the value passed in the HookData parameter
of the ArmCtxHook call, and EBX equal to -1L.

The hook handler is responsible for saving and restoring registers on entry and
exit. The hook handler address should be zero extended.

451

__
AllocGDTSelector Mode: Init
Allocate GDT Selector(s)

This function allocates one or more GDT selectors for a device driver to use.
This allocation is performed at device driver INIT time.

C Calling Convention

if (AllocGDTSelector(USHORT Count,(FARPOINTER) &SelArray)) error

Count = number of selectors to allocate
&SelArray = far pointer to selector array

COMMENTS

AllocGDTSelector is used to allocate one or more GDT selectors for a device
driver to use for kernel and interrupt mode operations.

Allocating a GDT selector and then mapping an address to it using the
PhysToGDTSelector DevHlp allows a driver to access the memory defined by
the GDT selector in any context.

452

EXAMPLE

if (!(SetIRQ(5,(PFUNCTION)INTERRUPT_HANDLER,0)))
{
 if (!(AllocGDTSelector(1,(FARPOINTER)&Sel)))
 {
 if (!(PhysToGDTSelector(0xd8000,0x1000,Sel,&err)))
 {

 /* output initialization message */

 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1, strlen(InitMessage), InitMessage);

 /* send back our cs and ds end values to os/2 */

 if (SegLimit(HIUSHORT((void far *) Init), &rp->s.InitExit.finalCS)
 || SegLimit(HIUSHORT((void far *) InitMessage),
 &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
 }
 }
}

453

__
AllocPhys Mode: Kernel, Init
Allocate a Fixed Block of Physical Memory

AllocPhys is used by device drivers to allocate a block of fixed memory.

C Calling Convention

if (AllocPhys(ULONG Size,USHORT Flag,far (PPHYSADDR) &pPhysAddr)) error

Size = number of bytes to allocate
Flag = 0 - Allocate memory above 1MB
 = 1 - Allocate memory below 1MB
&Physaddr = pointer to returned physical address

COMMENTS

The memory allocated by this function is fixed memory, and may not be
"unfixed" through the Unlock call.

If memory is requested to be allocated high (above 1 megabyte), and no
memory above 1 megabyte is available, then an error is returned. The device
driver could then attempt to allocate low memory.

Conversely, if memory is requested to be allocated low (below 1 megabyte),
and no memory below 1 megabyte is available, then an error is returned and the
device driver could try allocating high memory, if appropriate.

EXAMPLE

// allocate a 64KB segment above 1MB

if (AllocPhys(0x10000,1,(PPHYSADDR) &AllocAddress)) error

454

__
AllocReqPacket Mode: Kernel
Get a Request Packet

This service returns a bimodal pointer to an empty Request Packet.

C Calling Convention

if(AllocReqPacket(USHORT Flag,(PREQPACKET) &Ptr)) error

Flag = 0 - wait
 = 1 - do not wait
&Ptr = far pointer to Request Packet returned

COMMENTS

AllocReqPacket returns a pointer to a maximum-size Request Packet. Some
OS/2 device drivers need to have additional Request Packets to service
requests. Once the Request Packet address is obtained, it can be pushed on the
Request Packet work queue with the PushReqPacket DevHlp.

Request Packets allocated by the AllocReqPacket DevHlp should be returned
to the kernel as soon as possible by calling the FreeReqPacket DevHlp, as the
number of free Request Packets is limited system wide.

455

__
ArmCtxHook Mode: Kernel, Interrupt, Init
Arm a Context Hook

ArmCtxHook arms a context hook allocated by the AllocateCtxHook DevHlp
function. This function can be called at interrupt time. The next available task
time thread will be used to call the function address specified at hook allocation
time.

C Calling Convention

if (ArmCtxHook(ULONG HookData,LHANDLE HookHandle,ULONG Val)) error

HookData = data to be passed to hook handler
HookHandle = handle returned from AllocCtxHook
Val = 0xffffffff (reserved value)

COMMENTS

After the context hook is armed, it operates once and automatically disarms
itself. It is an error to attempt to arm a context hook that is already armed.
Once the context hook starts execution, the hook can be rearmed.

456

__
AttachDD Mode: Kernel, Init
Get IDC Entry Point of a Driver

This function returns the address of the Inter-Device Driver Communication
(IDC) Entry Point to a specified device.

C Calling Convention

if (AttachDD("DEVICE ",(PATTACHAREA) &AttachArea)) error

&AttachArea = near pointer to returned structure, type AttachArea

AttachArea struct {
 USHORT RealOffset; // real mode offset of IDC entry point
 USHORT RealSegment; // real mode segment of IDC entry point
 USHORT RealDS; // real mode DS of IDC device driver
 USHORT ProtOffset; // protect mode offset of IDC entry point
 USHORT ProtCS; // protect mode CS selector of IDC entry
 USHORT ProtDS; // protect mode DS of IDC driver
 }

COMMENTS

The name field contains the ASCII name of the target device driver which must
be eight characters in length. If the target device driver is a character device
driver, the device driver name must match the name in the target device driver's
Device Header.

Before the device driver calls the entry point, it must verify that the entry point
received is nonzero. The IDC entry point of the target device driver must
follow the FAR CALL/RET model.

457

__
Beep Mode: Kernel, Interrupt, Init
Generate a beep

The Beep DevHlp service generates a beep.

C Calling Convention

if (Beep(USHORT Freq,USHORT Duration)) error

Freq = frequency of beep in hertz
Duration = duration of beep in milliseconds

COMMENTS

This function is similar to the DosBeep API. It generates a tone at Freq for
Duration milliseconds.

EXAMPLE

Beep (1000,100);

458

__
Block Mode: Kernel
Block This Thread From Running

The Block DevHlp blocks the current requesting thread and removes it from the
run queue until it is released by a call to the Run DevHlp.

C Calling Convention

if (Block(ULONG BlockID,ULONG Timeout,USHORT Flag,(FARPOINTER) &Error)) error

BlockID = ID used for Block and subsequent Run
Timeout = timeout in milliseconds or -1L Block forever
Flag = 0 - Block is interruptible
 = 1 - Block is noninterruptible
&Error = far Pointer to error returned
 = 1 - Block timed out
 = 2 - Block interrupted by control-C

COMMENTS

The return from the Block call indicates whether the wake-up occurred as the
result of a Run DevHlp call or an expiration of the time limit. Block removes
the current thread from the run queue, allowing any other waiting threads to
run. The thread blocked in the device driver is reactivated and Block returns
when Run is called with the same event identifier, when the time limit expires,
or when the thread is signalled. The event identifier is an arbitrary 32-bit value,
but an acceptable convention is to use the address of the Request Packet that
made the request.

Since the device driver may be Blocked in one mode and Run in the other,
using the address of the Request Packet is the best choice, as this bimodal
address is valid in either mode. It is up to the device driver writer to insure that
the Block was woken up by the correct mechanism, and not accidentally. To
avoid a deadlock condition by getting a Run before the Block call is completed,
the device driver should disable interrupts before issuing the Block. The Block
DevHlp re-enables the interrupts.

459

A timeout value of -1 means that Block waits indefinitely until Run is called.
Only the Strategy sections of the device driver can call Block, but Run can be
called by the Strategy section, interrupt handler, or timer handler. When using
Block to block a thread, the device driver can specify whether or not the Block
may be interrupted. If the Block is interruptible, then the kernel can abort the
blocked thread and return from the Block without using a corresponding Run.
In general, the Block should be marked as interruptible so that a signal such as a
control C will UnBlock the thread.

The Block call will return when the thread has been run, when the timeout has
expired, or if the thread was UnBlock by a signal, such as a control C. If the
Block returns with a 1, the Block has timed out. If the Block returns a 2, the
Block was interrupted. If the Block returns a 0, or valid return, then the Block
was released by a call to the Run DevHlp, and the device driver should take the
appropriate action.

EXAMPLE

if (Block(WriteID,blockcount, 0, &err))
if (err == 2) // interrupted

return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

if (err == 1)
return (RPDONE|RPERR|ERROR_NOT_READY);

460

__
CloseEventSem Mode: Kernel
Close a 32-bit Shared Event Semaphore

CloseEventSem closes an event semaphore that was previously opened with
OpenEventSem. If this is the last reference to this event, then the event
semaphore is destroyed.

C Calling Convention

if (CloseEventSem(ULONG SemHandle)) error

SemHandle = handle of semaphore

COMMENTS

CloseEventSem can be called only from a Ring 0 device driver or file system
device driver. The handle passed in must be a handle to a shared event
semaphore. If the handle does not exist, or is not a "shared event" semaphore,
or if the semaphore was not previously opened with OpenEventSem, then
ERROR INVALID HANDLE will be returned.

The system semaphores reside in a memory buffer rather than on a disk file.
This means that when the last process that has a semaphore open exits or closes
that semaphore, the semaphore disappears.

The open/close operations may be nested. A maximum of 65,534 (64KB - 1)
opens per process is allowed for each semaphore at any one time. If this limit is
reached, the next call to OpenEventSem will return
ERROR_TOO_MANY_OPENS.

In order for a process to intentionally destroy a semaphore prior to termination,
the number of CloseEventSem calls must equal the number of OpenEventSem
calls.

461

__
CreateSpinLock Mode: Kernel, Interrupt, Init
Create A Subsystem Spinlock

CreateSpinLock creates a subsystem spinlock for use with the SMP version of
OS/2.

C Calling Convention

if (CreateSpinLock(PHSPINLOCK phSpinLock)) error

phSpinLock = far pointer to handle of spinlock returned

COMMENTS

The handle to a subsysten spinlock is obtained by calling DevHlp
CreateSpinLock. Once created, a spinlock can only be destroyed by calling
DevHlp FreeSpinLock. The device driver may acquire and release the spinlock
(without destroying it) by calling DevHlp AcquireSpinLock and DevHlp
ReleaseSpinLock.

The spinlock is represented by a very small data structure (about 22 bytes), so
spinlocks should be used freely without concern for system overhead or storage
incurred by the spinlock.

462

__
DeRegister Mode: Kernel
Remove Monitors from a Monitor Chain

DeRegister removes all of the monitors associated with the specified process
from the specified monitor chain.

C Calling Convention

if (DeRegister(USHORT Handle,USHORT Pid,(PERRCODE) &Error)) error

Handle = the handle of the monitor chain
Pid = PID of the process that created the monitor chain
&Error = far pointer to error returned

COMMENTS

This function may only be called at Strategy time in protect mode.

To remove a monitor from a monitor chain, the device driver supplies the PID
of the process that created the monitor and the handle of the monitor chain. All
monitors belonging to the PID are removed from the monitor chain. Since a
process may register more than one monitor, all the monitors associated with
the PID are removed with one call to DeRegister.

463

__
DevDone Mode: Kernel, Interrupt
Set Done Bit and Run Thread

This function sets the done bit in the Request Packet and runs any blocked
threads waiting for the request to be completed.

C Calling Convention

if (DevDone((PREQPACKET) &RequestPacket)) error

&RequestPacket = far pointer to Request Packet

COMMENTS

The DevDone DevHlp sets the DONE bit in the status field of the Request
Packet header and issue RUNs on threads that are blocked in the kernel waiting
for the particular Request Packet to be completed. DevDone will not work with
Request Packets that were allocated from the AllocReqPacket DevHlp call. The
device driver does not call DevDone to complete requests in the Strategy
routine, rather the device driver returns to the kernel with the done status.

464

__
DynamicAPI Mode: Kernel, Init
Create a Ring 0 Call Gate

This function creates a Ring 0 call gate to a routine in a device driver.

C Calling Convention

if (DynamicAPI((FARPOINTER) &Worker,USHORT ParamCount,USHORT Flag,
 (FPUSHORT) &Sel)) err

&Worker = 16:16 or 0:32 bit address of driver function
ParamCount = count of the number of parameters
 if 16:16 call gate, the number of words
 if 0:32 call gate, the number of dwords
Flag = bit 0 = 1 - 16 bit call gate
 bit 0 = 0 - 32 bit call gate
 bit 1 = 1 - 16:16 function address
 bit 1 = 0 - linear function address
Sel = far pointer to Selector returned

COMMENTS

The maximum number of parameters cannot exceed 16. ParamCount cannot be
larger than 16 for 16:16 call gates or 8 for 0:32 call gates.

EXAMPLE

// get ring 0 call gate

if(DynamicAPI((FARPOINTER)test_it,0,3,(FARPOINTER)&Newsel))
return(RPDONE | RPERR | ERROR_GEN_FAILURE);

// send back call gate to application

if (MoveBytes((FARPOINTER) &Newsel,
rp->s.IOCtl.buffer,
2))

return(RPDONE | RPERR | ERROR_GEN_FAILURE);

465

__
EOI Mode: Interrupt, Init
Issue an EOI to the Interrupt Controller

This routine is used to issue an End-Of-Interrupt to the cascaded 8259 priority
interrupt controllers. If the interrupt is located on the second 8259, and EOI is
also issued to the lower 8259.

C Calling Convention

EOI(USHORT IRQnum)

IRQnum = IRQ number to issue EOI against

COMMENTS

This routine is used to issue an End-Of-Interrupt to the 8259 interrupt
controllers on behalf of a device driver interrupt handler. If the specified
interrupt level is for the slave 8259 interrupt controller, then this routine will
issue the EOI to both the master and slave 8259s.

On ISA bus systems, the interrupt handler is entered with the interrupts off. To
prevent the nesting of interrupts, interrupts should not be re-enabled until the
EOI has been issued. On PS/2 and EISA systems, the interrupt handler is
entered with interrupts enabled. In this case, to prevent nested interrupts, the
interrupt routine should disable interrupts, issue the EOI, and return to OS/2,
where interrupts will be re-enabled.

EXAMPLE

EOI(10);

466

__
FreeCtxHook Mode: Kernel, Init
Free a Context Hook

FreeCtxHook frees a context hook allocated by the AllocateCtxHook DevHlp
service.

C Calling Convention

if (FreeCtxHook((LHANDLE) HookHandle)) error

HookHandle = handle from AllocateCtxHook

467

__
FreeGDTSelector Mode: Kernel, Init
Free Selector Allocated with AllocGDTSelector

FreeGDTSelector frees a selector allocated with the AllocGDTSelector DevHlp
service.

C Calling Convention

if (FreeGDTSelector(USHORT Sel)) error

Sel = selector allocated by AllocGDTSelector call

COMMENTS

The selector passed to this function must have been allocated using
AllocGDTSelector. This is verified and an error is returned if the selector was
not properly allocated.

468

__
FreeLIDEntry Mode: Kernel, Init
Release a Logical ID

This routine is used to release a Logical ID. This can be done at either
DEINSTALL or when the device driver is closed.

C Calling Convention

if (FreeLIDEntry(USHORT Lid)) error

Lid = LID obtained from a previous GetLIDEntry DevHlp call

COMMENTS

The attempt to free a Logical ID not owned by the device driver, or that does
not exist, will fail.

EXAMPLE

if (!(GetLIDEntry(0x10, 0, 1, &lid)))/* get LID for POS */
FreeLIDEntry(lid);

469

__
FreePhys Mode: Kernel, Init
Free Physical Memory

FreePhys is used to release memory previously allocated by the AllocPhys
DevHlp call.

C Calling Convention

if (FreePhys((PHYSADDR) &PhysAddress)) error

&PhysAddress = 32 bit physical address of allocated memory

COMMENTS

Any memory that the device driver allocated by way of the AllocPhys should be
released prior to device driver termination.

470

__
FreeReqPacket Mode: Kernel
Free an Allocated Request Packet

This function is used to release a Request Packet previously allocated by a
AllocReqPacket DevHlp call.

C Calling Convention

void FreeReqPacket ((PREQPACKET) &RequestPacket)

&RequestPacket = far pointer to Request Packet

COMMENTS

FreeReqPacket should only be performed on a Request Packet that was
previously allocated by an AllocReqPacket DevHlp call. The DevDone function
should not be used to return an allocated Request Packet. Since the system has
a limited number of Request Packets, it is important that a device driver free up
allocated Request Packets as soon as possible.

471

__
FreeSpinLock Mode: Kernel, Interrupt, Init
Free A Subsystem Spinlock

FreeSpinLock destroys a subsystem spinlock previously created by a call to
DevHlp CreateSpinLock.

C Calling Convention

if (FreeSpinLock(HSPINLOCK hSpinLock)) error

hSpinLock = handle of spinlock to destroy

COMMENTS

The handle to a subsysten spinlock is obtained by calling DevHlp
CreateSpinLock. Once created, a spinlock can only be destroyed by calling
DevHlp FreeSpinLock. The device driver may acquire and release the spinlock
(without destroying it) by calling DevHlp AcquireSpinLock and DevHlp
ReleaseSpinLock.

The spinlock is represented by a very small data structure (about 22 bytes), so
spinlocks should be used freely without concern for system overhead or storage
incurred by the spinlock.

472

__
GetDesclnfo Mode: Kernel, Interrupt, Init
Return Information on the Contents of Descriptor

GetDesclnfo is used to obtain information about a descriptor's contents.

C Calling Convention

if (GetDsecInfo(USHORT Selector,(FPUSHORT) &AX_Reg,(FPULONG) &ECX_Reg,
 (FPULONG) &EDX_Reg)) error

Selector = any selector
AX_Reg = AX register (see below)
ECX_Reg = ecx register (see below)
EDX_Reg = edx register (see below)

Register Contents Returned

If descriptor was a call gate:
 AL (LOUSHORT AX_Reg) = descriptors access byte
 AH (HIUSHORT AX_Reg) = number of parameters
 CX (LOUSHORT ECX_Reg) = selector
 EDX = 32-bit offset (0:32 addressing)

If descriptor was not a call gate:
 AL (LOUSHORT AX_Reg) = descriptors access byte
 AH (HIUSHORT AX_Reg = BIG and GRANULARITY fields of attribute
 byte
 ECX = the 32 bit linear address in descriptor
 EDX = the 32 bit byte-granular size of the
 decsriptor(0 if 4GB)

COMMENTS

When called for an LDT (Local Descriptor Table) descriptor, GetDesclnfo may
block other threads from executing. Therefore, at interrupt time, this routine is
callable only on GDT (Global Descriptor Table) descriptors. The routine can be
called with either type of descriptor at initialization or task time.

473

__
GetDeviceBlock Mode: Init
Get ABIOS Device Block

GetDeviceBlock returns an ABIOS Device block pointer. The function returns
a protect mode pointer only. Real mode pointers are not returned, rather the
data is initialized to zero.

Calling Sequence

if (GetDeviceBlock(USHORT Lid,far (FARPOINTER) &ABIOSDeviceBlock)) error

Lid = lid from GetLIDEntry
&ABIOSDeviceBlock = far pointer to device block data

COMMENTS

This function will always fail on non-PS/2 machines.

Refer to the IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference, part number S68X-2341-00, for more detailed
information on the use of ABIOS and its associated data structures.

474

__
GetDOSVar Mode: Kernel, Init
Get the Address of a System Variable

This routine is used to return the address of a system variable.

C Calling Convention

if (GetDOSVar(USHORT ID,(FPFARPOINTER) &Ptr)) error

ID = identifier number of the variable
&Ptr = far pointer to address of returned pointer

COMMENTS

Table A-4 contains a list of read-only variables that can be examined.

475

Table A-4. Read Only System Variables

ID Description of Variable

1 SysINFOseg:WORD - segment address of the
System Global InfoSeg. Valid at both task time
and interrupt time, but not Init time.

2 LocINFOseg:DWORD - Selector/Segment
address of the local (LDT) INFO segment. Valid
only at task time.

3 Reserved
4 VectorSDF:DWORD - Pointer to the stand-alone

dump facility. Valid at both task time and interrupt
time.

5 VectorReboot:DWORD - Pointer to restart OS/2.
Valid at both task time and interrupt time.

6 Reserved
7 YieldFlag:BYTE - Indicator for performing time-

critical yields. Valid only at task time.
8 TCYieldFlag:BYTE - Indicator for performing

time-critical yields. Valid only at task time.
9 Reserved
0x0a Reserved
0x0b DOS mode Code Page Tag Pointer: DWORD

Segment/offset of the current code page tag of
DOS mode. Valid only at Strategy time.

0x0d 16:16 pointer in the InterruptLevel when called in
the interrupt context

0x0e 16:16 pointer to table of registered ADD entry
points (DeviceClassTable)

0x0f DMQS selector
0x11 Number or processors online
0x12 0 = uniprocessor, 1 = multiprocessor
0x13 Get the PSD’s flags

476

EXAMPLE

/* get current processes id */

if (GetDOSVar(2,&ptr))
return (RPDONE | RPERR | ERROR_BAD_COMMAND);

/* get process info */

liptr = *((PLINFOSEG far *) ptr);

/* if this device never opened, can be opened by any process */

if (opencount == 0) /* first time this device opened */
savepid = liptr->pidCurrent; /* save current process id */

else
{

if (savepid != liptr->pidCurrent) /* another proc tried to open */
return (RPDONE | RPERR | RPBUSY); /* so return error */

++opencount[dev]; /* bump counter, same pid */
}
return (RPDONE);

477

__
GetIRQMask Mode: Kernel, Interrupt, Init
Set The 8259 Interrupt Mask

This DevHlp gets the mask/unmask status of the IRQ slot.

C Calling Convention

if (GetIRQMask(USHORT Irq, USHORT Flags, USHORT Procnum)) error

Irq = IRQ slot of mask
Flags = data, 0=not masked (interrupt enabled), 1=masked (interrupt disabled)
Procnum = processor number

COMMENTS

This DevHlp can selectively get a mask bit for a particular interrupt slot.

478

__
GetLIDEntry Mode: Kernel, Init
Get a Logical ID

This routine is used to obtain a Logical ID (LID) for devices that exist.

C Calling Convention

if (GetLIDEntry(USHORT DevType,USHORT Spec,USHORT Type,(FPUSHORT) &Lid)) error

DevID = device type
Spec = 0 - get first unclaimed LID, 1 - the first LID
Type = 1 - DMA or POS
 = 0 - all others
&Lid = far pointer to variable where the LID is returned

COMMENTS

GetLIDEntry is used by a device driver to obtain a LID entry. Because OS/2
does not support the Advanced BIOS Sleep/Wake functions, only devices that
are "awake" are considered to exist, and thus available to device drivers.

This function may be employed in two ways. One way is for the device driver to
specify a relative LID. Because the ordering of LlDs corresponds to the
ordering of physical devices, a device driver that desires to support a certain
relative device can determine if a LID entry is available. (An example is a
character device driver that supports COM4; that is, it wishes to get the LID
entry for the fourth COM port.)

The other way to use this function is for the device driver to request the first
available LID for its device type. (An example is a block device driver that
wishes to get the first available LID for diskettes.)

In either use of this function, GetLIDEntry will search the ABIOS Common
Data Area table for an entry corresponding to the specified device ID. If an
entry is located that matches the caller's form of request, it is returned to the
caller. If a LID entry is found but already owned, an error is returned. If no LID
entry is found, an error is also returned.

479

Some LlDs can not be allocated to device drivers, as they are used by the
operating system kernel to perform such actions as mode switching. Certain
LIDs can be allocated as shared. For these devices, GetLIDEntry will allow
multiple device drivers to access the LID concurrently. lt is up to the device
driver to determine if the device is busy or available for use when needed.

EXAMPLE

if (!(GetLIDEntry(0x10, 0, 1, &lid)))/* get LID for POS */
FreeLIDEntry(lid);

480

__
InternalError Mode: Kernel, Interrupt, Init
Signal an Internal Error

This function is called when an internal inconsistency has been detected.

C Calling Convention

InternalError((PSTRING) &Msg,USHORT MsgLen)

&Msg = DS relative offset of message
MsgLen = length of message

COMMENTS

This DevHlp routine should be used only when an major internal problem is
detected. Continuing from this point may cause serious problems or possible
data loss, so the routine never returns. InternalError should not be used for less
than fatal errors.

The maximum message length is 128 characters. Longer messages are truncated
to 128 characters. The device driver name should appear as the first item in the
message text.

481

__
LinToGDTSelector Mode: Kernel, Interrupt, Init
Convert a Linear Address to a Virtual Address

LinToGDTSelector converts a linear address to a virtual (Selector:Offset)
address by mapping the given GDT (Global Descriptor Table) selector to the
memory region referred to by the given linear address and range. The size of the
range mapped must be less than or equal to 64 kilobytes.

C Calling Convention

if (LinToGDTSelector(USHORT Selector,LINADDR Address,ULONG Size)) error

Selector = selector allocated by AllocGDTSelector
Address = 32 bit linear address
Size = size of memory in bytes

COMMENTS

The memory that is being mapped must be fixed or locked prior to this call.
After this call is issued for a particular selector, the addressability will remain
valid until the device driver changes its content with a subsequent call to the
PageListToGDTSelector, PhysToGDTSel, PhysToGDTSelector, or
LinToGDTSelector DevHlp services.

482

__
LinToPageList Mode: Kernel, Interrupt, Init
Returns the Physical Pages Mapped by a Linear Range

LinToPageList translates a linear address range to an array of PAGELIST
structures that describes the physical pages to be mapped.

C Calling Convention

if (LinToPageList(LINADDR LinAddress,ULONG Size,(FLATPOINTER) &PageList,
 FPULONG Elements)) error

LinAddress = 32 bit linear starting address
Size = size of the range to translate
&PageList = flat pointer to PageList structure
Elements = number of elements in PageList array

The linear address range is translated into an array of PAGELIST structures.
Each PAGELIST structure describes a single physically contiguous subregion
of the physical memory that is mapped by the linear range. The format of the
PAGELIST structure is:

typedef struct _PAGELIST
{
 ULONG pl_PhysAddr; // physical address of first byte
 // in this subregion
 ULONG pl_cb; // Number of contiguous bytes
 // starting at pl_PhysAddr
 }

COMMENTS

The sum of the pl_cb fields in the PageList array produced by this function will
be equal to Size.

The physical pages that are mapped by the linear range must be fixed or locked
prior to this call.

It is the device driver's responsibility to insure that enough entries have been
reserved for the range of memory being translated (possibly one entry per page
in the range, plus one more if the region does not begin on a page boundary).

483

484

__
LockSeg Mode: Kernel, Init
Lock a Caller's Memory Segment

LockSeg is called by device drivers at Strategy time to lock a caller's memory
segment.

C Calling Convention

if (LockSeg(USHORT Sel,USHORT Type,USHORT Wait,(PLHANDLE) &Lhandle)) error

Sel = selector of user's memory from req packet
Type = 00 short term, any memory
 = 01 long term, any memory
 = 03 long term, high memory
 = 04 short term, any memory, verify lock
Wait = 00 block until available
 = 01 return if not immediately available
&Lhandle = far pointer to returned handle

COMMENTS

LockSeg should be called to lock the caller's memory segment before
attempting to transfer data from the device driver to the calling application or
from the application to the device driver.

LockSeg Type 3:

For type 3, the segment is marked fixed, and the system may move it into the
region reserved for fixed segments. If the Lock returns no error, the segment is
guaranteed to be in high memory. Type 3 is available only during INIT, and is
generally used to reserve extra code or data segments for use by the device
driver. A type 3 Lock cannot be undone.

LockSeg Type 4:

The segment remains swappable. lt will not be freed or shrunk until the verify
lock is removed.

485

ADDITIONAL COMMENTS

1. Short term locks are less than 2 seconds. Long term locks are always
greater than 2 seconds. Unless the device driver operation will be completed
very quickly, do not use the short term LockSeg. Using up all swappable
memory could cause a system hang if the operating system runs out of
swappable memory.

2. Failure to call UnLockSeg to release the locked segment will result in all
of the GDT entries being used up and the system will halt.

3. If the device driver is entered with a standard device driver function, such
as DosRead or DosWrite, the caller's segment is already locked by the
kernel. However, if the device driver is entered as a result of an IOCtl call,
the device driver must lock the segment. Although some documentation
states that the caller's segment should be locked before verifying that it is
valid (with the VerifyAccess call), it is still safe to verify the segment first
and then lock it immediately after the VerifyAccess call.

4. OS/2 Warp device drivers should always call LockSeg with the wait
option (wait = 0).

EXAMPLE

/* lock the segment down temp */

if(LockSeg(
SELECTOROF(rp->s.IOCtl.buffer), /* selector */
0, /* lock for < 2 sec */
0, /* wait for seg lock */
(PLHANDLE) &lock_seg_han)) /* handle returned */

return (RPDONE | RPERR | ERROR_GEN_FAILURE);

486

__
MonFlush Mode: Kernel
Flush Data from Monitor Chain

MonFlush removes all data from the specified monitor chain (such as the data
stream).

C Calling Convention

if (MonFlush(SHANDLE Handle,(PERRCODE) &Error))error

Handle = short (16-bit) monitor handle
&Error = far pointer to error code

COMMENTS

When a device driver calls MonFlush, the OS/2 monitor dispatcher creates and
places a flush record into the monitor chain. The general format of monitor
records requires that every record contains a flag word as the first entry. One of
the flags is used to indicate that this record is a flush record. The flush record
consists only of the flag word. This record is used by monitors along the chain
to reset internal state information, and to assure that all internal buffers are
flushed. The flush record must be passed along to the next monitor, because the
monitor dispatcher will not process any more information until the flush record
is received at the end of the monitor chain. That is, until it is returned to the
device driver's monitor chain buffer at the end of the monitor chain

Subsequent MonWrite requests will fail (or block) until the flush completes,
that is, until the flush record is returned to the device driver's monitor chain
buffer.

487

__
MonCreate Mode: Kernel, Init
Create a Monitor Chain

MonCreate creates an initially empty chain of monitors or removes an empty
chain of monitors.

C Calling Convention

if (MonCreate((PSHANDLE) &Handle,(FARPOINTER) &Buf,(FPFUNCTION) &Routine,
 (PERRCODE) &Error)) error

&Handle = far pointer to handle
&Buf = far pointer to monitor buffer
&Routine = far pointer to monitor routine
&Error = far pointer to returned error

COMMENTS

This function may be called at task time only.

The monitor chain buffer (final buffer) is a buffer owned by the device driver.
On calling MonCreate, the first word of this buffer is the length of the buffer in
bytes (including the first word).

When the monitor chain handle specified is 0, a new monitor chain is created.
When the monitor chain handle specified is a handle that was previously
returned from a call to MonCreate (that is, Handle != 0) the monitor chain
referenced by that handle is destroyed.

A monitor chain is a list of monitors, with a device driver monitor chain buffer
address and code address as the last element on this list. Data is placed into a
monitor chain through the MonWrite function; the monitor dispatcher feeds the
data through all registered monitors, putting the resulting data, if any, into the
specified device driver monitor chain buffer. When data is placed in this buffer,
the device driver's notification routine is called at task time. The device driver
should initiate any necessary action in a timely fashion and return from the
notification entry point without delay.

488

If the MonWrite function is called at interrupt time, and if the monitor chain is
empty, the device driver notification routine will be called at interrupt time.
Under all other circumstances, it is called at task time.

The MonCreate function establishes one of these monitor chains. The chains are
created empty so that data written into them is placed immediately into the
device driver's buffer.

This routine can also destroy a monitor chain if the handle parameter (AX) is
nonzero. The nonzero value is the handle of the chain to remove. If the monitor
chain to be removed is not empty (that is, all monitors registered with this chain
have not been previously deregistered), an invalid parameter error is returned to
the device driver.

A MonCreate call must be made before a monitor can be registered with the
chain. This can be done at any time, including during the installation of the
device driver at system initialization.

The device driver's notification routine is called by the monitor dispatcher when
a data record has been placed in the device driver's monitor chain buffer. The
device driver must process the contents of the monitor chain buffer before
returning to the monitor dispatcher. This entry point will be called in the OS/2
mode only.

When the driver's notification routine is called, the first word of the buffer is
filled in with the length of the record just sent to the device driver. There is one
notification routine call for each record.

489

__
MonWrite Mode: Kernel, Interrupt
Give Data to Monitors

MonWrite passes data records to the monitors for filtering.

C Calling Convention

if (MonWrite(SHANDLE Handle, (POINTER) &Rec,USHORT Size,USHORT Flag,
 ULONG SyncTime,far &Error))error

Handle = monitor handle
&Rec = pointer to data record
Size = length of data record
Flag = wait flag, explained below
SyncTime = sync time, see below
&Error = address of returned error code

COMMENTS

This function may be called at task time or interrupt time. The wait flag is set to
0 if the MonWrite request occurs at task or user time and the device driver
indicates that the monitor dispatcher is to do the synchronization. That is, if the
wait flag is set to 0, the device driver waits until the data can be placed into the
monitor chain before the monitor dispatcher returns to the device driver. If the
wait flag is set to 1, the device driver does not wait; and if the data cannot be
placed into the monitor chain, the monitor dispatcher will return immediately
with the appropriate error. The wait flag must be set to 1 if the MonWrite
request occurs at interrupt time. Wait flag is set to 2 if the MonWrite request
occurs at task or user time, and the device driver indicates that the monitor
dispatcher is to do the synchronization for the time in milliseconds, specified in
Timeout.

The error, NOT_ENOUGH_MEMORY, will be returned to the device driver
when the MonWrite call is made and the monitors are not able to receive the
data. If this condition occurs at interrupt time, an overrun occurred. If it occurs
at task (or user) time, the process can block.

490

The error, NOT_ENOUGH_MEMORY, also will be returned to the device
driver when a flush record, sent to the monitors by a previous MonFlush call,
was not returned to the device driver.

If the thread on which the device driver calls MonWrite blocks (the device
driver specified the wait option) and is awakened because the process that owns
the thread is terminating, a call-interrupted error is returned to the device
driver. The device driver must return the error to the caller so that the process
can complete termination.

Each call to MonWrite will send a single complete record. The data sent by this
call is considered to be a complete record. A data record must not be longer
than two bytes less than the length of the device driver's monitor chain buffer.

491

__
OpenEventSem Mode: Kernel
Open a 32-bit Shared Event Semaphore

OpenEventSem opens a 32-bit shared event semaphore.

Calling Sequence

if (OpenEventSem(LHANDLE Handle)) error

Handle = long handle to semaphore

COMMENTS

OpenEventSem can be called only from a Ring 0 device driver or file system
device driver. The handle passed in must be a handle to a shared event
semaphore. If the handle does not exist, or is not a "shared event" semaphore,
then ERROR_INVALID_HANDLE will be returned.

The open/close operations can be nested. A maximum of 65,534 (64KB - 1)
opens per process are allowed for each semaphore at any one time. If this limit
is reached, the next call to OpenEventSem will return
ERROR_TOO_MANY_OPENS. In order for a process to intentionally destroy
a semaphore prior to termination, the number of CloseEventSem calls must
equal the number of OpenEventSem calls.

The event semaphores were intended to be used for signaling between threads.
When an event is reset, any thread that wants to wait on the event will be
blocked. When the event is posted, all threads waiting on the event will run. For
example, if thread 1 is allocating a piece of shared memory, then it will reset
the event. Now, any thread waiting to read data from this memory will be
blocked. Threads 2 and 3 want to read or use what is in the memory allocated
by thread 1. They will request to wait on the event, and so they will block. After
thread 1 is finished allocating and filling in the memory, it will post the event
and threads 2 and 3 will run.

492

__
PageListToGDTSelector Mode: Kernel, Interrupt, Init
Maps a Given Physical Addresses to Selector

PageListToGDTSelector maps physical addresses described in an array of
PAGELIST structures to a GDT (Global Descriptor Table) selector, setting the
access byte of the descriptor to the requested type. The virtual memory needed
to map the physical ranges described by the PageList array must not exceed 64
kilobytes.

C Calling Convention

if (PageListToGDTSelector(USHORT Selector,ULONG Size,(LINADDR) &PageList,
 USHORT Access,(FPUSHORT) &ModSelector)) error

Selector = selector to map
Size = number of bytes to map
&PageList = flat pointer to an array of PAGELIST structures
Access = descriptor's type and privilege level
&ModSelector = far pointer to selector returned with modified RPL bits

&PageList is the flat address of an array of PAGELIST structures. Each
PAGELIST structure describes a single physically contiguous subregion of the
physical memory to be mapped. The format of the PAGELIST structure is:

typedef struct _PAGELIST
{
 ULONG pl_PhysAddr; // physical address of first byte
 // in this subregion
 ULONG pl_cb; // Number of contiguous bytes
 // starting at pl_PhysAddr
 }

493

COMMENTS

The physical memory that is being mapped must be fixed or locked prior to this
call. After this call, offset 0 within the selector will correspond to the first byte
in the first entry in the array pointed to by PageList. If the PageList is an
unmodified return array from VMLock or LinToPageList, then the mapping
returned from this call will be, byte for byte, the same as the original linear
range. However, if the PageList array was constructed by some other means, or
is a concatenation of two or more PAGELIST arrays returned from various
other DevHlp services, the selector mapping may be noncontiguous. Because
linear addresses must be mapped to physical addresses on a page-granular basis,
if the PageList contains physical addresses and sizes that do not directly
correspond to page boundaries, then the selector mapping will necessarily
contain "holes", which map unrequested front or tail ends of pages that contain
requested addresses.

The first byte mapped by the selector will correspond to the first byte described
in the first entry in the PageList array. The next n bytes, where n is the size
parameter of the first PageList entry, will be mapped contiguously from that
point.

The offset within the selector of subsequent PageList entries can be computed
by the formula 0 + PS - (A mod PS) + (B mod PS), where 0 is the offset within
the selector of the byte following the end of the previous PageList entry, PS is
the page size (4 kilobytes), A is the physical address of the byte following the
end of the previous PageList entry, and B is the physical address of the start of
the next PageList entry.

After this call has been issued for a particular selector, the addressability will
remain valid until the device driver changes its content with a subsequent call to
the DevHlp PageListToGDTSelector, PhysToGDTSel, PhysToGDTSelector,
or LinToGDTSelector services.

494

__
PageListToLin Mode: Kernel, Interrupt, Init
Maps a Physical Pages to a Linear Address

PageListToLin maps physical memory pages, described in an array of PageList
s structures, to a linear address. The size of the linear mapping must not exceed
64 kilobytes.

C Calling Convention

if (PageListToLin(ULONG Size,(FLATPOINTER) &PageList,(PLINADDR) &LinAddr)) error

Size = count of bytes of memory to be mapped
&PageList = flat pointer to PageList structs
&LinAddr = far pointer to variable to receive linear address

Each PAGELIST structure describes a single physically contiguous subregion
of the physical memory to be mapped. The format of the PAGELIST structure
is:

typedef struct _PAGELIST
{
 ULONG pl_PhysAddr; // physical address of first byte
 // in this subregion
 ULONG pl_cb; // Number of contiguous bytes
 // starting at pl_PhysAddr
 }

495

COMMENTS

The physical memory that is being mapped must be fixed or locked prior to this
call. After this call, the first byte within the returned linear range will
correspond to the first byte in the first entry in the array pointed to by PageList.
If the PageList is an unmodified return array from VMLock or LinToPageList,
then the mapping returned from this call will be, byte for byte, the same as the
original linear range. However, if the PageList array was constructed by some
other means, or is a concatenation of two or more PageList arrays returned
from various other DevHlp services, the linear mapping may be noncontiguous.
Because linear addresses can only be mapped to physical addresses on a page-
granular basis, if the PageList contains physical addresses and sizes that do not
directly correspond to page boundaries, then the linear mapping will necessarily
contain "holes", which map unrequested front or tail ends of pages that contain
requested addresses.

The first byte in the linear mapping will correspond to the first byte described in
the first entry in the PageList array. The next n bytes, where n is the size
parameter of the first PageList entry, will be mapped contiguously from that
point.

The starting linear address of subsequent PageList entries may be computed by
rounding up the linear address of the end of the previous entry to a page
boundary, and then adding on the low order 12 bits of the physical address of
the target PageList entry.

The linear mapping produced by this call is only valid until the caller yields the
CPU, or until it issues another PageListToLin call or a PhysToVirt call. A
PageListToLin will also invalidate any outstanding PhysToVirt mappings.

496

__
PhysToGDTSel Mode: Kernel, Interrupt, Init
Maps a Physical Address to a GDT Selector

PhysToGDTSel maps a given GDT selector to a specified physical address,
setting the access byte of the descriptor to the desired privilege value. The
specified segment size must be less than or equal to 64 kilobytes.

C Calling Convention

if (PhysToGDTSel(PHYADDR PhysAddr,ULONG Size,SEL Selector,USHORT Access,
 (FPUSHORT) &NewSel)) error

PhysAddr = physical address to be mapped to selector
Size = size of segment, must be less than or equal to 64KB
Selector = GDT selector, from AllocGDTSelector
Access = descriptor's type and access level
&NewSel = address of returned modified selector

COMMENTS

The physical memory that is being mapped must be fixed or locked prior to this
call. After this call has been issued for a particular selector, the addressability
remains valid until the device driver changes its content with a subsequent call
to the PhysToGDTSel, PhysToGDTSelector, PageListToGDTSelector, or
LinToGDTSelector DevHlp functions.

497

__
PhysToGDTSelector Mode: Kernel, Interrupt, Init
Map a Physical Address to a GDT Selector

This function converts a 32-bit address to a GDT selector-offset pair.

C Calling Convention

if (PhysGDTSelector(PHYSADDR Physaddr,USHORT Len,SEL Sel,(PERRCODE) &Error)) error

Physaddr = physical address to map selector to
Len = length of segment
Sel = selector from AllocGDTSelector
&Error = far pointer to returned error code

COMMENTS

PhysToGDTSelector is used to provide addressability through a GDT selector
to data. The interrupt handler of a bimodal device driver must be able to
address data buffers regardless of the context of the current process (the current
LDT will not necessarily address the data space that contains the data buffer
that the interrupt handler needs to access). The GDT selector's addressability
will remain valid and the same until another PhysToGDTSelector call is made
for the same selector.

The AllocGDTSelector function is used at INIT time to allocate the GDT
selectors that the device driver may use with the PhysToGDTSelector.

PhysToGDTSelector creates selector:offset addressability for a 32-bit physical
address. The selector created, however, does not represent a normal memory
segment such as those usually managed by OS/2, and is more of a "fabricated
segment" for private use by the device driver. Such a segment cannot be passed
on system calls, and may only be used by the device driver to fetch data.

498

EXAMPLE

if (!(SetIRQ(5,(PFUNCTION)INTERRUPT_HANDLER,0)))
{
 if (!(AllocGDTSelector(1,(FARPOINTER)&Sel)))
 {
 if (!(PhysToGDTSelector(0xd8000,0x1000,Sel,&err)))
 {

 /* output initialization message */

 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1, strlen(InitMessage), InitMessage);

 /* send back our cs and ds end values to os/2 */

 if (SegLimit(HIUSHORT((void far *) Init), &rp->s.InitExit.finalCS)
 || SegLimit(HIUSHORT((void far *) InitMessage),
 &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
 }
 }
}

499

__
PhysToUVirt Mode: Kernel, Init
Map a Physical Address to a User Virtual Address

PhysToUVirt converts a 32-bit physical address to a valid selector-offset pair
addressable out of the current LDT. Additional information about the selector
may be retained by the memory manager if special processing, based on the tag
type, is required.

C Calling Convention

if (PhysToUVirt(PHYSADDR Physaddr,USHORT Len,USHORT Type,
 (FPFARPOINTER) &Virt)) error

Physaddr = physical address to map to LDT selector
Len = length of fabricated segment
Type = create, release (see comments)
&Virt = far pointer to returned virtual address

COMMENTS

This function is typically used to provide a caller of a device driver with
addressability to a fixed memory area, such as a memory-mapped adapter
address. The device driver must know the physical address of the memory area
to be addressed.

PhysToUVirt creates selector:offset LDT addressability for a 32-bit physical
address. This function is provided so that a device driver can give an application
process addressability to a fixed memory area, such as in the BlOS-reserved
range from 640KB to 1 MB. lt can also be used to give a client application
addressability to a device driver's data segment.

The selector created, however, does not represent a normal memory segment
such as those usually managed by OS/2, and is more of a fabricated segment for
private use between a device driver and an application. Data within such a
segment cannot be passed on system calls, and may only be used by the
receiving application to fetch data variables.

500

In previous releases of OS/2, all LDT selectors returned by the PhysToUVirt
Device Helper routine were marked as Application Program Privilege (privilege
level 3) selectors. In OS/2 Version 3.0, the device driver can specify whether
the selector should be marked with Application Program Privilege or I/O Privi-
lege (privilege level 2). This allows an LDT selector used by a dynamic link
library routine, which is running with I/O privilege, to be protected from
accidental modification by the application program.

EXAMPLE

/* map board address to pte */

if (PhysToUVirt(DRIVER_BASE,BASE_LENGTH,1,&mem))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

501

__
PhysToVirt Mode: Kernel, Interrupt, Init
Map a Physical Address to a Virtual Address

PhysToVirt converts a 32-bit address to a valid selector-offset pair.

C Calling Convention

if (PhysToVirt(PHYSADDR Physaddr,USHORT Len,USHORT Type,
 (FPFARPOINTER) &Virt)) error

Physaddr = physical address to map GDT selector to
Len = length of fabricated segment
Type = must be 0 for returned selector in DS:SI
&Virt = far pointer to returned virtual address

COMMENTS

The returned virtual address will not remain valid if the device driver blocks or
yields control. The returned virtual address may also destroyed if the device
driver routine that issues the PhysToVirt calls another routine.

The device driver must not enable interrupts or change the segment register
before the device driver has finished accessing the data area. Any change to the
contents of the segment register in question will invalidate the mapping. Once
the device driver has finished accessing the data area, it must restore the
previous interrupt state.

While pointers generated by this routine are in use, the device driver may only
call another PhysToVirt request. No other DevHlp routines can be called,
because they may not preserve the special DS/ES values created by the
PhysToVirt.

502

The pool of temporary selectors used by PhysToVirt in the OS/2 mode is not
dynamically extendable. The converted addresses are valid as long as the device
driver does not relinquish control (Block, Yield, or RET). An interrupt handler
may use converted addresses prior to its EOI, with interrupts enabled. Interrupt
handlers should issue an UnPhysToVirt if necessary before making the EOI
statement. If an interrupt handler needs to use converted addresses after its
EOI, it must protect the converted addresses by running with interrupts
disabled. For performance reasons, a device driver should try to optimize its
usage of PhysToVirt and UnPhysToVirt.

Under OS/2 Warp, UnPhysToVirt exists for compatibility with older drivers. It
can be eliminated from driver which run exclusively under OS/2 Warp.

EXAMPLE

// get pointer to screen memory, 16K long

if(PhysToVirt(0xb8000L,0x4000,0,(FARPOINTER) &Address)) error

503

__
PortIO Mode: Kernel, Interrupt, Init
Perform Platform Specific Port I/O

This DevHlp performs hardware port I/O.

C Calling Convention

if (PortIO(PPORTIO_STRUCT pPortIOStruct)) error

pPortIOStruct = pointer to port I/O structure

COMMENTS

This DevHlp performs port I/O by calling the corresponding PSD function
PORT_IO.

The PortIO structure is shown below.

typedef struct _PORTIO
{
 ULONG port;
 ULONG data
 ULONG flags;
}

port = indicates which port to read to, or write
from.

data = the data read from a read request, or
 the data to write if a write request.

flags = what operation to perform.

 IO_READ_BYTE - Read a byte from the port
 IO_READ_WORD - Read a word from the port
 IO_READ_DWORD - Read a dword from the port
 IO_WRITE_BYTE - Write a byte to the port
 IO_WRITE_WORD - Write a word to the port

504

 IO_WRITE_DWORD - Write a dword to the port

__
PostEventSem Mode: Kernel
Post a 32-bit shared event semaphore

PostEventSem posts an event semaphore that was previously reset with
ResetEventSem. If the event is already posted, the post count is incremented
and the ERROR_ALREADY_POSTED return code is returned. Otherwise, the
event is posted, the post count is set to one, and all threads that called
DosWaitEventSem are made runnable.

C Calling Convention

if (PostEventSem(LHANDLE Handle)) error

Handle = long handle to event semaphore

PostEventSem can be called only from a Ring 0 device driver or file system
driver. The handle passed in must be a handle to a shared event semaphore. If
the handle does not exist, is not a "shared event" semaphore, or if the
semaphore was not previously opened with OpenEventSem, then
ERROR_INVALID_HANDLE will be returned.

There is a limit of 65,534 (64KB - 1) posts allowed per event semaphore. If this
limit is reached, then the ERROR_TOO_MANY_POSTS return code is
returned.

To reverse this operation, call ResetEventSem. This will reset the event, so that
any threads that subsequently wait on the event semaphore (with
DosWaitEventSem) will be blocked.

505

__
PullParticular Mode: Kernel, Interrupt
Remove a Specific Request From a List

PullParticular pulls the specified packet from the selected Request Packet linked
list. If the packet is not found, then an indicator is set on return.

C Calling Convention

if (PullParticular((PQHEAD) &QueueHead,(PREQPACKET) &RequestPacket))error

&QueueHead = address of queue head
&RequestPacket = far pointer to Request Packet

COMMENTS

A device driver uses the PushReqPacket and PullReqPacket DevHlps to
maintain a work queue for each of its devices. PullParticular is used to remove
a specific Request Packet from the work queue, typically for the case where a
process has terminated before finishing its I/O.

PullParticular may also be used to remove Request Packets that were allocated
by an AllocReqPacket from the Request Packet linked list.

506

__
PullReqPacket Mode: Kernel, Interrupt
Remove a Request Packet From a List

PullReqPacket pulls the next waiting Request Packet from the selected Request
Packet linked list. If there is no packet in the list, then an indicator is set on
return.

C Calling Convention

if (PullReqPacket((PQHEAD) &QueueHead,(PREQPACKET) &RequestPacket)) error

&QueueHead = address of queue head
&RequestPacket = far pointer to Request Packet

COMMENTS

A device driver uses the PushReqPacket and PullReqPacket DevHlps to
maintain a work queue for each of its devices/units. The device driver must
provide the storage for the DWORD work queue head, which defines the start
of the Request Packet linked list. The work queue head must be initialized to 0.

PullReqPacket may also be used to remove Request Packets that were allocated
by an AllocReqPacket from the Request Packet queue.

507

__
PushReqPacket Mode: Kernel
Add a Request Packet To a List

PushReqPacket adds the current device Request Packet to the linked list of
packets to be executed by the device driver.

C Calling Convention

if (PushReqPacket((PQHEAD) &QueueHead,(PREQPACKET) &RequestPacket)) error

&QueueHead = address of queue head
&RequestPacket = far pointer to of Request Packet

COMMENTS

A device driver uses the PushReqPacket and PullReqPacket DevHlps to
maintain a work queue for each of its devices. The device driver must provide
the storage for the DWORD work queue head, which defines the start of the
Request Packet linked list. The work queue head must be initialized to 0.

The device driver task-time thread should add all incoming read/write requests
to its request list. The driver task-time thread should then determine whether
the interrupt-time thread is active, and if not, it should send the request to the
device. Because the device may be active at this point, the driver task-time
thread must turn off interrupts before calling the device; otherwise, a window
exists in which the device finishes processing the request before the packet is
put on the list.

PushReqPacket may also be used to place Request Packets that were allocated
by an AllocReqPacket in the Request Packet work queue.

508

__
QueueFlush Mode: Kernel, Interrupt
Clear a Character Queue

QueueFlush clears the character queue structure that is specified (it empties the
buffer).

C Calling Convention

if (QueueFlush((PCHARQUEUE) &CharQueue)) error

&CharQueue = address of DS relative CHARQUEUE

COMMENTS

QueueFlush operates on the simple character queue structure initialized by
QueueInit.

typedef struct _CHARQUEUE {
 USHORT Qsize; // size of queue in bytes
 USHORT QIndex; // index of next char out
 USHORT Qcount // count of chars in the queue
 UCHAR buf[Qsize] // start of queue buffer
 } CHARQUEUE;

509

__
QueueInit Mode: Kernel, Interrupt, Init
Initialize a Character Queue

QueueInit initializes the specified character queue structure.

C Calling Convention

if (QueueInit((PCHARQUEUE) &CharQueue)) error

&CharQueue = address of DS relative CHARQUEUE

COMMENTS

QueueInit must be called before any other queue manipulation subroutine. Prior
to this call, the device driver must allocate the character queue buffer with the
following queue header and initialize the Qsize field.

typedef struct _CHARQUEUE {
 USHORT Qsize; // size of queue in bytes
 USHORT QIndex; // index of next char out
 USHORT Qcount // count of chars in the queue
 UCHAR buf[Qsize] // start of queue buffer
 } CHARQUEUE;

510

__
QueueRead Mode: Kernel, Interrupt
Read a Character From a Queue

QueueRead returns and removes a character from the beginning of the specified
character queue structure. If the queue is empty, an indicator is set.

C Calling Convention

if (QueueRead((PCHARQUEUE) &CharQueue, (FPUCHAR) &Char)) error

&CharQueue = address of DS relative CHARQUEUE
&Char = far pointer to returned char

COMMENTS

QueueRead operates on the simple character queue structure initialized by
QueueInit.

typedef struct _CHARQUEUE
{
 USHORT Qsize; // size of queue in bytes
 USHORT QIndex; // index of next char out
 USHORT Qcount // count of chars in the queue
 UCHAR buf[Qsize] // start of queue buffer
} CHARQUEUE;

511

__
QueueWrite Mode: Kernel, Interrupt
Put a Character into a Queue

QueueWrite adds a character at the end of the specified character queue
structure. If the queue is full, an indicator is set.

C Calling Convention

if (QueueWrite((PCHARQUEUE) &CharQueue,UCHAR Char)) error

&CharQueue = address of DS relative queue
&Char = character to write to queue

COMMENTS

QueueWrite operates on the simple character queue structure initialized by
QueueInit.

typedef struct _CHARQUEUE
{
 USHORT Qsize; // size of queue in bytes
 USHORT QIndex; // index of next char out
 USHORT Qcount // count of chars in the queue
 UCHAR buf[Qsize] // start of queue buffer
} CHARQUEUE;

512

__
Register Mode: Kernel
Add a Device Monitor

Register adds a device monitor to the chain of monitors for a class of device.

C Calling Convention

if (Register(SHANDLE Handle,USHORT Position,PID,(FARPOINTER) &Inbuf,(OFF)
Outbuf,
 (PERRCODE) &Error)) error

Handle = monitor handle
Position = position in chain
PID = PID of owning program
&Inbuf = far address of monitor input buffer
&Outbuf = short offset of output buffer
&Error = far address of returned error code

COMMENTS

This function may be called at task time only. A monitor chain must have
previously been created with MonCreate.

A single process may register more than one monitor (with different input and
output buffers) with the same monitor chain. The first word of each of the input
and output buffers must contain the length in bytes (length-word inclusive) of
the buffers. The length of the monitor's input and output buffers must be greater
than the length of the device driver's monitor chain buffer plus 20 bytes.

The input buffer, output buffer offset, and placement flag are supplied to the
device driver by the monitor application that is requesting monitor registration
(that is, calling DosMonReg).

The device driver must identify the monitor chain with the monitor handle
returned from a previous MonCreate call. The device driver can determine the
PID of the requesting monitor task from the local infoseg.

513

__
RegisterBeep Mode: Kernel, Init
Register a Physical Device Driver's Beep Service Entry Point

RegisterBeep is called by the clock device driver during initialization time to
register the beep service entry point, so that other device drivers or the kernel
can generate preempt beeps.

C Calling Convention

if (RegisterBeep((FPFUNCTION) &BeepRoutine)) error

&BeepRoutine = 16:16 address of driver's beep routine

514

__
RegisterDeviceClass Mode: Kernel, Interrupt, Init
Registers an ADD Device Class

C Calling Convention

if (RegisterDeviceClass(&DDName,&CmdHandler,Flags,Class,&Handle)) error

&DDName = ASCIIZ driver name
&CmdHandler = 16:16 address of ADD's command handler
Flags = 0 for ADDs
Class = 1 for ADDs
&Handle = address of returned ADD handle

COMMENTS

If this call fails, the driver should fail quietly by returning RPDONE |
ERROR_I24_QUIET+INIT_FAIL.

Information about each registered device is kept in a class table. The driver can
obtain a 16:16 pointer to the table by calling the GetDosVar DevHlp with the
DHGETDOSV_DEVICECLASSTABLE option. The class table format is
described in Figure A-1.

A device driver can derive an ADD's entry point using the ADD's handle by
calling GetDOSVar, and then using the code stub shown in Figure A-2.

/*
 * Device Class Structure - returned by dh_GetDOSVar when
 * AL=DHGETDOSV_DEVICECLASSTABLE and CX = device_class
 *
 */

#define MAXDEVCLASSNAMELEN 16 /* Max len of DevClass Name */
#define MAXDEVCLASSTABLES 2 /* Max num of DevClass tables */

#define MAXDISKDCENTRIES 32 /* Max num of entries in DISK table */
#define MAXMOUSEDCENTRIES 3 /* Max num of entries in Mouse table */

/* structures for the DeviceClassTable */

struct DevClassTableEntry
{
 USHORT DCOffset;
 USHORT DCSelector;
 USHORT DCFlags;

515

 UCHAR DCName[MAXDEVCLASSNAMELEN];
};

struct DevClassTableStruc
{
 USHORT DCCount;
 USHORT DCMaxCount;
 struct DevClassTableEntry DCTableEntries[1];
};

Figure A-1. ADD Device Class Table.

{
 USHORT Index = AddHandle-1

 AddSel = pClassTable->DCTableEntries[Index].DCSelector;
 AddOff = pClassTable->DCTableEntries[Index].DCOffset;
}

Figure A-2. Retreiving an ADD's entry point using GetDOSVar.

__
RegisterKernelExit Mode: Kernel, Init
Hook the system NMI handler

C Calling Convention

if (RegisterKernelExit(USHORT Flags, USHORT Type, (FARPOINTER)&UserPtr)) error

Flags = Kernel Exit flags, add=0x1000, delete = 0x0000
Type = Exit type, NMI=0x0, SFF=0x01
&UserPtr = Ptr to caller’s 16:16 handler

COMMENTS

516

__
RegisterPDD Mode: Kernel, Init
Registers a 16:16 Physical Device Driver for PDD-VDD Communication

RegisterPDD registers a 16:16 physical device driver (PDD) for PDD-VDD
communication with a virtual device driver (VDD). The function is used by a
physical device driver to register its name and a communication entry point with
the DOS Session Manager. Later, a virtual device driver can use
VDHOpenPDD to open communication with the physical device driver.

C Calling Convention

if (RegisterPDD((FPUCHAR) &DDName,(FPFUNCTION) &DDFunction)) error

&DDName = address of ASCII-Z driver name
&DDFunction = 16:16 address of PDD function

COMMENTS

If the function fails, a system halt will occur.

If the address of the PDD function is NULL (0;0), this call removes the
registration of this physical device driver's name.

The physical device driver name supplied to this service does not need to match
the string in the physical device driver's header.

If a physical device driver ever deactivates itself, it must close down any
interaction with virtual device drivers.

If a physical device driver registers an entry point during initialization, but fails
later during initialization, it must call this function with a NULL function
pointer in order to remove the registration.

517

__
RegisterStackUsage Mode: Init
lndicate Driver Stack Requirements

RegisterStackUsage indicates the expected stack usage of the device driver to
the interrupt manager.

C Calling Convention

if(RegisterStackUsage((PREGSTACK) &RSUstruct)) error

&RSUstruct = DS-reative address of STACKUSAGE structure

COMMENTS

The StackUsage data structure has the following format:

typedef struct _STACKUSAGE
{
 USHORT cbStruct; // set to 14 before using
 USHORT flags; // Bit 0x0001 indicates that the interrupt
 // procedure enables interrupts. All other
 // bits are reserved.
 USHORT iIRQ; // IRQ of interrupt handler that is being
 // described by the following data.
 USHORT cbStackCLI;// Number of bytes of stack used in the
 // interrupt proc when rupts are disabled.
 USHORT cbStackSTI;// Num of bytes of stack after interrupt
 // procedure enables interrupts.
 USHORT cbStackEOI;// Number of bytes of stack used after
 // interrupt procedure issues EOI.
 USHORT cNest; // Maximum number of levels that the device
 // driver expects to nest.
} STACKUSAGE;

If the device driver interrupt routines nest greater than the specified number, the
interrupt manager will disable the IRQ at the PIC for the remainder of the boot
session.

A device must issue RegisterStackUsage once for each IRQ that it services.

OS/2 Warp supports a total of eight kilobytes of interrupt stack.

518

__
RegisterTmrDD Mode: Init
Return the Kernel Address of the Tmr Value and Rollover Count

RegisterTmrDD sends the device driver pointers to the Tmr value and Tmr
rollover count in kernel address space.

C Calling Convention

if (RegisterTmrDD((FPFUNCTION) &TimerEntry,FPFARPOINTER &TmrRollover,
 (FPFARPOINTER) &TmrValue)) error

&TimerEntry = 16:16 address of Timer entry point

COMMENTS

RegisterTmrDD is callable only at Timer device driver initialization time. It
returns the Tmr value and rollover count.

519

__
ReleaseSpinLock Mode: Kernel, Interrupt, Init
Release A Subsystem Spinlock

ReleaseSpinLock releases a subsystem spinlock previously created by a call to
DevHlp CreateSpinLock.

C Calling Convention

if (ReleaseSpinLock(HSPINLOCK hSpinLock)) error

hSpinLock = handle of spinlock to destroy

COMMENTS

The handle to a subsysten spinlock is obtained by calling DevHlp
CreateSpinLock. Once created, a spinlock can only be destroyed by calling
DevHlp FreeSpinLock. The device driver may acquire and release the spinlock
(without destroying it) by calling DevHlp AcquireSpinLock and DevHlp
ReleaseSpinLock.

The spinlock is represented by a very small data structure (about 22 bytes), so
spinlocks should be used freely without concern for system overhead or storage
incurred by the spinlock.

520

__
ResetEventSem Mode: Kernel
Resets a 32-bit shared event semaphore

ResetEventSem resets an event semaphore that has previously been opened
with OpenEventSem. The number of posts performed on the event before it
was reset is returned to the caller in the pulPostCt parameter. If the event was
already reset, the ERROR ALREADY RESET return code is returned, and
zero is returned in the pulPostCt parameter. lt is not reset a second time.

C Calling Convention

if (ResetEventSem(LHANDLE Handle,(PLINADDR) &Posts)) error

Handle = semaphore handle
&Posts = address of variable to receive # of posts before reset

COMMENTS

ResetEventSem can only be called from a Ring 0 device driver or file system
driver. The handle passed in must be a handle to a shared event semaphore. If
the handle does not exist or is not a "shared event" semaphore, or if the
semaphore was not previously opened with OpenEventSem, then
ERROR_INVALID_HANDLE will be returned.

To reverse this operation, call PostEventSem. This will post the event, so that
any threads that were waiting for the event semaphore to be posted (with
DosWaitEventSem) will be allowed to run.

521

__
ResetTimer Mode: Kernel, Interrupt, Init
Reset a Timer Handler

ResetTimer removes a timer handler for the device driver.

C Calling Convention

if (ResetTimer((PFUNCTION) &TimerRoutine)) error

&TimerRoutine = address of DS relative timer

COMMENTS

This function removes a timer handler from the list of timer handlers. Timer
handlers are analogous to the user timer interrupt (INT 1Ch) of DOS.

DS should be set to the device driver's data segment. If the device driver had
done a PhysToVirt referencing the DS register, it should restore DS to the
original value.

522

__
Run Mode: Kernel, Interrupt
Release Blocked Threads

This is the companion routine to Block. When Run is called, it awakens the
threads that were blocked for this particular event identifier.

C Calling Convention

if (Run((ULONG) ID)) error

ID = ID of previously Blocked thread

COMMENTS

Run returns immediately to its caller; the awakened threads will be run at the
next available opportunity. Run is often called at interrupt time.

523

__
SaveMsg (formerly DispMsg) Mode: Init
Display Message

This function displays a message from a base device driver on the system
console.

C Calling Convention

DispMsg((FPSTRING) &MsgTbl)

&MsgTbl = far pointer to message table struct

COMMENTS

The message is not displayed immediately, but is queued until system
initialization retrieves it from the system message file.

The structure of the message table is:

MsgTbl struct
{

WORD Message ID
WORD Number of fill-in items
DWORD Pointer to first fill-in item of ASCII-Z string
DWORD Pointer to second fill-in item of ASCII-Z string
DWORD Pointer to last fill-in item of ASCII-Z string

 }

The messages are obtained, by ordinal, from the system message file
OSO001.msg with DosGetMessage. The driver can substitute elements of the
message with its own message, but leave country and language-specific data
intact. For instance, the word "printer", in English, would be different for each
country. The driver can use the data contained in the message file to build a
buffer of data to send to the display device. DispMessage then calls
DosPutMessage to display the data. Drivers that utilize SaveMsg can be used
without regard to country or language differences.

If an error message is displayed, the "press any key to continue" message is
displayed unless the CONFIG.SYS file contains PAUSEONERROR=NO.

524

The special message ID 0x 1178 is used when defining the driver's own
messages.

525

__
SchedClockAddr Mode: Kernel, Init
Get system clock routine

This service is provided to the clock device driver to allow it to obtain a pointer
to the address of the system's clock tick handler, SchedClock. SchedClock must
be called on each occurrence of a periodic clock tick.

C Calling Convention

if (SchedClockAddr((PFARPOINTER) &Ptr)) error

&Ptr = DS-relative far pointer to returned address

COMMENTS

The clock device driver calls this DevHlp service during the clock device
driver's initialization. SchedClock must be called at interrupt time for each
periodic clock tick to indicate the passage of system time. The "tick" is then
dispersed to the appropriate components of the system.

The clock device driver's interrupt handler must run with interrupts enabled as
the convention, prior to issuing the EOI for the timer interrupt. Any critical
processing, such as updating the fraction-of-seconds count, must be done prior
to calling SchedClock. SchedClock must then be called to allow system proc-
essing prior to the dismissal of the interrupt. When SchedClock returns, the
clock device driver must issue the EOI and call SchedClock again. Note that
once the EOI has been issued, the device driver's interrupt handler may be
reentered. The DevHlp SchedClock is also reentrant.

The device driver must not get the actual address of the SchedClock routine,
but instead use the pointer returned by the DevHlp call.

526

__
SemClear Mode: Kernel, Interrupt
Release a Semaphore

This function releases a semaphore and restarts any blocked threads waiting on
the semaphore.

C Calling Convention

if (SemClear(LHANDLE Handle)) error

Handle = handle to semaphore

COMMENTS

A device driver may clear either a RAM semaphore or a system semaphore. The
device driver may obtain (own) a semaphore through SemRequest.

The semaphore handle for a RAM semaphore is the virtual address of the
doubleword of storage allocated for the semaphore. To access a RAM
semaphore at interrupt time, the device driver must locate the semaphore in the
device driver's data segment.

For a system semaphore, the handle must be passed to the device driver by the
caller by way of a generic IOCtl. The device driver must convert the caller's
handle to a system handle with SemHandle.

A RAM semaphore can be cleared at interrupt time only if it is in storage that is
directly addressable by the device driver, that is, in the device driver's data
segment.

527

__
SemHandle Mode: Kernel, Interrupt
Obtain a Semaphore Handle

This function provides a semaphore handle to the device driver.

C Calling Convention

if (SemHandle(LHANDLE Handle,USHORT Flag,(PLHANDLE) &NewHandle)) error

Handle = handle of user's semaphore
Flag = see comments
&NewHandle = pointer to new DD-specific handle

COMMENTS

This function is used to convert the semaphore handle (or user "key") provided
by the caller of the device driver to a system handle that the device driver may
use. This handle then becomes the "key" that the device driver uses to reference
the system semaphore. This allows the system semaphore to be referenced at
interrupt time by the device driver. This "key" is also used when the device
driver is finished with the system semaphore. The device driver must call
SemHandle with the usage flag, indicating that the device driver is finished with
the system semaphore.

SemHandle is called at task time to indicate that the system semaphore is
IN_USE, and is called at either task time or interrupt time to indicate that the
system semaphore is NOT_IN_USE. IN_USE means that the device driver may
be referencing the system semaphore. NOT_IN_USE means that the device
driver has finished using the system semaphore and will not be referencing it
again.

The "key" of a RAM semaphore is its virtual address. SemHandle may be used
for RAM semaphores. Because RAM semaphores have no system handles,
SemHandle will simply return the RAM semaphore "key" back to the caller.

528

A device driver can determine that a semaphore is a RAM semaphore if the key
remains unchanged upon return from the SemHandle function. If the key
returned from SemHandle is different from the one passed to the function, then
the device driver can determine that it is a handle for a system semaphore.

If carry is returned from this function, the device driver should issue the DevHlp
VerifyAccess request with the type of access of Read/Write indicated before
assuming that this is a RAM semaphore. If a RAM semaphore is to be used, it
must be accessed only at task time unless it is in locked storage.

It is necessary to call SemHandle at task time to indicate that a system
semaphore is IN_USE because:

1. The caller-supplied semaphore handle refers to task-specific system
semaphore structures. These structures are not available at interrupt time, so
SemHandle converts the task-specific handle to a system-specific handle. For
uniformity, the other semaphore DevHlp functions accept only system-specific
handles, regardless of the mode (task time or interrupt time).

2. An application could delete a system semaphore while the device driver is
using it. If a second application were to create a system semaphore soon after,
the system structure used by the original semaphore could be reassigned. A
device driver that tried to manipulate the original process's semaphore would
inadvertently manipulate the new process's semaphore. Therefore, the
SemHandle IN-USE indicator increases a counter so that, although the calling
thread may still delete its task-specific reference to the semaphore, the
semaphore remains in the system.

A device driver must subsequently call SemHandle with NOT_IN_USE when
the semaphore use is done so that the system semaphore structure can be freed.
There must be a call to indicate NOT_IN_USE to match every call to indicate
IN_USE (one-to-one relationship).

529

__
SemRequest Mode: Kernel
Claim a Semaphore

This function claims a semaphore. If the semaphore is already owned, the
thread in the device driver is blocked until the semaphore is released or until a
time-out occurs.

C Calling Convention

if (SemRequest(LHANDLE Handle,ULONG Timeout,(PERRCODE) &Error)) error

Handle = handle of DD semaphore
Timeout = how long to wait in ms
&Error = far address of variable to receive error code

COMMENTS

SemRequest checks the state of the semaphore. If it is unowned, SemRequest
marks it "owned" and returns immediately to the caller. If the semaphore is
owned, SemRequest will optionally block the device driver thread until the
semaphore is unowned, then try again. The time-out parameter is used to place
an upper limit on the amount of time to block before returning to the requesting
device driver thread.

SemClear is used at either task time or interrupt time to release the semaphore.

The semaphore handle for a RAM semaphore is the virtual address of the
doubleword of storage allocated for the semaphore. To access a RAM
semaphore at interrupt time, the device driver must locate the semaphore in the
device driver's data segment.

For a system semaphore, the handle must be passed to the device driver by the
caller through a generic IOCtl. The device driver must convert the caller's
handle to a system handle with SemHandle.

530

__
SendEvent Mode: Kernel, Interrupt
Indicate an Event

This routine is called by a device driver to indicate the occurrence of an event.

C Calling Convention

if (SendEvent(USHORT EventNumber,USHORT Parameter)) error

EventNumber = number of event (see comments)
Parameter = (see comments)

531

The device driver events are described in Table A-5.

Table A-5. Device Driver Events

Event Event
number

Parameter Comments

Session manager
hot key from the
mouse

0 2-byte time
stamp

Where the high-order byte
is in seconds and the low-
order byte is in hundredths
of seconds.

Ctrl + Break 1 0
Ctrl + C 2 0
Ctrl + NumLock 3 Foreground

session
number

Ctrl + PrtScr 4 0
Shift + PrtScr 5 0
Session Manager
hot key from the
keyboard

6 Hot Key ID The keyboard device driver
uses the hot key ID, which
was set by way of keyboard
IOCtl 56H (SET SESSION
MANAGER HOT KEY).

Reboot key
sequence from the
keyboard (C-A-D)

7 0

Keyboard hot
plug/reset

8 0

Power suspend 9 0
Number of
possible events

10 0

532

__
SetIRQ Mode: Kernel, Init
Register a Hardware Interrupt Handler

This service is used to set a hardware interrupt vector to the device driver
interrupt handler.

C Calling Convention

if (SetIRQ(USHORT IRQNumber,(PFUNCTION) &Handler,USHORT SharedFlag)) error

IRQNumber = IRQ level
&Handler = offset to interrupt handler in 1st code segment
SharedFlag = shared or unshared interrupt

COMMENTS

The attempt to register an interrupt handler for an IRQ to be Shared will fail if
the IRQ is already owned by another device driver as Not Shared, or is the IRQ
used to cascade the slave 8259 interrupt controller (IRQ 2).

Hardware interrupt sharing is not supported on all systems. A SetIRQ request
to share an interrupt level on a system where sharing is not supported (ISA bus)
will return an error.

EXAMPLE

if(SetIRQ(10,(PFUNCTION)INT_HNDLR,0))
{

/* if we failed, deinstall driver with cs+ds=0 */

DosPutMessage(1, 8, devhdr[dev].DHname);
DosPutMessage(1,strlen(IntFailMsg),IntFailMsg);
rp->s.InitExit.finalCS = (OFF) 0;
rp->s.InitExit.finalDS = (OFF) 0;

return (RPDONE | RPERR | ERROR_BAD_COMMAND);
}

533

__
SetIRQMask Mode: Kernel, Interrupt, Init
Set The 8259 Interrupt Mask

This DevHlp allows the selective enabling and/or disabling of the IRQ slot.

C Calling Convention

if (SetIRQMask(USHORT Irq, USHORT Data, USHORT Procnum)) error

Irq = Irq slot
Data = status, 0=unmasked (interrupt enabled), 1=masked (interrupt disabled)
Procnum = processor number

COMMENTS

This DevHlp can selectively set a mask bit (disable the interrupt slot) or clear a
mask bit (enable te interrupt slot) on the particular MP hardware. Devvice
drivers that mask interrupts should use this DevHlp service and not write to the
interrupt controller directly.

534

__
SetTimer Mode: Kernel, Init
Register a Timer Handler

SetTimer adds a timer handler to the list of timer handlers to be called on a
timer tick.

C Calling Convention

if (SetTimer((PFUNCTION) &TimerHandler)) error

&TimerHandler = offset of timer handler routine in 1st code segment

COMMENTS

The DevHlp SetTimer is a subset of the DevHlp TickCount.

This function allows a device driver to add a timer handler to a list of timer
handlers called on every timer tick. A device driver may use a timer handler to
drive a non-interrupt device instead of using time-outs with the Block and Run
services. Block and Run are costly on a character-by-character basis; the cost is
one or more task switches for each character I/0. Timer handlers are required to
save and restore registers.

A maximum of 32 different timer handlers are available in the system.

While a timer handler is in the format of a FAR CALL/RETURN routine (when
it is finished processing, it performs a return), it operates in the interrupt state.
The timer handler is analogous to the user timer (Int 1Ch) handler. Care should
be taken not to remain in the handler very long.

Timer handlers are responsible for saving and restoring registers upon entry and
exit.

535

IMPORTANT NOTE

Drivers that call SetTimer during Init should not make the call until the end of
the Init code, just prior to returning the code and data offsets to the kernel. This
is especially important if the timer handler references a variable in the driver’s
data segment. If the driver calls SetTimer, then calls other DevHlps, one of the
other DevHlps might fail. When they fail, the Init section returns 0 for the code
and data offsets, thereby dereferencing the variable in the data segment. Since
the timer handler is still active, it will get called before the driver finishes its
clean-up, causing a general protection fault.

536

__
SortReqPacket Mode: Kernel
Insert a Request in Sorted Order to a List

This routine is used by block (disk) device drivers to add a new request to their
work queue. This routine inserts the Request Packet in the linked list of
Request Packets in the order of starting sector number.

C Calling Convention

if (SortReqPacket((PQHEAD) &QueueHead,(PREQPACKET) &RequestPacket))) error

&QueueHead = address of queue head
&RequestPacket = far address of Request Packet

COMMENTS

The sorting by sector number is aimed at reducing the length and number of
head seeks. This is a simple algorithm and does not account for multiple heads
on the media or for a target drive in the Request Packet. SortReqPacket inserts
the current Request Packet into the specified linked list of packets, sorted by
starting sector number.

SortReqPacket may be used to place Request Packets that were allocated by an
AllocReqPacket in the Request Packet queue.

537

__
RAS Mode: Kernel
Add Record To System Trace Buffer

RAS adds a trace record to the system trace buffer.

C Calling Convention

if (RAS(USHORT MajCode,USHORT MinCode,(FARPOINTER) &TraceData,
 USHORT DataLength) error

MajCode = Major error number
MinCode = Minor error number
&TraceData = Far pointer to relative trace data
DataLength = Length of trace data, in bytes

COMMENTS

RAS provides device drivers with a method of logging device driver events by
writing data to the system trace buffer. Writes to the trace buffer are interrupt
protected. The buffer can be parsed, formatted and viewed later using the
TRACEFMT utility, supplied with OS/2 2.x.

OS/2 allows for a 63KB maximum size trace buffer. The call to RAS will fail if
the buffer is full. The entry TRACEBUF=nnKB in CONFIG.SYS specifies the
trace buffer size. The default is 4KB. If the CONFIG.SYS file contains the
statement TRACE=OFF, tracing must first be enabled by running TRACE from
an OS/2 command line prompt.

The system trace facility maintains a list of the major event codes currently
enabled for tracing. Before calling DevHlp RAS, the driver must insure that
tracing for the particular major code is enabled by checking the specific bit in
word xx of the Global Info Seg. The driver can obtain a pointer to the Global
Info Seg by calling DevHlp GetDOSVar.

538

__
TCYield Mode: Kernel
Yield the CPU

This function is similar to the Yield function, except that the CPU may only be
yielded to a time-critical thread, if one is available.

C Calling Convention

TCYield()

COMMENTS

It is not necessary for the device driver to do both a Yield and a TCYield. The
TCYield function is a subset of the Yield function.

The one part of the kernel that can take a lot of CPU time is in device drivers,
particularly those that perform program I/O on long strings of data, or that poll
a device. These device drivers should periodically check the TCYield Flag, and
call the TCYield function to yield the CPU to a time-critical thread.

The location of the TCYield Flag is obtained from the GetDOSVar call.

For performance reasons, the device driver should check the TCYield Flag once
every three milliseconds. If the flag is set, then the device driver should call
TCYield.

Because the device driver may relinquish control of the CPU, the device driver
should not assume that the state of the interrupt flag will be preserved across a
call to TCYield.

539

__
TickCount Mode: Kernel, Interrupt, Init
Modify a Timer

TickCount will register a new timer handler, or modify a previously registered
timer handler, to be called on every N timer ticks instead of every timer tick.

C Calling Convention

if (TickCount((PFUNCTION) &TimerRoutine,USHORT Count)) error

&TimerRoutine = offset of timer handler in 1st code segment
Count = number of ticks

COMMENTS

A device driver may use a timer handler to drive a non-interrupt device, instead
of using time-outs with the Block and Run services. Block and Run are costly
on a character-by-character basis; the cost is one or more task switches for each
character I/O. Timer handlers are required to save and restore registers.

For a previously registered timer handler, TickCount changes the number of
ticks that must take place before the timer handler gets control. This will allow
device drivers to support the time-out function without needing to count ticks.

540

__
UnlockSeg Mode: Kernel, Init
Unlock a Memory Segment

C Calling Convention

if (UnLockSeg(LHANDLE Handle)) error

Handle = handle to memory area from LockSeg call

COMMENTS

This DevHlp UnLocks a segment previously locked with the LockSeg
DevHelp.

EXAMPLE

if(UnLockSeg(lock_seg_han))
return(RPDONE | RPERR | ERROR_GEN_FAILURE);

541

__
UnPhysToVirt Mode: Kernel, Interrupt, Init
Mark the Completion of Virtual Address Use

UnPhysToVirt is required to mark the completion of address conversion from
PhysToVirt.

C Calling Convention

if (UnPhysToVirt()) error

COMMENTS

For OS/2 1.X, UnPhysToVirt must be called by the same procedure that issued
the PhysToVirt when the use of converted addresses is completed and before
the procedure returns to its caller. The procedure that called PhysToVirt may
call other procedures before calling UnPhysToVirt. Multiple PhysToVirt calls
may be issued prior to issuing the UnPhysToVirt. Only one call to
UnPhysToVirt is needed.

Under OS/2 Warp, UnPhysToVirt performs no function, but is left in for
compatibility with OS/2 1.X drivers.

EXAMPLE

if (UnPhysToVirt())
return(RPDONE | RPERR | ERROR_GEN_FAILURE);

542

__
UnSetIRQ Mode: Kernel, Interrupt, Init
Remove a Hardware Interrupt Handler

This routine removes the current hardware interrupt handler.

C Calling Convention

if (UnSetIRQ(USHORT IRQNum)) error

IRQNum = IRQ level to remove

COMMENTS

DS must point to the device driver's data segment on entry.

543

__
VerifyAccess Mode: Kernel
Verify Access to Memory

This routine verifies that the user process has the correct access rights for the
memory that it passed to the device driver. If the process does not have the
needed access rights to the memory, then it will be terminated. If it does have
the needed access rights, these rights are guaranteed to remain valid until the
device driver exits its Strategy routine.

C Calling Convention

if (VerifyAccess(SEL Sel,OFF Off,USHORT Memsize,USHORT Code)) error

Sel = selector of memory area
Off = offset of memory area
Memsize = number of bytes to verify
Code = read, read/write. (see comments)

COMMENTS

A device driver can receive addresses to memory as part of a generic IOCtl
request from a process. Because the operating system cannot verify addresses
imbedded in the IOCtl command, the device driver must request verification in
order to prevent itself from accidentally erasing memory on behalf of a user
process. If the verification test fails, then VerifyAccess will terminate the
process.

Once the device driver has verified that the process has the needed access to
addresses of interest, it does not need to repeat the verification until it yields the
CPU. When the device driver yields the CPU, all address access verifications
that it has done become unreliable, except for segments that have been locked.
The device driver could yield the CPU by accessing a not-present-segment,
exiting its Strategy routine, or calling a DevHlp service that yields while
performing the service.

544

EXAMPLE

/* verify caller owns this buffer area */

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl.buffer), /* selector */
OFFSETOF(rp->s.IOCtl.buffer), /* offset */
4, /* 4 bytes */
0)) /* read only */
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

545

__
VideoPause Mode: Kernel, Interrupt, Init
Suspend/Resume Video Active Threads

This function is called by device drivers when the controller reports a DMA
overrun. VideoPause starts or stops high-priority threads. This halts threads
using the CPU for video transfers, which allows the diskette DMA to complete
termination properly.

C Calling Convention

if (VideoPause(USHORT PauseFlag)) error

PauseFlag = 0 - turn off pause
 = 1 - turn on pause

COMMENTS

Use this function after a DMA transfer retry has failed. Turn VideoPause on
just long enough to accomplish the DMA transfer; otherwise, impairment of the
system could occur. If multiple device drivers turn VideoPause on, it is not
turned off until all device drivers have turned it off.

__
VirtToLin Mode: Kernel, Interrupt, Init
Converts a Selector:Offset to a Linear Address

VirtToLin converts a Selector:Offset pair into a linear address.

C Calling Convention

if (VirtToLin((FARPOINTER) VirtAddress,(PLINADDR) &LinAddr)) error

VirtAddress = 16:16 virtual address
LinAddr = variable to receive linear address

546

EXAMPLE

Flags = 0x1a;

if (VirtToLin((FARPOINTER)PageList,(PLINADDR)&lpPageList));

if (VirtToLin((FARPOINTER)LockHandle,(PLINADDR)&lpLockHandle));

if (VMLock(linaddr,100,lpPageList,lpLockHandle,
 Flags,(FARPOINTER) &Elements))
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(LockFailMessage), LockFailMessage);
}
else
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(LockPassMessage), LockPassMessage);
}

547

__
VirtToPhys Mode: Kernel, Init
Map a Virtual Address to a Physical Address

Converts a selector-offset pair to a 32-bit physical address.

C Calling Convention

if (VirtToPhys((FARPOINTER) &VirtAddr,(PHYSADDR) &PhysAddr))error

&VirtAddr = virtual pointer to memory
&PhysAddr = pointer to returned physical address

COMMENTS

The virtual address should be locked by way of the DevHlp Lock call prior to
invoking this function, if the segment is not known to be locked already.

This function is typically used to convert a virtual address supplied by a
process, by way of a generic IOCtl, in order that the memory may be accessed
at interrupt time.

EXAMPLE

/* get physical address of buffer */

if (VirtToPhys(
(FARPOINTER) rp->s.IOCtl.buffer,/* the virtual

address */
(FARPOINTER) &appl_buffer)) /* physical

address */
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

548

__
VMAlloc Mode: Kernel, Init
Allocate a Block of Physical Memory

VMAlloc allocates virtual memory and, depending on the value of a flag, either
commits physical storage or maps virtual memory to a given physical address.

C Calling Convention

if (VMAlloc((PLINADDR) lin_addr,ULONG Size,ULONG Flags,
 (PLINADDR) &dev_linaddr)) error

lin_addr = physical address to be mapped
Size = size of object in bytes
Flags = flags used for allocation request (see comments)
&dev_linaddr = pointer to linear address returned

COMMENTS

VMAlloc obtains a global, Ring 0 linear mapping to a block of memory. The
physical address of the memory can be specified for non-system memory, or the
system will allocate the block from general system memory. A linear address is
returned to address the memory. For contiguous fixed allocation requests, the
physical address is also returned.

The physical address passed to VMAlloc is actually the linear address of a
variable containing the physical address to be mapped.

Virtual memory is allocated in global (system) address space, unless private
process space is requested.

Memory requested in process space can only be swappable.

If requested, memory allocated in process space can be registered under screen
group switch control. In that case, a task will be denied write access to this
memory unless it is in the foreground.

Flags

549

Bit 0, if set, specifies the creation of the object in the region below 16 MB. Bit
0 is used by device drivers that cannot support more than 16 megabyte
addresses. If the device driver requests memory below 16 MB, the memory
must also be resident at all times.

Bit 1, if set, specifies that the object remain in memory at all times and not be
swapped or moved.

Bit 2, if set, specifies the allocation of swappable memory. Bit 1 must be clear if
bit 2 is set.

Bit 3, if set, specifies that the object must be in contiguous memory. Bit 1 must
also be set if bit 3 is set.

Bit 4, if set, specifies linear address mapping for the physical address in the
parameters. If bit 4 is set, virtual memory is mapped to a given physical address.
The physical memory must be fixed or locked. This could be used for non-
system memory, like memory-mapped adapters or the video buffer. If it is used
for system memory, it is the device driver's responsibility to insure that the
physical pages corresponding to the PhysAddr will never move or become
invalid.

Bit 5, if set, specifies that the linear address returned will be in the process
address range.

Bit 6, if set, specifies that the allocated memory can be registered under screen
group switch control, such as a video shadow buffer. Memory-mapping
allocated with bit 6 set will be invalid when the process is not in the foreground.

Bit 7 is reserved, and should be set to 0.

Bit 8, if set, specifies that the memory only be reserved, but not actually
mapped. If bit 8 is set, the linear address returned will be page-aligned. The size
requested will be rounded up to the nearest page boundary. All other
allocations may return byte granular size and addresses.

550

Bit 11, if set, specifies that the memory be allocated above the 16MB region. If
no memory above 16MB exists, the memory is allocated from existing memory.
This bit is valid only at Init time. Calling VMAlloc with bit 11 set at any other
time will return an error.

All other bits must be 0.

EXAMPLE

// use VMAlloc to map the adapter address to a linear address in the
// global address space

ULONG MapAddress = 0xd8000;
LINADDR LinAddress = 0; // linear address to MapAddress
LINADDR dev_linaddr = 0; // for global linear address

// VMalloc requires a linear address to the physical map address

VirtToLin((FARPOINTER)&MapAddress,(PLINADDR)&LinAddress);

if (VMAlloc(LinAddress,0x1000,0x30,(PLINADDR)&dev_linaddr))
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(AllocFailMessage), AllocFailMessage);
}
else
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(AllocPassMessage), AllocPassMessage);
}

551

__
VMFree Mode: Kernel, Init
Free memory or a mapping

VMFree frees memory allocated with VMAlloc, or a mapping created by
VMProcessToGlobal, or VMGlobalToProcess.

C Calling Convention

if (VMFree(LINADDR Linaddr)) error

Linaddr = 32 bit linear address of memory to release

COMMENTS

All memory mapping allocated by the device driver must be released before
device driver termination.

552

__
VMGlobalToProcess Mode: Kernel
Map a Global Address into Process Address Space

VMGlobalToProcess maps an address in the system region of the global
address space into an address in the current process's address space.

C Calling Convention

if VMGlobalToProcess(LINADDR Linaddr,ULONG Len,ULONG Flags,
 (PLINADDR) &Plinaddr)) error

Linaddr = linear address in global address space
Len = length of memory to be mapped
Flags = (see comments)
&Plinaddr = pointer to returned linear address

COMMENTS

The mapping created by this call must be released with VMFree.

The address range must not cross object boundaries.

The process's address space used in this call is the current process.

Flags

Bit 0, if set, specifies read/write access, Bit 0 clear specifies read-only access.

Bit 1, if set, specifies a map of the 32-bit memory region, using 16-bit selectors.

Bit 2, if set, the mapping is tracked for the validation and invalidation of screen
buffers.

Bit 3, if set, specifies that the memory be allocated on a 4K page boundary.

Bits 4-31 must be 0.

EXAMPLE

553

if (VMGlobalToProcess(linaddr,0x1000,0x01,(FARPOINTER) &new_linaddr))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

554

__
VMLock Mode: Kernel, Init
Lock a Linear Address Range of Memory Within a Segment

VMLock verifies accessibility to a region of memory and locks the memory
region into physical memory. If the region is unavailable, the caller must specify
whether VMLock should block until the region is available and locked, or
return immediately.

C Calling Convention

if (VMLock(LINADDR Linaddr,ULONG Len,(PLINADDR) &PageList,
 (PLINADDR) &LockInfo, ULONG Flags, FPULONG)) error

Linaddr = 32 bit linear address of region to lock
Len = 32 bit length in bytes
&PageList = flat pointer to PAGELIST struct
&LockInfo = linear address of 12-byte variable to receive the lock
 handle
Flags = (see comments)

Each PAGELIST structure will describe a single physically contiguous
subregion of the physical memory that was locked. The format of the
PAGELIST structure is:

typedef struct _PAGELIST {
 ULONG pl_PhysAddr; // physical address of first byte
 // in this sub-region
 ULONG pl_cb; // Number of contiguous bytes
 // starting at pl_PhysAddr
 }

COMMENTS

The use of short-term locks for greater than two seconds can prevent an
adequate number of pages from being available for system use. Under these
circumstances, a system halt could occur.

If satisfying the lock request will reduce the amount of free memory in the
system to below a predetermined minimum, both short and long-term locks can
fail .

555

Address verification is done automatically with every VMLock request.
Locking down memory in fixed physical addresses is done only if the "verify
only" bit is not set.

lt is the device driver's responsibility to insure that enough entries have been
reserved for the range of memory being locked (possibly one entry per page in
the range, plus one more if the region does not begin on a page boundary). If
this pointer contains the value - 1, then no physical addresses are returned. This
parameter must be - 1 for verify locks.

Since locking occurs on a per-page basis, the VMLock service routine will
round Linear Address down to the nearest page boundary. If physically
contiguous locking is requested, Length cannot exceed 64 kilobytes; otherwise
an error is returned. Because locking occurs on a per-page basis, the
combination of Linear Address + Length will be rounded up to the nearest page
boundary.

Flags

Bit 0, if set, specifies an immediate return if the pages are not available, If bit 0
is 0, the call will block until the pages become available.

Bit 1, if set, specifies that the pages be contiguous.

Bit 2, if set, specifies that the memory be below the 16-MB address line.

Bit 3, if set, specifies that the device driver plans to write to the segment.

Bit 4, if set, specifies a long-term lock.

Bit 5, if set, specifies a verify-only lock.

Bits 6-31 must be 0.

556

EXAMPLE

Flags = 0x1a;

if (VirtToLin((FARPOINTER)PageList,(PLINADDR)&lpPageList));

if (VirtToLin((FARPOINTER)LockHandle,(PLINADDR)&lpLockHandle));

if (VMLock(linaddr,100,lpPageList,lpLockHandle,
 Flags,(FARPOINTER) &Elements))
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(LockFailMessage), LockFailMessage);
}
else
{
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, strlen(LockPassMessage), LockPassMessage);
}

557

__
VMProcessToGlobal Mode: Kernel
Map a Process Address into Global Address Space

VMProcessToGlobal converts an address in the current process address space
to an address in the system region of the global address space.

C Calling Convention

if (VMProcessToGlobal(LINADDR Linaddr,ULONG Len,ULONG Flags,
 (PLINADDR) &Address)) error

Linaddr = linear address within process address space that is to be
 mapped into a global context
Len = len in bytes
Flags = (see comments)
&Address = pointer to linear address returned

COMMENTS

The address range must be on a page boundary and must not cross object
boundaries.

Flags

Bit 0, if set, specifies that the mapping be writable, If clear, the mapping will be
read-only.

Bits 1-31 must be 0.

This call copies the linear mapping from the process's address space to the
system - shared address space, which allows the device driver to access the data
independent of the current process's context. The following steps show how
you would use the DevHlp services to gain interrupt-time access to a process's
buffer.

1. Call VMLock to verify the address and to lock the range of memory
needed into physical memory.

558

2. Call VMProcessToGlobal to map a process's private address into global
address space. If the device driver requests it, an array of physical addresses
corresponding to the locked region will be returned. You may also map the
linear address to a GDT selector by calling LinToGDTSelector.

3. Access the memory using the linear address returned by the call to
VMProcessToGlobal.

4. Call VMFree to remove global mapping to process address space.

5. Call VMUnlock to unlock the object.

EXAMPLE

if (VMGlobalToProcess(linaddr,0x1000,0x01,(FARPOINTER) &new_linaddr))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

__
VMSetMem Mode: Kernel, Init
Commit or Decommit Physical Memory

VMSetMem commits and decommits physical storage, or changes the type of
committed memory reserved with the VMAlloc DevHlp service. The address
range specified must not cross object boundaries. The range must be entirely of
uniform type,that is, all decommitted (invalid), all swappable, or all resident.
The range to be decommitted must be entirely precommitted.

C Calling Convention

if (VMSetMem(LINADDR Linaddr,ULONG Size,ULONG Flags)) error

Linaddr = linear address, page aligned, of memory
Size = size in bytes in 4k pages
Flags = (see comments)

559

COMMENTS

The entire region (Linear Address + Size) must lie within a memory object
previously allocated with a VMAlloc 'Reserved Only' call

Flags

Bit 0, if set, specifies that the address range is to be decommitted.

Bit 1, if set, specifies that the address range is to be made resident.

Bit 2, if set, specifies that the address range is to be made swappable.

__
VMUnlock Mode: Kernel, Init
UnLock a Linear Address Range of Memory Within a Segment

VMUnlock unlocks a previously locked memory range.

C Calling Convention

if (VMUnlock(LHANDLE LockHandle)) error

LockHandle = handle from VMLock

COMMENTS

A successful unlock may modify the caller's lock handle.

560

__
Yield Mode: Kernl
Relinquish the CPU

This routine yields the CPU to a scheduled thread of equa or higher priority.

C Calling Convention

Yield();

COMMENTS

OS/2 is designed so that the CPU is never scheduled preemptively while in
kernel mode. In general, the kernel either performs its job and exits quickly, or
it blocks waiting for (usually) I/O or (occasionally) a resource. lt is not
necessary for the device driver to do both a Yield and a TCYield; the Yield
function is a superset of the TCYield function.

The one part of the kernel that can take a lot of CPU time are device drivers,
particularly those that perform program I/O on long strings of data, or that poll
the device. These drivers should periodically check the Yield Flag and call the
Yield function to yield the CPU if another process needs it. Much of the time
the context won't switch; Yield switches context only if an equal or higher
priority thread is scheduled to run.

The address of the Yield Flag is obtained from the GetDOSVar call. For
performance reasons, the device driver should check the Yield Flag once every
3 milliseconds. If the flag is set, then the device driver should call Yield.

Because the device driver may relinquish control of the CPU to another thread,
the device driver should not assume that the state of the interrupt flag will be
preserved across a call to Yield.

561

Appendix B - Reference Publications

Bowlds, Pat, Micro Channel Architecture, New York: Van Nostrand Reinhold,
1991.

Deitel, H. M.; Kogan, M. S., The Design of OS/2, New York: Addison-Wesley,
1992.

IBM Corporation, IBM Operating System/2 Programming Tools and
Information: IBM, 1993.

IBM Corporation, IBM OS/2 Warp Physical Device Driver Reference: IBM,
1993.

IBM Corporation, IBM OS/2 Warp Presentation Driver Reference: IBM, 1993.

IBM Corporation, IBM OS/2 Warp Virtual Device Driver Reference: IBM,
1993.

IBM Corporation, IBM OS/2 Warp Control Program Reference: IBM, 1993.

IBM Corporation, IBM OS/2 Device Driver Source Kit: IBM, 1993.

Intel Corporation, iAPX 86/88 User’s Manual Hardware Reference: Intel,
1989.

Letwin, Gordon, Inside OS/2, Redmond, Washington: Microsoft Press, 1988.

Adaptec Corp., Advanced SCSI Programming Interface (ASPI) OS/2
Specification: Adaptec, 1991.

563

Appendix C - Listings

Device Header, One Device

// sample Device Header, 1 device

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, // link
 (DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
 (OFF) STRAT, // &strategy
 (OFF) 0, // &IDCroutine
 "DEVICE1 " // device name
 };

Device Header, Two Devices

DEVICEHDR devhdr[2] = {
 { (void far *) &devhdr[1], // link to next dev
 (DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
 (OFF) STRAT1, // &strategy
 (OFF) 0, // &IDCroutine
 "DEVICE1 "
 },

 {(void far *) 0xFFFFFFFF, // link(no more devs)
 (DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
 (OFF) STRAT2, // &strategy
 (OFF) 0, // &IDCroutine
 "DEVICE2 "
 }
};

564

C Startup Routine, One Device

;
; C startup routine, one device, w/interrupt and timer
;

PUBLIC _STRAT
PUBLIC __acrtused
PUBLIC _INT_HNDLR
PUBLIC _TIM_HNDLR

EXTRN _interrupt_handler:near
EXTRN _timer_handler:near
EXTRN _main:near

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:NOTHING, ss:NOTHING
.286P

;
_STRAT proc far
__acrtused: ; no startup code
;

push 0
jmp start ;signal device 0

;
start:

push es ;send Request Packet address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3],ax ;send completion status
ret

;
_STRAT endp
;
_INT_HNDLR proc far
;

call _interrupt_handler ;handle rupts
ret ;bail out

;
_INT_HNDLR endp
;
_TIM_HNDLR proc far
;

pusha
push es

565

push ds
call _timer_handler
pop ds
pop es
popa
ret

;
_TIM_HNDLR endp
;
_TEXT ends

end

566

C Startup Routine, Four Devices

;
; C startup routine, 4 devices
;

PUBLIC _STRAT1
PUBLIC _STRAT2
PUBLIC _STRAT3
PUBLIC _STRAT4
PUBLIC __acrtused
PUBLIC _INT_HNDLR
PUBLIC _TIM_HNDLR

EXTRN _interrupt_handler:near
EXTRN _timer_handler:near
EXTRN _main:near

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING
.286P

;
_STRAT1 proc far
__acrtused: ; satisfy EXTRN modules
;

push 0
jmp start ;signal device 0

_STRAT1 endp

_STRAT2 proc far
;

push 1 ;signal second device
jmp start

_STRAT2 endp

_STRAT3 proc far
;

push 2 ;signal third device
jmp start

_STRAT3 endp

_STRAT4 proc far
;

push 3 ;signal fourth device
jmp start

567

;
start:

push es ;send Request Pkt address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3],ax ;send completion status
ret

;
_STRAT4 endp
;
_INT_HNDLR proc far
;

 call _interrupt_handler ;handle rupts
 ret ;bail out

;
_INT_HNDLR endp
;
_TIM_HNDLR proc far
;

 pusha
 push es

 push ds
 call _timer_handler
 pop ds
 pop es
 popa
 ret

;
_TIM_HNDLR endp
;
_TEXT ends
 end

Standard OS/2 Device Driver Include File

// file drvlib.h
// This header file contains definitions intended to go along with
// DRVLIB.LIB, a C-callable subroutine library.
//
// This file is for OS/2 2.x

typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned short BOOLEAN;
typedef unsigned long ULONG;
typedef UCHAR near *PUCHAR;
typedef UCHAR far *FPUCHAR;
typedef USHORT near *PUSHORT;
typedef USHORT far *FPUSHORT;
typedef ULONG near *PULONG;
typedef ULONG far *FPULONG;
typedef char near *PCHAR;
typedef short near *PSHORT;

568

typedef long near *PLONG;
typedef void near *POINTER;
typedef POINTER near *PPOINTER;
typedef void far *FARPOINTER;
typedef FARPOINTER near *PFARPOINTER;
typedef FARPOINTER far *FPFARPOINTER;

typedef USHORT ERRCODE; // error code returned
typedef ERRCODE far *PERRCODE; // pointer to an error code
typedef UCHAR FLAG; // 8-bit flag
typedef FLAG far *PFLAG; // pointer to 8-bit flag
typedef USHORT SEL; // 16-bit selector
typedef SEL near *PSEL; // pointer to a selector
typedef SEL far *FPSEL; // far pointer to selector
typedef USHORT SEG; // 16-bit segment
typedef USHORT OFF; // 16-bit offset
typedef ULONG LOFF; // 32-bit offset
typedef USHORT PID; // Process ID
typedef USHORT TID; // Thread ID
typedef ULONG PHYSADDR; // 32-bit physical address
typedef ULONG LINADDR; // 32-bit linear address
typedef LINADDR far *PLINADDR; // pointer to 32 bit linear address
typedef PLINADDR far *PPLINADDR; // pointer to linear address pointer
typedef PHYSADDR far *PPHYSADDR; // pointer to 32-bit physical address
typedef char near *PSTRING; // pointer to character string
typedef char far *FPSTRING;// far pointer to string
typedef USHORT SHANDLE; // short (16-bit) handle
typedef SHANDLE far *PSHANDLE; // pointer to a short handle
typedef ULONG LHANDLE; // long (32-bit) handle
typedef LHANDLE far *PLHANDLE; // pointer to a long handle
typedef ULONG HSPINLOCK; // handle to spinlock
typedef HSPINLOCK *PHSPINLOCK;// pointer to spinlock handle

// pointers to functions

typedef int (pascal near *PFUNCTION) ();
typedef int (pascal near * near *PPFUNCTION) ();
typedef int (pascal far *FPFUNCTION) ();
typedef int (pascal far * near *PFPFUNCTION) ();

// macros

#define FALSE 0
#define TRUE 1

#define NP near pascal

// far pointer from selector-offset

#define MAKEP(sel, off) ((void far *) MAKEULONG(off, sel))

// get selector or offset from far pointer

#define SELECTOROF(p) (((USHORT far *) &(p)) [1])
#define OFFSETOF(p) (((USHORT far *) &(p)) [0])

// Combine l(ow) & h(igh) to form a 32 bit quantity.

569

#define MAKEULONG(l, h) ((ULONG)(((USHORT)(l)) | ((ULONG)((USHORT)(h))) <<
16))
#define MAKELONG(l, h) ((LONG)MAKEULONG(l, h))
#define MAKEBIGOFFSETOF(p) ((ULONG) (OFFSETOF (p)))

// Combine l(ow) & h(igh) to form a 16 bit quantity.

#define MAKEUSHORT(l, h) (((USHORT)(l)) | ((USHORT)(h)) << 8)
#define MAKESHORT(l, h) ((SHORT)MAKEUSHORT(l, h))

// get high and low order parts of a 16 and 32 bit quantity

#define LOBYTE(w) LOUCHAR(w)
#define HIBYTE(w) HIUCHAR(w)
#define LOUCHAR(w) ((UCHAR)(w))
#define HIUCHAR(w) (((USHORT)(w) >> 8) & 0xff)
#define LOUSHORT(l) ((USHORT)(l))
#define HIUSHORT(l) ((USHORT)(((ULONG)(l) >> 16) & 0xffff))

// the driver device header

typedef struct DeviceHdr
{
 struct DeviceHdr far *DHnext; // pointer to next header, or FFFF
 USHORT DHattribute; // device attribute word
 OFF DHstrategy; // offset of strategy routine
 OFF DHidc; // offset of IDC routine
 UCHAR DHname[8]; // dev name (char) or #units (blk)
 char reserved[8];
 ULONG bit_strip; // bit 0 DevIOCtl2, bit 1 32 bit addr
} DEVICEHDR;
typedef DEVICEHDR near *PDEVICEHDR;

// driver device attributes word

#define DAW_CHR 0x8000 // 1=char, 0=block
#define DAW_IDC 0x4000 // 1=IDC available in this DD
#define DAW_IBM 0x2000 // 1=non-IBM block format
#define DAW_SHR 0x1000 // 1=supports shared device access
#define DAW_OPN 0x0800 // 1=open/close, or removable media
#define DAW_LEVEL1 0x0080 // level 1
#define DAW_LEVEL2 0x0100 // level 2 DosDevIOCtl2
#define DAW_LEVEL3 0x0180 // level 3 bit strip
#define DAW_GIO 0x0040 // 1=generic IOCtl supported
#define DAW_CLK 0x0008 // 1=CLOCK device
#define DAW_NUL 0x0004 // 1=NUL device
#define DAW_SCR 0x0002 // 1=STDOUT (screen)
#define DAW_KBD 0x0001 // 1=STDIN (keyboard)

// capabilities bit strip

#define CBS_SHD 0x0001 // 1=shutdown/DevIOCtl2
#define CBS_HMEM 0x0002 // hign memory map for adapters
#define CBS_PP 0x0004 // supports parallel ports
#define CBS_ADD 0x0010 // driver is an ADD
#define CBS_INIT 000020 // driver receives InitComplete

// SaveMessage structure

570

typedef struct MessageTable
{
 USHORT id;
 USHORT fill_in_item;
 FARPOINTER item1;
 FARPOINTER item2;
 FARPOINTER item_last;
} MESSAGETABLE;

// OS/2 circular character queues

#define QUEUE_SIZE 512 // size of queues
typedef struct CharQueue
{
 USHORT qsize; // number of bytes in queue
 USHORT qchrout; // index of next char to put out
 USHORT qcount; // number of charactes in queue
 UCHAR qbuf[QUEUE_SIZE];
} CHARQUEUE;
typedef CHARQUEUE near *PCHARQUEUE;

// PortIO structure for SMP systems

typedef struct _PORTIO_STRUCT
{
 ULONG port; // port to read/write
 ULONG data // data to write or returned from read
 ULONG flags // flags defined below
} PORTIO_STRUCT;
typedef PORTIO_STRUCT far *PPORTIO_STRUCT;

// defines for PortIOStruct flags

#define PORTIO_READ_BYTE 0x00
#define PORTIO_READ_WORD 0x01
#define PORTIO_READ_DWORD 0x02
#define PORTIO_WRITE_BYTE 0x03
#define PORTIO_WRITE_WORD 0x04
#define PORTIO_WRITE_DWORD 0x05
#define PORTIO_FLAG_MASK 0x07

// AttachDD inter device driver communication data area

typedef struct AttachArea
{
 OFF realOFF; // real-mode offset of idc entry point
 SEG realCS; // real-mode CS of IDC entry point
 SEG realDS; // real-mode DS of IDC DD
 OFF protOFF; // protect-mode offset of entry point
 SEL protCS; // protect-mode CS of entry point
 SEL protDS; // protect-mode DS of other DD
 } ATTACHAREA;
typedef ATTACHAREA near *PATTACHAREA;

// driver request packet

typedef struct ReqPacket
{
 UCHAR RPlength; // request packet length

571

 UCHAR RPunit; // unit code for block DD only
 UCHAR RPcommand; // command code
 USHORT RPstatus; // status word
 UCHAR RPreserved[4]; // reserved bytes
 ULONG RPqlink; // queue linkage
 union { // command-specific data
 UCHAR avail[19];
 struct { // init
 UCHAR units; // number of units
 FPFUNCTION DevHlp; // &DevHlp
 char far *args; // &args
 UCHAR drive; // drive #
 }Init;
 struct {
 UCHAR units; // same as input
 OFF finalCS; // final offset, 1st code segment
 OFF finalDS; // final offset, 1st data segment
 FARPOINTER BPBarray; // &BPB
 } InitExit;

 struct { // read, write, write w/verify
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector#
 USHORT reserved;
 } ReadWrite;

 struct { // cached read, write, write w/verify
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector#
 USHORT reserved;
 } CReadWrite;

 struct { // system shutdown
 UCHAR subcode; // sub request code
 ULONG reserved;
 } Shutdown;

 struct { // open/close
 USHORT sysfilenum; // system file number
 } OpenClose;

 struct { // IOCtl
 UCHAR category; // category code
 UCHAR function; // function code
 FARPOINTER parameters; // ¶meters
 FARPOINTER buffer; // &buffer
 } IOCtl;

 struct { // read, no wait
 UCHAR char_returned; // char to return
 } ReadNoWait;

 struct { // media check
 UCHAR media; // media descriptor
 UCHAR return_code; // see #defines

572

 FARPOINTER prev_volume; // &previous volume ID
 } MediaCheck;

 struct { // build BPB
 UCHAR media; // media descriptor
 FARPOINTER buffer; // 1-sector buffer FAT
 FARPOINTER BPBarray; // &BPB array
 UCHAR drive; // drive #
 } BuildBPB;

 struct { // query partitionalble fixed disks
 UCHAR count; // # disks
 ULONG reserved;
 } Partitionable;

 struct { // fixed disk LU map
 ULONG units; // units supported
 ULONG reserved;
 } GetFixedMap;

 struct { // get driver capabilities
 UCHAR reserved[3];
 FARPOINTER capstruct; // 16:16 pointer to DCS
 FARPOINTER volcharstruct; // 16:16 pointer to VCS
 } GetDriverCaps;

 } s; // command info
} REQPACKET;

typedef REQPACKET far *PREQPACKET;
typedef PREQPACKET far *PPREQPACKET;
typedef PREQPACKET QHEAD; // Queue Head is &ReqPacket
typedef QHEAD near *PQHEAD;

// Global Info Seg

typedef struct _GINFOSEG
{
 ULONG time; // time in seconds
 ULONG msecs; // milliseconds
 UCHAR hour; // hours
 UCHAR minutes; // minutes
 UCHAR seconds; // seconds
 UCHAR hundredths; // hundredths
 USHORT timezone; // minutes from UTC
 USHORT cusecTimerInterval; // timter interval, .0001 secs
 UCHAR day; // day of month
 UCHAR month; // month, 1-12
 USHORT year; // year
 UCHAR weekday; // day of week, 0=Sunday, 1=Monday...
 UCHAR uchMajorVersion; // major version number
 UCHAR uchMinorVersion; // minor version number
 UCHAR chRevisionLetter; // rev level
 UCHAR sgCurrent; // current foreground session
 UCHAR sgMax; // max number of sessions
 UCHAR cHugeShift; // shift count for huge elements
 UCHAR fProtectModeOnly; // protect mode only
 USHORT pidForeground; // pid of last process in foreground
 UCHAR fDynamicSched; // dynamic variation flag

573

 UCHAR csecMaxWait; // max wait in seconds
 USHORT cmsecMinSlice; // min timeslice in milliseconds
 USHORT cmsecMaxSlice; // max timeslice in milliseconds
 USHORT bootdrive; // boot drive (0=a, 1=b...)
 UCHAR amecRAS[32]; // system trace major code flag bits
 UCHAR csgWindowableVioMax; // max number of VIO sessions
 UCHAR csgPMMax; // max number of PM sessions
} GINFOSEG;
typedef GINFOSEG far *PGINFOSEG;

// local info seg

typedef struct _LINFOSEG
{
 PID pidCurrent; // current process id
 PID pidParent; // process id of parent
 USHORT prtyCurrent; // priroty of current thread
 TID tidCurrent; // thread id of current thread
 USHORT sgCurrent; // current session id
 UCHAR rfProcStatus; // process status
 UCHAR dummy1; // reserved
 USHORT fForeground; // current process is in foreground
 UCHAR typeProcess; // process type
 UCHAR dummy2; // reserved
 SEL selEnvironment; // selector of environment
 USHORT offCmdLine; // command line offset
 USHORT cbDataSegment; // length of data segment
 USHORT cbStack; // stack size
 USHORT cbHeap; // heap size
 USHORT hmod; // module handle of application
 SEL selDS; // data segment handle of application
} LINFOSEG;

typedef LINFOSEG far *PLINFOSEG;

typedef struct _REGSTACK
{
 USHORT usStruct; // set to 14 before using
 USHORT usFlags; // 0x01 means that the interrupt proc
 // enables interrupts. All others resvd
 USHORT usIRQ; // IRQ of interrupt handler
 USHORT usStackCLI; // # of stack bytes with interrupts off
 USHORT usStackSTI; // # of stack bytes with interrupts on
 USHORT usStackEOI; // number of bytes needed after EOI
 USHORT usNest; // max number of nested levels
} REGSTACK;

typedef REGSTACK near *PREGSTACK;

// page list struct

typedef struct _PAGELIST
{
 ULONG pl_Physaddr;
 ULONG pl_cb;
} PAGELIST;
typedef PAGELIST far *PPAGELIST;

// RPstatus bit values

574

#define RPERR 0x8000 // error occurred, err in RPstatus
#define RPDEV 0x4000 // error code defined by driver
#define RPBUSY 0x0200 // device is busy
#define RPDONE 0x0100 // driver done with request packet

// error codes returned in RPstatus

#define ERROR_WRITE_PROTECT 0x0000
#define ERROR_BAD_UNIT 0x0001
#define ERROR_NOT_READY 0x0002
#define ERROR_BAD_COMMAND 0x0003
#define ERROR_CRC 0x0004
#define ERROR_BAD_LENGTH 0x0005
#define ERROR_SEEK 0x0006
#define ERROR_NOT_DOS_DISK 0x0007
#define ERROR_SECTOR_NOT_FOUND 0x0008
#define ERROR_OUT_OF_PAPER 0x0009
#define ERROR_WRITE_FAULT 0x000A
#define ERROR_READ_FAULT 0x000B
#define ERROR_GEN_FAILURE 0x000C
#define ERROR_DISK_CHANGE 0x000D
#define ERROR_WRONG_DISK 0x000F
#define ERROR_UNCERTAIN_MEDIA 0x0010
#define ERROR_CHAR_CALL_INTERRUPTED 0x0011
#define ERROR_NO_MONITOR_SUPPORT 0x0012
#define ERROR_INVALID_PARAMETER 0x0013
#define ERROR_DEVICE_IN_USE 0x0014

// driver request codes B=block, C=character

#define RPINIT 0x00 // BC
#define RPMEDIA_CHECK 0x01 // B
#define RPBUILD_BPB 0x02 // B
#define RPREAD 0x04 // BC
#define RPREAD_NO_WAIT 0x05 // C
#define RPINPUT_STATUS 0x06 // C
#define RPINPUT_FLUSH 0x07 // C
#define RPWRITE 0x08 // BC
#define RPWRITE_VERIFY 0x09 // BC
#define RPOUTPUT_STATUS 0x0a // C
#define RPOUTPUT_FLUSH 0x0b // C
#define RPOPEN 0x0d // BC
#define RPCLOSE 0x0e // BC
#define RPREMOVABLE 0x0f // B
#define RPIOCTL 0x10 // BC
#define RPRESET 0x11 // B
#define RPGET_DRIVE_MAP 0x12 // B
#define RPSET_DRIVE_MAP 0x13 // B
#define RPDEINSTALL 0x14 // C
#define RPPARTITIONABLE 0x16 // B
#define RPGET_FIXED_MAP 0x17 // B
#define RPSHUTDOWN 0x1c // BC
#define RPGET_DRIVER_CAPS 0x1d // B

// check for monitor call in DosOpen/DosClose

#define MON_OPEN_STATUS 0x08 // open from DosMonOpen
#define MON_CLOSE_STATUS 0x08 // close from DosMonClose

575

// media descriptor byte

#define MDB_REMOVABLE 0x04 // 1=removable
#define MDB_EIGHT_SECTORS 0x02 // 1=8 sectors per track
#define MDB_DOUBLE_SIDED 0x01 // 1=double-sided media

// return codes from MediaCheck

#define MC_MEDIA_UNCHANGED 0x01
#define MC_MEDIA_CHANGED 0xFF
#define MC_MEDIA_UNSURE 0x00

// event numbers for SendEvent

#define EVENT_SM_MOUSE 0x00 // session switch via mouse
#define EVENT_CTRLBRK 0x01 // control break
#define EVENT_CTRLC 0x02 // control C
#define EVENT_CTRLNUMLK 0x03 // control num lock
#define EVENT_CTRLPRTSC 0x04 // control printscreen
#define EVENT_SHFTPRTSC 0x05 // shift printscreen
#define EVENT_SM_KBD 0x06 // session switch hot key
#define EVENT_SM_CAD 0x07 // C-A-D
#define EVENT_KHP_RESET 0x08 // keyboard hot plug/reset
#define EVENT_PWR_SUSP 0x09 // power suspend
#define EVENT_NUM_POSS 0x0a // number of possible events

// defines for 1.x movedata function

#define MOVE_PHYSTOPHYS 0 // move bytes from phys to phys memory
#define MOVE_PHYSTOVIRT 1 // move bytes from phys to virt memory
#define MOVE_VIRTTOPHYS 2 // move bytes from virt to phys memory
#define MOVE_VIRTTOVIRT 3 // move bytes from virt to virt memory

// Micro Channel specific

int NP GetLIDEntry (USHORT, USHORT, USHORT, FPUSHORT);
int NP FreeLIDEntry (USHORT);
int NP ABIOSCall (USHORT, USHORT, FARPOINTER);
int NP ABIOSComm (USHORT, FARPOINTER);
int NP GetDeviceBlock(USHORT, FARPOINTER);

// special routines

void NP INT3 (void);
void NP Enable (void);
void NP Disable (void);
void NP Abort (void);
int NP SegLimit (SEL, OFF far *);
int NP MoveBytes (FARPOINTER,FARPOINTER,FLAG);
int NP MoveData (FARPOINTER, FARPOINTER, USHORT, USHORT);

// system services and misc.

int NP GetDOSVar (USHORT, FPFARPOINTER);
int NP SendEvent (USHORT, USHORT);
void NP SchedClockAddr (PFARPOINTER);
int NP AttachDD (PSTRING, PATTACHAREA);
int NP InternalError(PSTRING,USHORT);

576

int NP SaveMessage(FPSTRING);
int NP ProtToReal(void);
int NP RealToProt(void);
int NP SetROMVector(USHORT,PFUNCTION,PFUNCTION,FARPOINTER);

// process mgmt

void NP Yield (void);
void NP TCYield (void);
int NP Block (ULONG, ULONG, USHORT, FARPOINTER);
void NP Run (ULONG);
void NP DevDone (PREQPACKET);
int NP VideoPause(USHORT);

// memory management

int NP AllocPhys (ULONG, USHORT, PPHYSADDR);
int NP FreePhys (PHYSADDR);
int NP VerifyAccess (SEL, OFF, USHORT, USHORT);
int NP LockSeg (SEL, USHORT, USHORT, PLHANDLE);
int NP UnLockSeg (LHANDLE);

// address conversion

int NP AllocGDTSelector(USHORT, FARPOINTER);
int NP PhysToGDTSelector(PHYSADDR, USHORT, SEL, PERRCODE);
int NP VirtToPhys (FARPOINTER, PPHYSADDR);
int NP PhysToUVirt (PHYSADDR, USHORT, USHORT, FARPOINTER);
int NP PhysToVirt (PHYSADDR, USHORT, USHORT, FARPOINTER);
int NP UnPhysToVirt (void);

// request packet queue stuff

int NP AllocReqPacket (USHORT, PPREQPACKET);
void NP FreeReqPacket (PREQPACKET);
void NP PushReqPacket (PQHEAD, PREQPACKET);
void NP SortReqPacket (PQHEAD, PREQPACKET);
int NP PullReqPacket (PQHEAD, PPREQPACKET);
int NP PullParticular (PQHEAD, PREQPACKET);

// driver semaphores

int NP SemHandle (LHANDLE, FLAG, PLHANDLE);
int NP SemRequest (LHANDLE, ULONG, PERRCODE);
void NP SemClear (LHANDLE);

// circular character queues

void NP QueueInit (PCHARQUEUE);
void NP QueueFlush (PCHARQUEUE);
int NP QueueWrite (PCHARQUEUE, UCHAR);
int NP QueueRead (PCHARQUEUE, FPUCHAR);

// interrupt stuff

int NP SetIRQ (USHORT, PFUNCTION, USHORT);
int NP UnSetIRQ (USHORT);
int NP EOI (USHORT);
void NP ClaimInterrupt(void);

577

void NP RefuseInterrupt(void);
int NP RegisterStackUsage(PREGSTACK);

// timer stuff

int NP SetTimer (PFUNCTION);
int NP ResetTimer (PFUNCTION);
int NP TickCount (PFUNCTION, USHORT);

// device monitors

int NP MonCreate (PSHANDLE, FARPOINTER, FARPOINTER, PERRCODE);
int NP Register (SHANDLE, USHORT, PID, FARPOINTER, OFF, PERRCODE);
int NP MonWrite (SHANDLE, POINTER, USHORT, USHORT, ULONG, PERRCODE);
int NP MonFlush (SHANDLE, PERRCODE);
int NP DeRegister (SHANDLE, PID, PERRCODE);

// 2.x specfic

int NP RegisterPDD(FPUCHAR,FPFUNCTION);
int NP RegisterBeep(FPFUNCTION);
int NP Beep(USHORT,USHORT);
int NP FreeGDTSelector(USHORT);
int NP PhysToGDTSel(PHYSADDR,ULONG,SEL,USHORT,FPUSHORT);
int NP VMLock(LINADDR,ULONG,LINADDR,LINADDR,ULONG,FPULONG);
int NP VMUnlock(LHANDLE);
int NP VMAlloc(LINADDR,ULONG,ULONG,PLINADDR);
int NP VMFree(PHYSADDR);
int NP VMProcessToGlobal(LINADDR,ULONG,ULONG,PLINADDR);
int NP VMGlobalToProcess(LINADDR,ULONG,ULONG,PLINADDR);
int NP VirtToLin(FARPOINTER,PLINADDR);
int NP LinToGDTSelector(SEL,LINADDR,ULONG);
int NP GetDescInfo(SEL,FPUSHORT,FPULONG,FPULONG);
int NP LinToPageList(LINADDR,ULONG,LINADDR,FPULONG);
int NP PageListToLin(ULONG,LINADDR,PLINADDR);
int NP PageListToGDTSelector(SEL,ULONG,LINADDR,USHORT,FPUSHORT);
int NP RegisterTmrDD(FPFUNCTION,FPFARPOINTER,FPFARPOINTER);
int NP AllocCtxHook(OFF,ULONG,PLHANDLE);
int NP FreeCtxHook(LHANDLE);
int NP ArmCtxHook(ULONG,LHANDLE,ULONG);
int NP VMSetMem(LINADDR,ULONG,ULONG);
int NP OpenEventSem(LHANDLE);
int NP CloseEventSem(LHANDLE);
int NP PostEventSem(LHANDLE);
int NP ResetEventSem(LHANDLE,LINADDR);
int NP DynamicAPI(FARPOINTER,USHORT,USHORT,FPUSHORT);

// SMP DevHlps

int NP CreateSpinLock(PHSPINLOCK);
int NP FreeSpinLock(HSPINLOCK);
int NP AcquireSpinLock(HSPINLOCK);
int NP ReleaseSpinLock(HSPINLOCK);
int NP PortIO(PPORTIO_STRUCT);

int NP SetIRQMask(USHORT,USHORT);
int NP GetIRQMask(USHORT,FARPOINTER);

// these are the only API's available to the driver at Init time

578

#define APIENTRY far pascal

USHORT APIENTRY DosBeep(USHORT, USHORT);
USHORT APIENTRY DosCaseMap(USHORT, FARPOINTER, FARPOINTER);
USHORT APIENTRY DosChgFilePtr(SHANDLE, long, USHORT, FARPOINTER);
USHORT APIENTRY DosClose(SHANDLE);
USHORT APIENTRY DosDelete(FARPOINTER, ULONG);
USHORT APIENTRY DosDevConfig(FARPOINTER, USHORT, USHORT);
USHORT APIENTRY DosDevIOCtl(FARPOINTER, FARPOINTER, USHORT, USHORT, USHORT);
USHORT APIENTRY DosFindClose(SHANDLE);
USHORT APIENTRY DosFindFirst(FARPOINTER, FARPOINTER, USHORT, FARPOINTER,
 USHORT, FARPOINTER, ULONG);
USHORT APIENTRY DosFindNext(SHANDLE, FARPOINTER, USHORT, FARPOINTER);
USHORT APIENTRY DosGetEnv(FARPOINTER, FARPOINTER);
USHORT APIENTRY DosGetMessage(FARPOINTER, USHORT, FARPOINTER, USHORT,
 USHORT, FARPOINTER, FARPOINTER);
USHORT APIENTRY DosOpen(FARPOINTER, FARPOINTER, FARPOINTER, ULONG,
 USHORT, USHORT, USHORT, ULONG);
USHORT APIENTRY DosPutMessage(SHANDLE, USHORT, FARPOINTER);
USHORT APIENTRY DosQCurDir(USHORT, FARPOINTER, FARPOINTER);
USHORT APIENTRY DosQCurDisk(FARPOINTER, FARPOINTER);
USHORT APIENTRY DosQFileInfo(SHANDLE, USHORT, FARPOINTER, USHORT);
USHORT APIENTRY DosQFileMode(FARPOINTER, FARPOINTER, ULONG);
USHORT APIENTRY DosRead(SHANDLE, FARPOINTER, USHORT, FARPOINTER);
USHORT APIENTRY DosWrite(SHANDLE, FARPOINTER, USHORT, FARPOINTER);
USHORT APIENTRY DosCreatSpinLock (PHSPINLOCK);
USHORT APIENTRY DosFreeSpinLock (HSPINLOCK);
USHORT APIENTRY DosAcquireSpinLock (HSPINLOCK);
USHORT APIENTRY DosReleaseSpinLock (HSPINLOCK);

// end of DRVLIB.H

579

Skeleton Strategy Section

int main(PREQPACKET rp, int dev)

{
switch(rp->RPcommand) {

 case RPINIT: // 0x00

 // init called by kernel

 return Init(rp);

 case RPREAD: // 0x04

 return (RPDONE);

 case RPWRITE: // 0x08

 return (RPDONE);

 case RPINPUT_FLUSH: // 0x07

 return (RPDONE);

 case RPOUTPUT_FLUSH: // 0x0b

 return (RPDONE);

 case RPOPEN: // 0x0d

 return (RPDONE);

 case RPCLOSE: // 0x0e

 return (RPDONE);

 case RPIOCTL: // 0x10

switch (rp->s.IOCtl.function) {
case 0x00: // our function def 1

return (RPDONE);

case 0x01: // our function def 2
return (RPDONE);

 }

// deinstall request

case RPDEINSTALL: // 0x14
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 // all other commands are ignored

 default:

 return(RPDONE);

 }

580

}

Sample IOCtl Call, 16-Bit

if (DosDevIOCtl(&data_buf,&parm_buf,cat,func,dhandle))
 error

Sample IOCtl Call, 32-Bit

if (DosDevIOCtl(&data_buf,&parm_buf,cat,func,dhandle, ,,,,,))
 error

581

Sample Interrupt Handler

// 82050 interrupt handler

void interrupt_handler ()
{
 int rupt_dev;
 int source;
 int cmd_b;
 int st_b;
 int port;
 int temp;
 int rxlevel;

 port=UART_PORT_ADDRESS;
 outp((port+2),0x20); // switch to bank 1
 source = getsrc (); // get vector
 switch (source)
 {

 // optional timer service routine

 case timer :

 st_b=inp (port+3); // dec transmit cnt
 if (ThisReadRP == 0) // nobody waiting
 break;
 ThisReadRP->RPstatus=(RPDONE | RPERR | ERROR_NOT_READY);
 Run ((ULONG) ThisWriteRP);// run thread
 ThisWriteRP=0;
 break;

 case txm :
 case txf :

 // spurious write interrupt

 if (ThisWriteRP == 0)
 {
 temp=inp(port+2);
 break;
 }

 // keep transmitting until no data left

 if (!(QueueRead(&tx_queue,&outchar)))
 {
 outp((port), outchar);
 tickcount=MIN_TIMEOUT;
 break;
 }

 // done writing, run blocked thread

 tickcount=MIN_TIMEOUT;
 disable_write();
 ThisWriteRP->RPstatus = (RPDONE);
 Run ((ULONG) ThisWriteRP);

582

 ThisWriteRP=0;
 break;

 case ccr :

 // control character, treat as normal

 inchar=inp(port+5);

 case rxf :

 // rx fifo service routine

 if (ThisReadRP == 0)
 inchar=inp (port); // get character
 else
 {
 temp=inp(port+4);
 rxlevel=(temp & 0x70) / 0x10;

 // empty out chip FIFO

 while (rxlevel !=0) {

 inchar=inp (port); // get character
 rxlevel--;
 tickcount=MIN_TIMEOUT;

 // write input data to queue

 if(QueueWrite(&rx_queue,inchar))

 // error, queue must be full

 {
 ThisReadRP->RPstatus = (RPDONE|RPERR|ERROR_GEN_FAILURE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0;
 break;
 }
 com_error_word |= inp(port+5);

 } // while rxlevel
 } // else
 } // switch (source)
}

583

Sample Timer Handler

void timer_handler()
{
 if (ThisReadRP == 0)
 return;

 tickcount--;
 if(tickcount == 0) {
 ThisReadRP->RPstatus=(RPDONE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0L;
 tickcount=MIN_TIMEOUT;
 }
}

584

Simple OS/2 Parallel Physical Device Driver

//
 This driver supports DosOpen, DosClose, DosRead, DosWrite
 and IOCtl 0x91 codes 1, 2 and 3. All other driver calls and
 IOCtls are ignored (returns ERROR_BAD_COMMAND).

 The driver also uses these #defs

 #define DIGIO_CAT 0x91 driver category
 #define DIGIO_BASE 0x2c0 base port address
 #define DIGIO_OUTPUT DIGIO_BASE output port
 #define DIGIO_INPUT DIGIO_BASE+1 input port
 #define DIGIO_CONFIG DIGIO_BASE+3 initialization port

 1. Open the driver with:

 if ((RetCode=DosOpen("DIGIO$",
 &digio_handle,
 &ActionTaken,
 FileSize,
 FileAttribute,
 FILE_OPEN,
 OPEN_SHARE_DENYNONE | OPEN_FLAGS_FAIL_ON_ERROR
 | OPEN_ACCESS_READWRITE,Reserved)) !=0)
 printf("\nopen error = %d",RetCode);

 2. Output byte to the output port (base +0) with this IOCtl:

 DosDevIOCtl(NULL,&char,1,0x91,digio_handle);

 or with this standard request:

 DosWrite(digio_handle,&char,1,&bytes_written;

 3. Read data from the input port (base + 1) with this IOCtl.
 The driver will block until the bit in specified in the
 mask is set:

 DosDevIOCtl(&char,NULL,2,0x91,digio_handle);

 4. Read data from the input port (base + 1) with this IOCtl.
 This IOCtl returns immediately with the status:

 DosDevIOCtl(&char,NULL,3,0x91,digio_handle);

 or with this standard driver request:

 DosRead(digio_handle,&char,1,&bytes_read;

#include "drvlib.h"
#include "digio.h"

extern void STRATEGY(); // name of strat rout. in drvstart
extern void TIMER_HANDLER(); // timer handler in drvstart

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, // link

585

 (DAW_CHR | DAW_OPN | DAW_LEVEL1),// attribute word
 (OFF) STRATEGY, // &strategy
 (OFF) 0, // &IDC routine
 "DIGIO$ " // name/#units
};

FPFUNCTION DevHlp=0; // pointer to DevHlp entry point
UCHAR opencount = 0; // keeps track of open's
USHORT savepid=0; // save thread pid
LHANDLE lock_seg_han; // handle for locking appl. seg
PHYSADDR appl_buffer=0; // address of caller's buffer
ERRCODE err=0; // error return
ULONG ReadID=0L; // current read pointer
USHORT num_rupts=0; // count of interrupts
USHORT temp_char; // temp character for in-out
void far *ptr; // temp far pointer
FARPOINTER appl_ptr=0; // pointer to application buffer
char input_char,output_char; // temp character storage
char input_mask; // mask for input byte

// messages

char CrLf[]= "\r\n";
char InitMessage1[] = " 8 bit Digital I/O ";
char InitMessage2[] = " driver installed\r\n";
char FailMessage[] = " driver failed to install.\r\n";

// common entry point for calls to Strategy routines

int main(PREQPACKET rp)
{
 void far *ptr;
 PLINFOSEG liptr; // pointer to global info seg
 int i;

 switch(rp->RPcommand)
 {
 case RPINIT: // 0x00

 // init called by kernel in protected mode

 return Init(rp);

 case RPREAD: // 0x04

 rp->s.ReadWrite.count = 0; // in case we fail

 input_char = inp(DIGIO_INPUT);// get data

 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if (MoveBytes((FARPOINTER)&input_char,appl_ptr,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 rp->s.ReadWrite.count = 1; // one byte read
 return (RPDONE);

586

 case RPWRITE: // 0x08

 rp->s.ReadWrite.count = 0;

 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if (MoveBytes(appl_ptr,(FARPOINTER)&output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 outp (DIGIO_OUTPUT,output_char); // send byte

 rp->s.ReadWrite.count = 1; // one byte written
 return (RPDONE);

 case RPOPEN: // 0x0d open driver

 // get current process id

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // get process info

 liptr = *((PLINFOSEG far *) ptr);

 // if this device never opened, can be opened by anyone

 if (opencount == 0) // first time this dev opened
 {
 opencount=1; // bump open counter
 savepid = liptr->pidCurrent; // save current PID
 }
 else
 {
 if (savepid != liptr->pidCurrent) // another proc
 return (RPDONE | RPERR | ERROR_NOT_READY);//err
 ++opencount; // bump counter, same pid
 }
 return (RPDONE);

 case RPCLOSE: // 0x0e DosClose,ctl-C, kill

 // get process info of caller

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // get process info from os/2

 liptr= *((PLINFOSEG far *) ptr); // ptr to linfoseg

 //
 make sure that process attempting to close this device
 is the one that originally opened it and the device was
 open in the first place.

587

 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 --opencount; // close counts down open cntr
 return (RPDONE); // return 'done' status

 case RPIOCTL: // 0x10

 //
 The function code in an IOCtl packet has the high bit set
 for the DIGIO$ board. We return all others with the done
 bit set so we don't have to handle things like the 5-48
 code page IOCtl

 if (rp->s.IOCtl.category != DIGIO_CAT)// other IOCtls
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 switch (rp->s.IOCtl.function)
 {

 case 0x01: // write byte to digio port

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters), // selector
 OFFSETOF(rp->s.IOCtl.parameters), // offset
 1, // 1 byte
 0)) // read only
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if(MoveBytes(rp->s.IOCtl.parameters,(FARPOINTER)&output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 outp(DIGIO_OUTPUT,output_char); //send to digio
 return (RPDONE);

 case 0x02: // read byte w/wait from port

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 1, // 1 bytes)
 0)) // read only
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 1, // lock forever
 0, // wait for seg loc
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 if(MoveBytes(rp->s.IOCtl.parameters,(FARPOINTER)&input_mask,1))

588

 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // wait for switch to be pressed

 ReadID = (ULONG)rp; // block ID
 if (Block(ReadID,-1L,0,&err))
 if (err == 2)
 return(RPDONE | RPERR | ERROR_CHAR_CALL_INTERRUPTED);

 // move data to users buffer

 if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 case 0x03: // read byte immed digio port

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 4, // 4 bytes
 0)) // read only
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 input_char = inp(DIGIO_INPUT); // get data

 if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 default:
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 }

 // don't allow deinstall

 case RPDEINSTALL: // 0x14
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 // all other commands are flagged as bad

 default:
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 }
}

timr_handler()
{

589

 if (ReadID != 0)
 {
 // read data from port

 input_char = inp(DIGIO_INPUT);// get data

 if ((input_char && input_mask) !=0)
 {
 Run (ReadID);
 ReadID=0L;
 }
 }
}

// Device Initialization Routine

int Init(PREQPACKET rp)
{
 // store DevHlp entry point

 DevHlp = rp->s.Init.DevHlp;

 // install timer handler

 if(SetTimer((PFUNCTION)TIMER_HANDLER)) {

 // if we failed, effectively deinstall driver with cs+ds=0

 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(FailMessage),FailMessage);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 }

 // configure 8255 parallel chip

 outp (DIGIO_CONFIG,0x91);

 // output initialization message

 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1, strlen(InitMessage1), InitMessage1);
 DosPutMessage(1, strlen(InitMessage2), InitMessage2);

 // send back our code and data end values to os/2

 if (SegLimit(HIUSHORT((void far *) Init),
 &rp->s.InitExit.finalCS) || SegLimit(HIUSHORT((void far *)
 InitMessage2), &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

590

C Startup Routine for Parallel Device Driver

;
; C Startup routine for parallel device driver
;

EXTRN _main:near
EXTRN _timr_handler:near
PUBLIC _STRATEGY
PUBLIC __acrtused
PUBLIC _TIMER_HANDLER

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

assume cs:_TEXT, ds:DGROUP, es:NOTHING, ss:NOTHING
.286

_STRATEGY proc far
__acrtused: ;to satisfy C

start:
push es ; &reqpacket high part
push bx ; &reqpacket low part
call _main
pop bx
pop es
mov word ptr es:[bx+3],ax ; plug in status word
ret

_STRATEGY endp
;
_TIMER_HANDLER proc far
;

pusha ;save flags, regs
push ds
push es ;make up for the 'almost all' push
call _timr_handler ;handle interrupts
pop es
pop ds
popa ;restore everything and
ret ;bail out

;
_TIMER_HANDLER endp

_TEXT ends
end

591

Parallel Device Driver Include File

//
 digio.h memory map for os/2 device driver

#define DIGIO_CAT 0x91 // category for DosDevIOCtl
#define DIGIO_BASE 0x2c0 // board address

#define DIGIO_OUTPUT DIGIO_BASE // output port

#define DIGIO_INPUT DIGIO_BASE+1 // input port
#define DIGIO_CONFIG DIGIO_BASE+3 // initialization port

Parallel Device Driver Make File

digio.sys: drvstart.obj digio.obj
 link /nod /noi /map drvstart+digio,digio.sys,digio,\
c:\c6\lib\os2+c:\c6\lib\slibcep+c:\drvlib\drvlib\drvlib,digio.def
 mapsym digio

drvstart.obj: drvstart.asm
masm -Mx -e -t -L -N drvstart;

digio.obj: digio.c drvlib.h digio.h
cl -c -Asnw -Gs -G2 -Fc -Zl -Zp -Ox digio.c

Parallel Device Driver DEF File

LIBRARY DIGIO$
PROTMODE

592

Sample OS/2 Serial Device Driver

// file sample.c
 sample OS/2 serial device driver

#include "drvlib.h"
#include "uart.h"
#include "sample.h"

extern void near STRAT(); // name of strat rout.
extern void near TIMER(); // timer handler
extern int near INT_HNDLR(); // interrupt hand

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, // link
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),// attribute
 (OFF) STRAT, // &strategy
 (OFF) 0, // &IDCroutine
 "DEVICE1 "
 };

CHARQUEUE rx_queue; // receiver queue
CHARQUEUE tx_queue; // transmitter queue
FPFUNCTION Device_Help=0; // for DevHlp calls
LHANDLE lock_seg_han; // handle for locking
PHYSADDR appl_buffer=0; // address of caller
PREQPACKET p=0L; // Request Packet ptr
ERRCODE err=0; // error return
void far *ptr; // temp far pointer
DEVICEHDR *hptr; // pointer to Device
USHORT i; // general counter
UARTREGS uart_regs; // uart registers
ULONG WriteID=0L; // ID for write Block
ULONG ReadID=0L; // ID for read Block
PREQPACKET ThisReadRP=0L; // for read Request
PREQPACKET ThisWriteRP=0L;// for write Request
char inchar,outchar;// temp chars
USHORT baud_rate; // current baud rate
unsigned int savepid; // PID of driver own
UCHAR opencount; // number of times
ULONG tickcount; // for timeouts
unsigned int com_error_word; // UART status
USHORT port; // port variable
USHORT temp_bank; // holds UART bank
QUEUE rqueue; // receive queue info

void near init();
void near enable_write();
void near disable_write();
void near set_dlab();
void near reset_dlab();
void near config_82050();

char IntFailMsg[] = " interrupt handler failed to install.\r\n";
char MainMsg[] = " OS/2 Serial Device Driver V1.0 installed.\r\n";

// common entry point to strat routines

593

int main(PREQPACKET rp, int dev)
{
 void far *ptr;
 int far *pptr;
 PLINFOSEG liptr; // pointer to local info
 int i;
 ULONG addr;

 switch(rp->RPcommand)
 {
 case RPINIT: // 0x00

 // init called by kernel in prot mode

 return Init(rp,dev);

 case RPOPEN: // 0x0d

 // get current processes id

 if (GetDOSVar(2,&ptr))
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);

 // get process info

 liptr = *((PLINFOSEG far *) ptr);

 // if this device never opened

 if (opencount == 0) // 1st time dev op'd
 {
 ThisReadRP=0L;
 ThisWriteRP=0L;
 opencount=1; // set open counter
 savepid = liptr->pidCurrent; // PID
 QueueInit(&rx_queue);// init driver
 QueueInit(&tx_queue);
 }
 else
 {
 if (savepid != liptr->pidCurrent)
 return (RPDONE | RPERR | RPBUSY);
 ++opencount; // bump counter
 }
 return (RPDONE);

 case RPCLOSE: // 0x0e

 // get process info of caller

 if (GetDOSVar(2,&ptr))
 return (RPDONE|RPERR|ERROR_BAD_COMMAND); // no info

 // get process info from os/2

 liptr= *((PLINFOSEG far *) ptr); // PID
 if (savepid != liptr->pidCurrent ||
 opencount == 0)

594

 return (RPDONE|RPERR|ERROR_BAD_COMMAND);
 --opencount; // close counts down open

 if (ThisReadRP !=0 && opencount == 0) {
 Run((ULONG) ThisReadRP); // dangling
 ThisReadRP=0L;
 }
 return (RPDONE); // return 'done'

 case RPREAD: // 0x04

 // Try to read a character

 ThisReadRP = rp;
 if (opencount == 0)// drvr was closed
 {
 rp->s.ReadWrite.count = 0; // EOF
 return(RPDONE);
 }
 com_error_word=0;// start off no errors
 ReadID = (ULONG) rp;
 if (Block(ReadID, -1L, 0, &err))
 if (err == 2) // interrupted
 return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

 if (rx_queue.qcount == 0) {
 rp->s.ReadWrite.count=0;
 return (RPDONE|RPERR|ERROR_NOT_READY);
 }

 i=0;
 do {
 if (Movedata(&inchar,
 (FARPOINTER) (rp->s.ReadWrite.buffer+i),
 1,2))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);
 }
 while (++i < rp->s.ReadWrite.count
 && !QueueRead(&rx_queue,&inchar));
 rp->s.ReadWrite.count = i;
 QueueInit(&rx_queue);
 return(rp->RPstatus);

 case RPWRITE: // 0x08

 ThisWriteRP = rp;

 // transfer characters from user buffer

 addr=rp->s.ReadWrite.buffer;// get addr
 for (i = rp->s.ReadWrite.count; i; --i,++addr)
 {
 if (Movedata((FARPOINTER)addr,
 &outchar,1,1))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (QueueWrite(&tx_queue,outchar))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);
 }

595

 WriteID = (ULONG) rp;
 enable_write();

 if (Block(WriteID, -1L, 0, &err))
 if (err == 2) // interrupted
 return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

 tickcount=MIN_TIMEOUT; // reset timeout
 QueueInit(&tx_queue);
 return (rp->RPstatus);

 case RPINPUT_FLUSH: // 0x07

 QueueFlush(&rx_queue);
 return (RPDONE);

 case RPOUTPUT_FLUSH: // 0x0b

 QueueFlush(&tx_queue);
 return (RPDONE);

 case RPIOCTL: // 0x10

 if (!((rp->s.IOCtl.category == SAMPLE_CAT)
 || (rp->s.IOCtl.category == 0x01)))
 return (RPDONE);

 switch (rp->s.IOCtl.function)
 {
 case 0x41: // set baud rate
 // set baud rate to 1.2, 2.4, 9.6, 19.2
 // verify caller owns the buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters),
 OFFSETOF(rp->s.IOCtl.parameters),
 2, // two bytes
 1)) // read/write
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.parameters),
 0, // lock for < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // get physical address of buffer
 if (VirtToPhys(
 (FARPOINTER) rp->s.IOCtl.parameters,
 (FARPOINTER) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // move data to local driver buffer

 if(MoveData(
 (FARPOINTER) appl_buffer, // source

596

 &baud_rate, // destination
 2, // 2 bytes
 1)) // phys to virt
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt()) // release selector
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 switch (baud_rate)
 {
 case 1200:

 uart_regs.Bal=0xe0;
 uart_regs.Bah=0x01;
 break;

 case 2400:

 uart_regs.Bal=0xf0;
 uart_regs.Bah=0x00;
 break;

 case 9600:

 uart_regs.Bal=0x3c;
 uart_regs.Bah=0x00;
 break;

 case 19200:

 uart_regs.Bal=0x1e;
 uart_regs.Bah=0x00;
 break;

 case 38400:

 uart_regs.Bal=0x0f;
 uart_regs.Bah=0x00;
 break;

error:
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);

 }
 init(); // reconfigure uart
 return (RPDONE);

 case 0x68: // get number of chars

 // verify caller owns the buffer

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer),
 OFFSETOF(rp->s.IOCtl.buffer),

597

 4, // 4 bytes
 1)) // read/write
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer),
 0, // lock for < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // get physical address of buffer

 if (VirtToPhys(
 (FARPOINTER) rp->s.IOCtl.buffer,
 (FARPOINTER) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 rqueue.cch=rx_queue.qcount;
 rqueue.cb=rx_queue.qsize;

 // move data to local driver buffer

 if(Movedata(
 &rx_queue, // source
 (FARPOINTER) appl_buffer, // dest
 4, // 4 bytes
 2)) // virt to phys
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt())
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 return (RPDONE);

 case 0x6d: // get COM error info

 // verify caller owns the buffer

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer),
 OFFSETOF(rp->s.IOCtl.buffer),
 2, // two bytes
 1)) // read/write
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer),
 0, // lock for < 2 sec
 0, // wait for seg lock

598

 (PLHANDLE) &lock_seg_han)) // handle
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // get physical address of buffer

 if (VirtToPhys(
 (FARPOINTER) rp->s.IOCtl.buffer,
 (FARPOINTER) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 // move data to application buffer

 if(Movedata(
 &com_error_word, // source
 (FARPOINTER) appl_buffer, // dest
 2, // 2 bytes
 2)) // virt to phys
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt())
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 return (RPDONE);

 default:
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);
 }

 // don't allow deinstall

 case RPDEINSTALL: // 0x14
 return(RPDONE|RPERR|ERROR_BAD_COMMAND);

 // all other commands are ignored

 default:
 return(RPDONE);

 }
}

void enable_write()

// enable write interrupts on uart

{
 int port;
 int reg_val;

 port=UART_PORT_ADDRESS;
 reg_val=inp(port+2) & 0x60;
 set_bank(00);
 outp((port+1),inp(port+1) | 0x12);
 outp((port+2),reg_val);

599

}
void disable_write()

// turn off write interrupts on uart

{
 int port;
 int reg_val;

 port=UART_PORT_ADDRESS;
 reg_val=inp(port+2) & 0x60;
 set_bank(00);
 outp((port+1),inp(port+1) & 0xed);
 outp((port+2),reg_val);

}

void init ()

// intializes software and configures 82050

{
 config_82050 (); // Configure 82050
 set_bank(01);
}

void config_82050()

// Configure the 82050

{
 int port;
 int inval;

 Disable(); // disable interrupts
 port=UART_PORT_ADDRESS;

 // set stick bit

 set_bank(01); // stick bit
 outp((port+7),0x10); // reset port
 outp ((port+1), uart_regs.Txf);// stick bit

 set_bank (02); // general config
 outp ((port + 4), uart_regs.Imd);//auto rupt
 outp ((port + 7), uart_regs.Rmd);
 outp ((port + 5), uart_regs.Acr1);// cntl-z
 outp ((port + 3), uart_regs.Tmd);// no 9 bit
 outp ((port + 1), uart_regs.Fmd);// rx fifo
 outp ((port + 6), uart_regs.Rie);// enable

 set_bank (03); // modemconfiguration

 outp ((port + 0), uart_regs.Clcf);// clock
 set_dlab (03); //
 outp ((port + 0), uart_regs.Bbl);// BRGB lsb
 outp ((port + 1), uart_regs.Bbh);// BRGB msb
 reset_dlab (03); //

600

 outp ((port + 3), uart_regs.Bbcf);// BRGB
 outp ((port + 6), uart_regs.Tmie);// timer b

 set_bank (00); // general cfg
 outp ((port + 1), uart_regs.Ger);// enable
 outp ((port + 3), uart_regs.Lcr);// 8 bit
 outp ((port + 7), uart_regs.Acr0);// CR
 outp ((port + 4), uart_regs.Mcr_0);// no DTR
 set_dlab (00); //
 outp ((port + 0), uart_regs.Bal);// BRGA lsb
 outp ((port + 1), uart_regs.Bah);// BRGA msb
 reset_dlab (00);
 set_bank(01);

 Enable(); // turn on
}

void set_dlab (bank)

// Set DLAB bit to allow access to divisior registers

int bank;
{
 int inval;
 int port;

 port=UART_PORT_ADDRESS;
 set_bank (00);
 inval=inp(port +3);
 inval =inval | 0x80; // set dlab in LCR
 outp ((port+3),inval);
 set_bank (bank);
}

getsrc()

{
 int v,src;
 int port;

 port=UART_PORT_ADDRESS; // get base address
 v=inp(port+2); // get data
 src=v & 0x0e; // mask bits
 src=src/2; // divide by 2
 return(src); // and pass it back
}

set_bank(bank_num)

// set bank of 82050 uart

int bank_num;

{
 int reg_val;
 int port;

 reg_val=bank_num*0x20; // select bank numb
 port=UART_PORT_ADDRESS; // get real port

601

 outp(port+gir_addr,reg_val); // output
}

void reset_dlab (bank)

// Reset DLAB bit of LCR

int bank;

{
 int inval;
 int port;

 port=UART_PORT_ADDRESS;
 set_bank (00);
 inval=inp (port +3);
 inval = (inval & 0x7f); // dlab = 0 in LCR
 outp ((port+3),inval);
 set_bank (bank);
}

// 82050 interrupt handler

void interrupt_handler ()
{
 int rupt_dev;
 int source;
 int cmd_b;
 int st_b;
 int port;
 int temp;
 int rxlevel;

 port=UART_PORT_ADDRESS;
 outp((port+2),0x20); // switch to bank 1
 source = getsrc (); // get vector
 switch (source)
 {

 // optional timer service routine

 case timer :

 st_b=inp (port+3); // dec transmit count
 if (ThisReadRP == 0) // nobody waiting
 break;
 ThisReadRP->RPstatus=(RPDONE|RPERR|ERROR_NOT_READY);
 Run ((ULONG) ThisWriteRP);// run thread
 ThisWriteRP=0;
 break;

 case txm :
 case txf :

 // spurious write interrupt

 if (ThisWriteRP == 0) {
 temp=inp(port+2);

602

 break;
 }

 // keep transmitting until no data left

 if (!(QueueRead(&tx_queue,&outchar)))
 {
 outp((port), outchar);
 tickcount=MIN_TIMEOUT;
 break;
 }

 // done writing, run blocked thread

 tickcount=MIN_TIMEOUT;
 disable_write();
 ThisWriteRP->RPstatus = (RPDONE);
 Run ((ULONG) ThisWriteRP);
 ThisWriteRP=0;
 break;

 case ccr :

 // control character, treat as normal

 inchar=inp(port+5);

 case rxf :

 // rx fifo service routine

 if (ThisReadRP == 0)
 inchar=inp (port); // get character
 else
 {
 temp=inp(port+4);
 rxlevel=(temp & 0x70) / 0x10;

 // empty out chip FIFO

 while (rxlevel !=0) {

 inchar=inp (port); // get character
 rxlevel--;
 tickcount=MIN_TIMEOUT;

 // write input data to queue

 if(QueueWrite(&rx_queue,inchar))

 // error, queue must be full

 {
 ThisReadRP->RPstatus=(RPDONE|RPERR|ERROR_GEN_FAILURE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0;
 break;
 }
 com_error_word |= inp(port+5);

603

 } // while rxlevel
 } // else
 } // switch (source)
}
void timer_handler()
{
 if (ThisReadRP == 0)
 return;

 tickcount--;
 if(tickcount == 0) {
 ThisReadRP->RPstatus=(RPDONE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0L;
 tickcount=MIN_TIMEOUT;
 }
}

// Device Initialization Routine

int Init(PREQPACKET rp, int dev)
{
 register char far *p;

 // store DevHlp entry point

 Device_Help = rp->s.Init.DevHlp;

 // install interrupt hook in vector

 if (SetTimer((PFUNCTION)TIMER))
 goto fail;

 rx_queue.qsize=QUEUE_SIZE;
 tx_queue.qsize=QUEUE_SIZE; // init queue
 init(); // init the port
 tickcount=MIN_TIMEOUT; // set timeout

 if(SetIRQ(5,(PFUNCTION)INT_HNDLR,0)) {

 // if we failed, deinstall driver cs+ds=0
fail:
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage (1,strlen(IntFailMsg),IntFailMsg);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

// output initialization message

DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1, strlen(MainMsg), MainMsg);

// send back our cs and ds values to os/2

if (SegLimit(HIUSHORT((void far *) Init),&rp->s.InitExit.finalCS)
 || SegLimit(HIUSHORT((void far *) MainMsg),

604

 &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

Serial Device Driver Make File

sample.sys: drvstart.obj sample.obj drvlib.lib
link /nod /noi /map drvstart+sample,sample.sys,sample,\

c:\c6\lib\os2+c:\c6\lib\slibcep+c:\drvlib\drvlib\drvlib,sample.def
mapsym sample

drvstart.obj: drvstart.asm
masm -Mx -t -L -N drvstart;

sample.obj: sample.c drvlib.h sample.h uart.h
cl -c -Asnw -Gs -G2 -Fc -Zl -Zp -Ox sample.c

Serial Device Driver DEF File

LIBRARY SAMPLE
PROTMODE

605

Sample C Callable DevHlp Interface

; DevHlp 0x35
; this routine releases the logical ID (LID)
;
; C Calling Sequence:
; if (FreeLIDEntry (USHORT id)) err
;
 include drvlib.inc
;
 public FREELIDENTRY

extrn _DevHlp:dword
assume CS: _TEXT

_TEXT segment word public 'CODE'

FREELIDENTRY proc near

push bp
mov bp,sp
mov ax,[bp+4] ; logical ID
mov dl,DevHlp_FreeLIDEntry
call [_DevHlp]
jc error ; error from device help
xor ax,ax ; no errors
pop bp
ret 2 ; fix up the stack

error:
mov ax,1 ; return error for C
pop bp
ret 2 ; fix up stack and return

FREELIDENTRY endp
_TEXT ends
 end

606

C Callable Debugger Breakpoint

; int3.asm
;
; this is NOT a DevHlp, but merely a simple way to break the
; KDB at a specified point
;
; C calling sequence:
; INT3();
;
 .286

public INT3
assume CS: _TEXT

_TEXT segment word public 'CODE'
INT3 proc near

int 3
ret

INT3 endp
_TEXT ends

end

607

Data Transfer Routine

; movebyte.asm OS/2 Version 3.0
;
; this routine transfers data to and from the device driver
;
; C Calling Sequence:
; if (MoveBytes(far &From,far &To,USHORT Lenth)) err
;

.286
include drvlib.inc
public MOVEBYTES
extrn _DevHlp:dword
assume CS:_TEXT

_TEXT segment word public 'CODE'

MOVEBYTES proc near

push bp
mov bp,sp
pushf ; save flags
push di ; save segment regs
push si ; and others we use
push es
push ds
mov cx,[bp+4] ; length
or cx,cx ; exit if zero
mov ax,1 ; set for bad parameter
jz get_out
lds si,[bp+10] ; from
les di,[bp+6] ; to
cld
test cx,3 ; can we optimize?
jz double_move ; yep
test cx,1 ; if even number of bytes, save a
jz wordmove ; little time by doing a word move
rep movsb
jmp short finish ; done

double_move:
shr cx,2
rep movsd ; blast it
jmp short finish; done

wordmove:

shr cx,1 ; half the number of bytes
rep movsw

finish:
xor ax,ax

get_out:
pop ds
pop es
pop si ; restore regs
pop di
popf ;restore flags
pop bp

608

ret 10 ; fix up stack

MOVEBYTES endp
_TEXT ends

end

609

Sample DMA Routines

// DMA Channel data structure

typedef struct _DMACh {
 UCHAR Filler; // force all fields aligned

// boundaries
 UCHAR PageSelect; // page select
 USHORT BaseAddress; // base address

 USHORT WordCount; // word count
 } DMACh;

// DMA Channel 5

#define DMA_PAGE_SELECT_5 0x8B
#define DMA_BASE_ADDRESS_5 0xC4
#define DMA_WORD_COUNT_5 0xC6

// DMA Channel 6

#define DMA_PAGE_SELECT_6 0x89
#define DMA_BASE_ADDRESS_6 0xC8
#define DMA_WORD_COUNT_6 0xCA

// DMA Channel 7
#define DMA_PAGE_SELECT_7 0x8A
#define DMA_BASE_ADDRESS_7 0xCC
#define DMA_WORD_COUNT_7 0xCE

// Other DMA Registers

#define DMA_REFRESH_CHANNEL 0x8F
#define DMA_MASK_REGISTER 0xD4
#define DMA_MODE_REGISTER 0xD6
#define DMA_BYTE_POINTER_FLIPFLOP 0xD8
#define DMA_MASTER_RESET 0xDA
#define DMA_RESET_MASK_REGISTER 0xDC

// DMA Mode Flag Bit Definitions

#define DMA_WRITE 0x04 // write transfer
#define DMA_READ 0x08 // read transfer

#define DMA_AUTOINIT 0x10 // autoinit enabled
#define DMA_DECREMENT 0x20 // address dec selected

#define DMA_SINGLE 0x40 // SINGLE mode selected

#define DMA_BLOCK 0x80 // BLOCK mode selected
#define DMA_CASCADE 0xC0 // CASCADE mode selected

USHORT SetupDMA(USHORT channel)
 {
 if(DMAChannelBusy(channel))
 return (DMA_CHANNEL_BUSY);

610

 MaskDMA(channel);
 SetDMAMode(channel,DMA_SINGLE | DMA_READ);
 InitDMA(channel,(UCHAR) DMACh.PageSelect,

 (USHORT) DMACh.BaseAddress,
 (USHORT) DMACh.WordCount);

 UnmaskDMA(channel);
 return (DMA_COMPLETE);
 }

void MaskDMA(USHORT channel)
{
UCHAR channel_mask;

// output a channel specific value to mask a DMA channel

switch (channel) {

 case 5:
 channel_mask = 5;
 break;

 case 6:
 channel_mask = 6;
 break;

 case 7:
 channel_mask = 7;
 break;
 }
 out8reg(DMA_MASK_REGISTER,channel_mask);
}

void SetDMAMode(USHORT channel,UCHAR mode)
{
unsigned char mode_byte;

// output a channel specific value to unmask a DMA channel

switch (channel) {

 case 5:
 mode_byte = mode | 0x01;
 break;

 case 6:
 mode_byte = mode | 0x02;
 break;

 case 7:
 mode_byte = mode | 0x03;
 break;
 }
 out8reg(DMA_MODE_REGISTER,mode_byte);
}

611

void InitDMA(USHORT channel,UCHAR page,USHORT address,
 USHORT count)
{
// set up page select, addr, and cnt for specified channel

switch (channel) {

 case 5:
 out8reg(DMA_PAGE_SELECT_5,page);
 out16reg(DMA_BASE_ADDRESS_5,address);
 out16reg(DMA_WORD_COUNT_5,count);
 break;

 case 6:
 out8reg(DMA_PAGE_SELECT_6,page);
 out16reg(DMA_BASE_ADDRESS_6,address);
 out16reg(DMA_WORD_COUNT_6,count);
 break;

 case 7:
 out8reg(DMA_PAGE_SELECT_7,page);
 out16reg(DMA_BASE_ADDRESS_7,address);
 out16reg(DMA_WORD_COUNT_7,count);
 break;
 }
}

void UnmaskDMA(USHORT channel)
{
unsigned char unmask_byte;

// output a channel specific value to unmask a DMA channel

switch (channel) {

case 5:
 unmask_byte = 1;
 break;

case 6:
 unmask_byte = 2;
 break;

case 7:
 unmask_byte = 3;
 break;
 }
 out8reg(DMA_MASK_REGISTER,unmask_byte);
}

USHORT DMAChannelBusy(USHORT ch)
{

 UCHAR ch_status;
 USHORT rc;

612

// returns 0 if not busy, 1 if busy

 ch_status = inp (DMA_STATUS_REG47)
 rc = 0;
 switch(ch) {

 case 5:
 if (ch_status & 0x20)
 rc = 1;
 break;

 case 6:
 if (ch_status & 0x40)
 rc = 1;
 break;

 case 7:
 if (ch_status & 0x80)
 rc = 1;
 break
 }
 return (rc);
}

613

; out16reg(port,word);
;
; write a 16-bit value to a DMA register by issuing two
; consecutive writes to an 8-bit register
;
 .286

include mmap.inc

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

assume CS: _TEXT

_TEXT SEGMENT

_out16reg proc near

public _out16reg

cli
push bp
mov bp,sp ;set up base pointer
pusha ;save regs
pushf ;and flags
push es
push ds

;make sure that first write goes to low byte of register

mov dx,DMA_BYTE_POINTER_FLIPFLOP
mov al,0 ;reset byte pointer
out dx,al
jmp $+2 ;register delay
jmp $+2
mov dx,word ptr [bp+4] ;output port address
mov al,byte ptr [bp+6] ;byte to be output
out dx,al ;output low byte
jmp $+2
jmp $+2
mov al,byte ptr [bp+7];byte to be output
out dx,al ;output high byte
jmp $+2
jmp $+2
pop ds ;restore registers
pop es
popf
popa
pop bp
sti
ret

_out16reg endp

_text ends
end

614

; out8reg(port,byte)
;
; write a simple 8 bit register with interrupts off

.286

include mmap.inc

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

assume CS: _TEXT

_TEXT SEGMENT

_out8reg proc near

public _out8reg

cli
push bp
mov bp,sp ;set up base pointer
pusha ;save regs
pushf ;and flags
push es
push ds
mov dx,word ptr [bp+4] ;output register address
mov al,byte ptr [bp+6] ;byte to be output
out dx,al ;output low byte
jmp $+2
jmp $+2
pop ds ;restore registers
pop es
popf
popa
pop bp
sti
ret

_out8reg endp

_text ends
end

title _word_dma
.286P
.model small
include bsedos.inc

;
; dma set up and execute routine
;
; calling sequence:
;
; word_dma(USHORT operation, 1=write, 2=read [bp+4]
; USHORT channel, 5, 6 or 7 [bp+6]
; USHORT count, 0-65535 (0=1 word) [bp+8]
; ULONG address, far to/from address [bp+10,12]
; USHORT auto, 0 for single, 1 for auto [bp+14]
; USHORT init) 0 no auto init, 1 auto init [bp+16]

615

;
_text segment public 'CODE'

assume cs:_text,ds:NOTHING
public _word_dma

_word_dma proc near
push bp ;
mov bp,sp ;current frame pointer
cli ;disable rupts during dma setup
push bx
push dx
mov ax,[bp+6] ;get channel number
sub ax,4 ;minus 4 for second controller
mov bx,[bp+4] ;get mode byte and make command
shl bx,2 ;make valid mode bits
or ax,bx
mov bx,[bp+14] ;or in initialize bit
cmp bx,0 ;autoinitialize selected?
jz output ;no
or ax,010h ;yes, add in autoinitialize bit

output:
mov bx,[bp+16] ;block or single mode?
or ax,40h ;default single
cmp bx,0
jz single ;single mode
and ax,0bfh ;make block mode
or ax,080h

single:
out 0d8h,al ;set the first/last flip flop
jmp short $+2 ;small delay
out 0d6h,al ;output the mode byte
mov dx,[bp+6] ;get channel number
sub dx,4 ;minus 4 for second controller
mov ax,08ah ;set page register
add ax,dx ;
push dx ;save port temp
mov dx,ax ;put page register address in dx
mov ax,ds ;high page address
out dx,al ;do it
pop dx
rol dx,2 ;times 4 for proper address
add dx,0c0h ;this is port address
mov ax,[bp+10] ;low offset address
out dx,al
jmp short $+2
mov al,ah ;now high part
out dx,al ;do it
jmp short $+2
add dx,2 ;formulate count address
mov ax,[bp+8] ;put low and
out dx,al ;high count to controller
jmp short $+2
mov al,ah
out dx,al
jmp short $+2
sti ;re-enable interrupts
mov ax,4 ;request dma transfer
or ax,[bp+6] ;add in channel number
out 0d2h,al ;request dma transfer

616

jmp short $+2
pop dx
pop bx
pop bp
ret

;
_word_dma endp

_text ends
end

617

Obtaining POS Register Contents

USHORT get_POS(USHORT slot_num,USHORT far *card_ID,UCHAR far *pos_regs)
{
USHORT rc, i, lid;

if (GetLIDEntry(0x10, 0, 1, &lid)) // POS LID
 return (1);

// Get the size of the LID request block

ABIOS_l_blk.f_parms.req_blk_len=sizeof(struct lid_block_def);
ABIOS_l_blk.f_parms.LID = lid;
ABIOS_l_blk.f_parms.unit = 0;;
ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_l_blk.f_parms.ret_code = 0x5a5a;
ABIOS_l_blk.f_parms.time_out = 0;

if (ABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
 return (1);

lid_blk_size = ABIOS_l_blk.s_parms.blk_size;

// Fill POS regs with 0 and card ID with -1

*card_ID = 0xFFFF;
for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] =
 0x00; };

// Get the POS registers and card ID for slot

ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
ABIOS_r_blk.f_parms.LID = lid;
ABIOS_r_blk.f_parms.unit = 0;;
ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
ABIOS_r_blk.f_parms.ret_code = 0x5a5a;
ABIOS_r_blk.f_parms.time_out = 0;

ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & 0x0F;
ABIOS_r_blk.s_parms.pos_buf = (void far *) pos_regs;
ABIOS_r_blk.s_parms.card_ID = 0xFFFF;
if (ABIOSCall(lid,0,(void far *)&ABIOS_r_blk))
 rc = 1;
\else {
 *card_ID = ABIOS_r_blk.s_parms.card_ID;
 rc = 0;
 }
FreeLIDEntry(lid);
return(rc);
}

618

ABIOS Specific Include File

//
 ABIOS specific includes

#define POS_BASE 0x100 // MCA adapter base
#define NUM_POS_BYTES 64 // maximum num POS bytes
#define MAX_NUM_SLOTS 8 // model 80 8 slots
#define POS_PORT 0x96 // use this to enable POS
#define POS_BASE 0x100 // all POS regs start here

// Constants used by ABIOS calls

#define GET_LID_BLOCK_SIZE 0x01 // ABIOS command
#define POS_LID 0x10 // get POS LID from ABIOS
#define READ_POS_REGS_RAM 0x0B // read POS from NVRAM
#define WRITE_POS_REGS_RAM 0x0C // write NVRAM POS data
#define READ_POS_REGS_CARD 0x0D // read POS data from card
#define WRITE_POS_REGS_CARD 0x0E // write POS data to card

// ABIOS request function parameters

typedef struct function_parms_def {
 USHORT req_blk_len; // length, must be init.
 USHORT LID; // the LID
 USHORT unit; // unit within a LID
 USHORT function; // category of request
 USHORT resvd1; // reserved
 USHORT resvd2; // reserved
 USHORT ret_code; // return code
 USHORT time_out; // timeout in seconds
 } function_parms_type;

typedef struct service_parms_def {
 UCHAR slot_num; // 10h slot number
 UCHAR resvd3; // 11h reserved
 USHORT card_ID; // 12h card ID
 USHORT resvd4; // 14h reserved
 UCHAR far *pos_buf; // 16h address of buffer
 USHORT resvd5; // 1Ah reserved
 USHORT resvd6; // 1Ch reserved
 UCHAR resvd7[40]; // 1Eh work area
 } service_parms_type;

// LID request parameters

typedef struct lid_service_parms_def {
 UCHAR irpt_level; // 10h interrupt level
 UCHAR arb_level; // 11h arbitration level
 USHORT device_id; // 12h device ID
 USHORT unit_count; // 14h count of units
 USHORT flags; // 16h LID flags
 USHORT blk_size; // 18h req blk length
 USHORT secnd_id; // 1Ah secondary dev ID
 USHORT resvd6; // 1Ch reserved
 USHORT resvd7; // 1Eh reserved
 } lid_service_parms_type;

619

// complete request block

typedef struct req_block_def {
 function_parms_type f_parms;
 service_parms_type s_parms;
 } REQBLK;

// complete LID block

typedef struct lid_block_def {
 function_parms_type f_parms;
 lid_service_parms_type s_parms;
 } LIDBLK;

// card struct, contains ID and POS reg data

typedef struct card_def {
 USHORT card_ID; // ID of the card slot
 UCHAR pos_regs[NUM_POS_BYTES];
 } CARD;

IOPL Routine For 16-Bit and 32-Bit Applications

;
; Sample IOPL segment
;
 PUBLIC IN_PORT
 PUBLIC OUT_PORT

 .model large
 .286P

_IOSEG segment word public USE16 'CODE'

assume CS: _IOSEG, DS: DGROUP, SS: DGROUP
.286P

;
IN_PORT proc far
;
 push bp ;set up stack frame
 mov bp,sp ;save bp
 push dx ;save dx
 mov dx,[bp+6] ;get port address
 in ax,dx ;do input
 pop dx ;restore regs
 pop bp ;return in ax
 ret 2 ;remove from IOPL stack
;
IN_PORT endp

OUT_PORT proc far
;
 push bp ;set up stack frame
 mov bp,sp ;save it
 push ax ;save ax
 push dx ;and dx

620

 mov ax,[bp+6] ;get data
 mov dx,[bp+8] ;get port
 out dx,al ;do output
 pop dx ;restore regs
 pop ax
 pop bp
 ret 4 ;remove off local stack
;
OUT_PORT endp
_IOSEG ends
 end

IOPL Routine Make File

ioseg.dll: ioseg.obj
 link /MAP /NOI /NOD ioseg,ioseg.dll,ioseg,d:\lib\llibcdll+\
os2286,ioseg.def

ioseg.obj: ioseg.asm
 masm ioseg.asm;

IOPL Routine DEF File

LIBRARY
PROTMODE
STACKSIZE 8192
SEGMENTS
 _IOSEG IOPL
EXPORTS
 IN_PORT 1
 OUT_PORT 2

IOPL Test Program, 16-Bit

//
// testio.c - test IOPL functions
//

#define INCL_DOS
#include <os2.h>

#define INPUT_PORT 0x2f8
#define OUTPUT_PORT 0x2f8
#define TEST_DATA 0x41

extern far pascal in_port();
extern far pascal out_port();

int main()
{

 USHORT in_stuff;

621

 in_stuff = in_port (INPUT_PORT);
 out_port (OUTPUT_PORT,TEST_DATA);

}

IOPL Test Program Make File, 16-Bit

testio.exe: testio.obj ioseg.obj
link /CO /nod /noe /noi /map testio+ioseg,testio.exe,testio,\

c:\c6\lib\os2+c:\c6\lib\llibcep,testio.def

testio.obj: testio.c
cl -c -AL -G2 testio.c

ioseg.obj: ioseg.asm
 masm /MX /T ioseg.asm;

IOPL Test Program DEF File, 16-Bit

NAME TESTIO
STACKSIZE 8192
SEGMENTS
 _IOSEG IOPL
EXPORTS
 IN_PORT 1
 OUT_PORT 2
PROTMODE

IOPL Test Program, 32-Bit

/*
 testio.c - test IOPL functions
*/

#define INCL_DOS
#include <os2.h>

#define INPUT_PORT 0x2f8
#define OUTPUT_PORT 0x2f8
#define TEST_DATA 0x41

extern USHORT _Far16 _Pascal in_port(USHORT);
extern void _Far16 _Pascal out_port(USHORT,USHORT);

int main(vide)
{

 USHORT in_stuff;

 in_stuff = in_port (INPUT_PORT);
 out_port (OUTPUT_PORT,TEST_DATA);

}

622

IOPL Test Program Make File, 32-Bit

all: ioseg.lib testio32.exe

ioseg.lib: ioseg.def
 implib /nologo ioseg.lib ioseg.def

testio32.exe: testio32.obj ioseg.obj
link386 /noi /map /pm:vio testio32,,testio32,ioseg,testio32

testio32.obj: testio32.c
icc -c -Q -Gd testio32.c

IOPL Test Program DEF File, 32-Bit

NAME TESTIO32
PROTMODE

Device Driver For Memory-Mapped Adapters

// OS/2 Device Driver for memory mapped I/O
//
// Steve Mastrianni
// 15 Great Oak Lane
// Unionville, CT 06085
// (203) 693-0404 voice
// (203) 693-9042 data
// CI$ 71501,1652
// BIX smastrianni
//
// This driver is loaded in the config.sys file with the DEVICE=
// statement. For ISA configuration, the first parameter to the "DEVICE="
// is the board base memory address in hex.
//
// This driver also returns a boolean to the calling application to
// inform it of the bus type (Micro Channel or ISA).
//
// All numbers are in hex. For MCA configuration, the board address
// is read from the board POS regs. The POS regs data is specific for
// each adapter, so the address calculations here may not work with
// your specific adapter. Refer to the hardware tech reference for the
// particular adapter to determine where and how the address appears
// in the POS registers.
//
//
// This driver allows the application I/O to run in Ring 2 with IOPL.
// The CONFIG.SYS files *must* contain the IOPL=YES statement.
//
// This driver supports 4 IOCtls, Category 0x90.
//
// IOCtl 0x01 test for MCA or ISA bus
// IOCtl 0x02 gets and returns a selector to fabricated board memory
// IOCtl 0x03 gets the value of a selected POS register
// IOCtl 0x04 gets the board address that the driver found

623

//
// The driver is made by using the make file mmap.mak.

#include "drvlib.h"
#include "mmap.h"

extern void near STRATEGY(); // name of strat rout. in DDSTART

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, // link
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),// attribute
 (OFF) STRATEGY, // &strategy
 (OFF) 0, // &IDCroutine
 "MMAP$ "
};

FPFUNCTION DevHlp=0; // storage area for DevHlp calls
LHANDLE lock_seg_han; // handle for locking appl. segment
PHYSADDR appl_buffer=0; // address of caller's buffer
PREQPACKET p=0L; // pointer to request packet
ERRCODE err=0; // error return
void far *ptr; // temp far pointer
USHORT i,j; // general counters
PHYSADDR board_address; // base board address
USHORT opencount; // count of DosOpens
USHORT savepid; // save the caller's PID
USHORT cntr = 0; // misc counter
USHORT bus = 0; // default ISA bus
REQBLK ABIOS_r_blk; // ABIOS request block
LIDBLK ABIOS_l_blk; // ABIOS LID block
USHORT lid_blk_size; // size of LID block
CARD card[MAX_NUM_SLOTS+1]; // array for IDs and POS reg values
CARD *pcard; // pointer to card array
USHORT matches = 0; // match flag for card ID
POS_STRUCT pos_struct; // struct to get POS reg
ADDR_STRUCT addr_struct; // struct for passing addresses
USHORT chunk1,chunk2; // temp variables for address calc

char arguments[64]={0}; // save command line args in dgroup
char NoMatchMsg[] = " no match for selected Micro Channel card ID
found.\r\n";
char MainMsgMCA[] = "\r\nOS/2 Micro Channel memory-mapped driver
installed.\r\n";
char MainMsgISA[] = "\r\nOS/2 ISA bus memory-mapped driver
installed.\r\n";

// prototypes

int hex2bin(char c);
USHORT get_POS();
UCHAR get_pos_data();
UCHAR nget_pos_data();

// common entry point for calls to Strategy routines

int main(PREQPACKET rp)
{
 void far *ptr;
 int far *pptr;

624

 PLINFOSEG liptr; // pointer to local info seg
 int i;
 ULONG addr;
 USHORT in_data;

 switch(rp->RPcommand)
 {
 case RPINIT: // 0x00

 // init called by kernel in protected mode ring 3 with IOPL

 return Init(rp);

 case RPOPEN: // 0x0d

 // get current processes id

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // get process info

 liptr = *((PLINFOSEG far *) ptr);

 // if this device never opened, can be opened by any process

 if (opencount == 0) // first time this device opened
 {
 opencount=1; // set open counter
 savepid = liptr->pidCurrent; // save current process id
 }
 else
 {
 if (savepid != liptr->pidCurrent) // another proc tried to open
 return (RPDONE | RPERR | RPBUSY); // so return error
 ++opencount; // bump counter, same pid
 }
 return (RPDONE);

 case RPCLOSE: // 0x0e

 // get process info of caller

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND); // no info

 // get process info from os/2

 liptr= *((PLINFOSEG far *) ptr); // ptr to process info seg

 //
 // make sure that process attempting to close this device
 // one that originally opened it and the device was open in
 // first place.
 //

 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

625

 // if an LDT selector was allocated, free it

 PhysToUVirt(board_address,0x8000,2,
 (FARPOINTER) &addr_struct.mapped_addr);

 --opencount; // close counts down open counter
 return (RPDONE); // return 'done' status to caller

 case RPREAD: // 0x04

 return(RPDONE);

 case RPWRITE: // 0x08

 return (RPDONE);

 case RPIOCTL: // 0x10

 if (rp->s.IOCtl.category != OUR_CAT) // only our category
 return (RPDONE);

 switch (rp->s.IOCtl.function)
 {

 // this IOCtl returns the bus type. If the type is Micro Channel
 // the return is 0xff01. If ISA, the return is ff00

 case 0x01: // check if MCA or ISA
 return (RPDONE | RPERR | bus);

 // this IOCtl maps an adapter memory to an LDT selector:offset,
 // and sends it to the application for direct application reads
 // and writes

 case 0x02: // send memory-mapped addr to app

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 8, // 8 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // map the board address to an LDT entry

 if (PhysToUVirt(board_address,0x8000,1,
 (FARPOINTER) &addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

626

 // move data to users buffer

 if(MoveBytes(
 &addr_struct, // source
 rp->s.IOCtl.buffer, // dest
 8)) // 8 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 // this IOCtl demonstrates how an application program can get the
 // contents of a Micro Channel Adapter's POS registers

 case 0x03: // get pos reg data

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 6, // 6 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move slot data to driver buffer

 if(MoveBytes(
 (FARPOINTER) appl_buffer, // source
 &pos_struct, // for pos data
 6)) // 6 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 pos_struct.data = get_pos_data(pos_struct.slot,pos_struct.reg);

 // move POS reg data to users buffer

 if(MoveBytes(
 &pos_struct, // for pos data
 (FARPOINTER) appl_buffer, // source
 6)) // 6 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

627

 if(UnLockSeg(lock_seg_han))

 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 // this IOCtl is essentially the same as 0x02, except the
 // user virtual address is mapped to a linear address in the
 // process address range and then sent to the application. This
 // saves the SelToFlat and FlatToSel each time the pointer is
 // referenced.

 case 0x04: // 32-bit memory-mapped addr to app

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 8, // 8 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // map the board address to an LDT entry
 // we could have used VMAlloc

 if (PhysToUVirt(board_address,0x8000,1,
 (FARPOINTER) &addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // now convert it to a linear address

 if (VirtToLin((FARPOINTER)addr_struct.mapped_addr,
 (PLINADDR)&addr_struct.mapped_addr))

 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move data to users buffer

 if(MoveBytes(
 &addr_struct, // source
 rp->s.IOCtl.buffer, // dest
 8)) // 8 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

628

 } // switch (rp->s.IOCtl.function

 case RPDEINSTALL: // 0x14

 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 // all other commands are ignored

 default:
 return(RPDONE);

 }
}

int hex2bin(char c)
{
 if(c < 0x3a)
 return (c - 48);
 else
 return ((c & 0xdf) - 55);
}

// read all the POS register data into a structure

USHORT get_POS(USHORT slot_num,USHORT far *card_ID,UCHAR far *pos_regs)
{
USHORT rc, i, lid;

 if (GetLIDEntry(0x10, 0, 1, &lid)) // get LID for POS
 return (1);

 // Get the size of the LID request block

 ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
 ABIOS_l_blk.f_parms.LID = lid;
 ABIOS_l_blk.f_parms.unit = 0;;
 ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
 ABIOS_l_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_l_blk.f_parms.time_out = 0;

 if (ABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
 return (1);

 lid_blk_size = ABIOS_l_blk.s_parms.blk_size; // Get the block size

 // Fill POS regs and card ID with FF in case this does not work

 *card_ID = 0xFFFF;
 for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] = 0x00; };

 // Get the POS registers and card ID for the commanded slot

 ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
 ABIOS_r_blk.f_parms.LID = lid;
 ABIOS_r_blk.f_parms.unit = 0;;
 ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
 ABIOS_r_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_r_blk.f_parms.time_out = 0;

629

 ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & 0x0F;
 ABIOS_r_blk.s_parms.pos_buf = (void far *)pos_regs;
 ABIOS_r_blk.s_parms.card_ID = 0xFFFF;

 if (ABIOSCall(lid,0,(void far *)&ABIOS_r_blk))
 rc = 1;
 else { // Else
 *card_ID = ABIOS_r_blk.s_parms.card_ID; // Set the card ID value
 rc = 0;
 }
 FreeLIDEntry(lid);
 return(rc);

}

UCHAR get_pos_data (int slot, int reg)
{
 UCHAR pos;
 CARD *cptr;

 cptr = &card[slot-1]; // set pointer to beg of card array
 if (reg == 0) // card ID
 pos = LOUSHORT(cptr->card_ID);
 else
 if (reg == 1)
 pos = HIUSHORT(cptr->card_ID);
 else
 pos = cptr->pos_regs[reg-2]; // POS data register
 return (pos);
}

// Device Initialization Routine

int Init(PREQPACKET rp)
{
 USHORT lid;

 register char far *p;

 // store DevHlp entry point

 DevHlp = rp->s.Init.DevHlp; // save DevHlp entry point

 if (!(GetLIDEntry(0x10, 0, 1, &lid))) // get LID for POS regs
 {
 FreeLIDEntry(lid);

 // Micro Channel (tm) setup section

 bus = 1; // MCA bus

 // Get the POS data and card ID for each of 8 possible slots

 for (i=0;i <= MAX_NUM_SLOTS; i++)
 get_POS(i+1,(FARPOINTER)&card[i].card_ID,(FARPOINTER)card[i].pos_regs);

 matches = 0;
 for (i=0, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++)

630

 {
 if (pcard->card_ID == TARGET_ID)
 {
 matches = 1;
 break;
 }
 }

 if (matches == 0) // at least one board found
 {
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(NoMatchMsg),NoMatchMsg);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

 // calculate the board address from the POS regs

 board_address = ((unsigned long) get_pos_data(i+1, 4) << 16) |
 ((unsigned long)(get_pos_data(i+1, 3) & 1) << 15);
 }

 else

 {

 // ISA bus setup

 bus = 0; // ISA bus

 // get parameters, IRQ (not used yet), port addr and base mem addr

 for (p = rp->s.Init.args; *p && *p != ' ';++p);// skip driver name
 for (; *p == ' '; ++p); // skip blanks following driver name
 if (*p)
 {
 board_address=0; // i/o port address
 for (; *p != '\0'; ++p) // get board address
 board_address = (board_address << 4) + (hex2bin(*p));
 addr_struct.board_addr = board_address;
 }
 }

 if (bus)
 DosPutMessage(1,strlen(MainMsgMCA),MainMsgMCA);
 else
 DosPutMessage(1,strlen(MainMsgISA),MainMsgISA);

 // send back our cs and ds end values to os/2

 if (SegLimit(HIUSHORT((void far *) Init), &rp->s.InitExit.finalCS) ||
 SegLimit(HIUSHORT((void far *) MainMsgISA), &rp->s.InitExit.finalDS))
 Abort();

 Beep(200,500);
 Beep(200,500);
 Beep(250,500);
 Beep(300,500);

631

 Beep(250,500);
 Beep(300,500);
 return (RPDONE);

}

Memory-Mapped Device Driver DEF File

LIBRARY PAC
PROTMODE

Memory-Mapped Device Driver Make File

makefile for memory mapped driver

mmap.sys: ddstart.obj mmap.obj
link /nod /noi /map ddstart+mmap,mmap.sys,mmap,c:\c6\lib\os2+\

c:\lib\slibcep+c:\drvlib\drvlib\drvlib,mmap.def
 mapsym mmap

ddstart.obj: ddstart.asm
masm -Mx -t -L -N ddstart;

mmap.obj: mmap.c drvlib.h mmap.h
cl -Fa -c -Asnw -Gs -G2 -Zl -Zp -Ox mmap.c

Memory-Mapped Device Driver Header File

/*
 include file for memory-mapped driver
*/

#define OUR_CAT 0x91 /* category for DosDevIOCtl */
#define MEMSIZE 32768 /* 32 K bytes per adapter */
#define POS_BASE 0x100 /* MCA adapter base */
#define TARGET_ID 0x6CFD /* adapter ID */
#define NUM_POS_BYTES 64
#define MAX_NUM_SLOTS 8
#define MAX_DEV_NUMS 8
#define MAX_NUM_DSPS 5
#define READY 0xFFFF /* dsp read */
#define POS_PORT 0x96
#define POS_BASE 0x100

/* Constants used by ABIOS calls */

#define GET_LID_BLOCK_SIZE 0x01
#define POS_LID 0x10
#define READ_POS_REGS 0x0B
#define READ_POS_REGS_RAM 0x0B
#define READ_POS_REGS_CARD 0x0D

typedef struct _POS_STRUCT

632

{
 USHORT slo t;
 USHORT reg;
 USHORT data;
} POS_STRUCT;
typedef POS_STRUCT far *PPOS_STRUCT;

typedef struct _ADDR_STRUCT
{
 ULONG mapped_addr;
 ULONG board_addr;
} ADDR_STRUCT;
typedef ADDR_STRUCT far *PADDR_STRUCT;

typedef struct function_parms_def
{
 USHORT req_blk_len;
 USHORT LID;
 USHORT unit;
 USHORT function;
 USHORT resvd1;
 USHORT resvd2;
 USHORT ret_code;
 USHORT time_out;
} function_parms_type;

typedef struct service_parms_def
{
 UCHAR slot_num; /* 10h */
 UCHAR resvd3; /* 11h */
 USHORT card_ID; /* 12h */
 USHORT resvd4; /* 14h */
 UCHAR far *pos_buf; /* 16h */
 USHORT resvd5; /* 1Ah */
 USHORT resvd6; /* 1Ch */
 UCHAR resvd7[40]; /* 1Eh */
} service_parms_type;

typedef struct lid_service_parms_def
{
 UCHAR irpt_level; /* 10h */
 UCHAR arb_level; /* 11h */
 USHORT device_id; /* 12h */
 USHORT unit_count; /* 14h */
 USHORT flags; /* 16h */
 USHORT blk_size; /* 18h */
 USHORT secnd_id; /* 1Ah */
 USHORT resvd6; /* 1Ch */
 USHORT resvd7; /* 1Eh */
} lid_service_parms_type;

typedef struct req_block_def
{
 function_parms_type f_parms;
 service_parms_type s_parms;
} REQBLK;

typedef struct lid_block_def
{

633

 function_parms_type f_parms;
 lid_service_parms_type s_parms;
} LIDBLK;

typedef struct card_def
{
 USHORT card_ID; /* ID of the card in this slot */
 UCHAR pos_regs[NUM_POS_BYTES];
} CARD;

Memory-Mapped Device Driver Test Program - 16-Bit

#define INCL_DOSFILEMGR
#define INCL_DOS
#define INCL_DOSDEVICES
#define INCL_DOSDEVIOCTL
#include <os2.h>
#include <stdio.h>
#include "test.h"
HFILE driver_handle=0;
USHORT err;
UCHAR far *myptr=0;
USHORT ActionTaken;
USHORT rc;
ULONG FileSize=0;
USHORT FileAttribute;
ULONG Reserved=0L;
UCHAR Data1[8]={0};
UCHAR Data2=0;
PADDR_STRUCT paddr_ptr;

void main()
{

 // open the driver

 if ((rc = DosOpen("MMAP$ ",
 &driver_handle,
 &ActionTaken,
 FileSize,
 FileAttribute,
 FILE_OPEN,
 OPEN_SHARE_DENYNONE | OPEN_FLAGS_FAIL_ON_ERROR | OPEN_ACCESS_READWRITE,
 Reserved)) !=0)
 {
 printf("\nDosOpen failed, error = %d",rc);

 DosExit(EXIT_PROCESS,0);
 }

 printf ("Bus Type = ");

 rc = DosDevIOCtl(&Data1,&Data2,0x01,OUR_CAT,driver_handle);

 if (rc & 0x01)
 printf ("Micro Channel (tm)\n");
 else
 printf ("ISA\n");

634

 if (rc = DosDevIOCtl(&Data1,&Data2,0x02,OUR_CAT,driver_handle))
 {
 printf ("DevIOCtl failed, error code = %d\n",rc);

 DosExit(EXIT_PROCESS,0);
 }

 // pointer to data buffer

 paddr_ptr = (PADDR_STRUCT) Data1;

 printf ("Memory Mapped Address = %p\nPhysical Address = %lx\n",
 paddr_ptr->mapped_addr,paddr_ptr->board_addr);

 myptr = (void far *) paddr_ptr->mapped_addr;

 printf ("First Byte Of Adapter = %x\n",*myptr);

 // close driver

 DosClose(driver_handle);
}

Memory-Mapped Test Program Header File - 16-Bit

// include file for test.c

#define OUR_CAT 0x91 // category for DosDevIOCtl
#define DRIVER_BASE 0xD8000 // board address
#define BASE_LENGTH 0x1000 // length of memory map

typedef struct _ADDR_STRUCT {
void far *mapped_addr;
ULONG board_addr;
} ADDR_STRUCT;

typedef ADDR_STRUCT far *PADDR_STRUCT;

Memory-Mapped Test Program Def File - 16-Bit

protmode

Memory-Mapped Test Program Make File - 16-Bit

test.exe: test.obj
 link test,test,test,+c:\c6\lib\os2+c:\c6\lib\llibcep,,test.def

test.obj: test.c
 cl -AL -G2 -c test.c

635

Memory-Mapped Test Program - 32-Bit, 16-Bit Pointers

#define INCL_DOS
#include <os2.h>

#define EABUF 0L
#define OUR_CAT 0x91L
#define BUS_TYPE 0x01L
#define GET_PTR 0x02L
#define GET_POS 0x03L

typedef struct _ADDR_STRUCT
{
 void * _Seg16 mapped_addr; /* 16:16 pointer to adapter */
 ULONG board_addr;
} ADDR_STRUCT;

typedef ADDR_STRUCT *PADDR_STRUCT;

char buf[100] = {0};
USHORT BytesRead;
ULONG ActionTaken; /* for file opens */
APIRET rc; /* return code for driver open */
ULONG FileSize=0; /* NULL file size */
ULONG FileAttribute; /* attribute bits */
HFILE handle=0;
UCHAR parmbuf [20];
UCHAR databuf[20];
ULONG plength,dlength;
PADDR_STRUCT paddr_ptr;
UCHAR * _Seg16 myptr;

main()
{
 rc = DosOpen("MMAP$ ",
 &handle,
 &ActionTaken,
 FileSize,
 FileAttribute,
 OPEN_ACTION_OPEN_IF_EXISTS,
 OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE | OPEN_FLAGS_NOINHERIT,
 EABUF);
 if (rc)
 {
 printf("\nDosOpen failed, error = %ld",rc);
 DosExit(EXIT_PROCESS,0); /* exit gracefully */
 }

 printf ("Bus Type = ");

 rc =
DosDevIOCtl(handle,OUR_CAT,BUS_TYPE,0,0L,&plength,databuf,8L,&dlength);

 if (rc & 0x01)
 printf ("Micro Channel (tm)\n");
 else
 printf ("ISA\n");

636

 rc = DosDevIOCtl(handle,OUR_CAT,GET_PTR,0,0L,&plength,databuf,8L,&dlength);

 if (rc)
 {
 printf ("DevIOCtl failed, error code = %ld\n",rc);
 DosExit(EXIT_PROCESS,0);
 }

 paddr_ptr = (PADDR_STRUCT) databuf;

 printf ("Memory Mapped Address = %p\nPhysical Address = %lx\n",
 paddr_ptr->mapped_addr,paddr_ptr->board_addr);

 myptr = paddr_ptr->mapped_addr;

 printf ("First Byte Of Adapter = %x\n",*myptr);

 DosClose(handle);
}

Memory-Mapped Test Program DEF File - 32-Bit

name test32
protmode

Memory-Mapped Test Program Make File - 32-Bit

test32.exe: test32.obj
 link386 /MAP /NOI /PM:vio test32,test32,test32,,,test32.def

test32.obj: test32.c
 icc /c /Gt+ test32.c

Memory-Mapped Test Program - 32-Bit, 32-Bit Pointers

#define INCL_DOS
#include <os2.h>

#define EABUF 0L
#define OUR_CAT 0x91L
#define BUS_TYPE 0x01L
#define GET_PTR 0x02L
#define GET_POS 0x03L
#define GET_LIN 0x04L

typedef struct _ADDR_STRUCT {
void *mapped_addr; /* pointer to adapter memory */
ULONG board_addr;
} ADDR_STRUCT;

typedef ADDR_STRUCT *PADDR_STRUCT;

char buf[100] = {0};

637

USHORT BytesRead;
ULONG ActionTaken; /* for file opens */
APIRET rc; /* return code for driver open */
ULONG FileSize=0; /* NULL file size */
ULONG FileAttribute; /* attribute bits */
HFILE handle=0;
UCHAR parmbuf [20];
UCHAR databuf[20];
ULONG plength,dlength;
PADDR_STRUCT paddr_ptr;
UCHAR *myptr;

main()
{
 rc = DosOpen("MMAP$ ",
 &handle,
 &ActionTaken,
 FileSize,
 FileAttribute,
 OPEN_ACTION_OPEN_IF_EXISTS,
 OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE | OPEN_FLAGS_NOINHERIT,
 EABUF);
 if (rc)
 {
 printf("\nDosOpen failed, error = %ld",rc);
 DosExit(EXIT_PROCESS,0); /* exit gracefully */
 }

 printf ("Bus Type = ");

 rc =
DosDevIOCtl(handle,OUR_CAT,BUS_TYPE,0,0L,&plength,databuf,8L,&dlength);

 if (rc & 0x01)
 printf ("Micro Channel (tm)\n");

 else
 printf ("ISA\n");

 rc = DosDevIOCtl(handle,OUR_CAT,GET_LIN,0,0L,&plength,databuf,8L,&dlength);

 if (rc)
 {
 printf ("DevIOCtl failed, error code = %ld\n",rc);
 DosExit(EXIT_PROCESS,0);
 }

 paddr_ptr = (PADDR_STRUCT) databuf;

 printf ("Memory Mapped Address = %p\nPhysical Address = %lx\n",
 paddr_ptr->mapped_addr,paddr_ptr->board_addr);

 myptr = paddr_ptr->mapped_addr;

 printf ("First Byte Of Adapter = %x\n",*myptr);

 DosClose(handle);

}

638

Memory-Mapped Test Program DEF File - 32-Bit

protmode

Memory-Mapped Test Program Make File - 32-Bit

test32a.exe: test32a.obj
 link386 /MAP /NOI /PM:vio test32a,test32a,test32a,,,test32a.def

test32a.obj: test32a.c
 icc /c /Gt+ test32a.c

Macros

SelToFlat MACRO
;;
;; where AX = selector
;; BX = offset
;;
;; exit with EAX = linear address
;;
 shl eax,0dh
 and eax,01fff0000h
 mov ax,bx
;;
ENDM

FlatToSel MACRO
;;
;; where EAX = linear address
;;
;; exit with AX = selector, BX = offset
;;
 mov bx,ax
 shr eax,0dh
 or ax,0x7h
;;
ENDM

Sample PSD Source
(Courtesy IBM Corporation)

#define INCL_ERROR_H
#include <os2.h>
#include <psd.h>
#include <alr.h>
extern ulong_t RMP2Available(void);
/*
* Global Variables
*/

639

P_F_2 router = 0;
char *pParmString = 0;
int IODelayCount = 30;
PLMA *pPSDPLMA = 0;
ulong_t sizePLMA = 0;

/*** Disable - Disable interrupts
*
* This function disables interrupts, and returns
* the original state of eflags
*
* ENTRY None
*
* EXIT EFLAGS
*
*/
ulong_t Disable(void)
{
 ulong_t eflags;
 _asm
 {
 pushfd
 pop eax
 mov eflags,eax
 cli
 };
 return (eflags);
}
/*** Enable - Restore the state of eflags
*
* This function restores the state of eflags
*
* ENTRY eflags - state of eflags to restore
*
* EXIT None
*
*/
void Enable(ulong_t eflags)
{
 _asm
 {
 push eflags
 popfd
 };
 return;
}

/*** InByte - Read a byte from a port
*
* This function reads a byte from a specified port
*
* ENTRY port - port number to read from
*
* EXIT data read
*
*/
ulong_t InByte(ulong_t port)
{
 ulong_t data;

640

 _asm
 {
 mov dx,port
 in al,dx
 movzx eax,al
 mov data,eax
 };
 return (data);
}
/*** OutByte - Writes a byte to a port
*
* This function writes a byte to a specified port
*
* ENTRY port - port number to read from
* data - data to write
*
* EXIT None
*
*/
void OutByte(ulong_t port, ulong_t data)
{
 _asm
 {
 mov dx,port
 mov al,byte ptr data
 out dx,al
 };
 return;
}
/*** SendEOI - Send an end of interrupt
*
* This function sends an end of interrupt.
*
* ENTRY irq - irq level to end
*
* EXIT None
*
*/

ulong_t SendEOI(ulong_t irq)
{
 ulong_t flags;
 flags = Disable();
 if (irq < NUM_IRQ_PER_PIC)
 OutByte(PIC1_PORT0, OCW2_NON_SPECIFIC_EOI);
 else
 {
 OutByte(PIC2_PORT0, OCW2_NON_SPECIFIC_EOI);
 IODelay;
 OutByte(PIC1_PORT0, OCW2_NON_SPECIFIC_EOI);
 }
 Enable(flags);
}
/*** WHO_AM_I - Returns the current processor number
*
* This function returns the current processor number
*
* ENTRY NONE
*

641

* EXIT Current processor number (P1 or P2)
*
*/
ulong_t WHO_AM_I (void)
{
 return(InByte(WHO_AM_I_PORT));
}
/*** IPIPresent - Detects the presence of an IPI
*
* This function detects the presence of an IPI on the current
* processor
*
* ENTRY None
*
* EXIT NO_ERROR - IPI present
* -1 - IPI not present
*
*/
ulong_t IPIPresent (void)
{
 ulong_t rc = 0;
 struct control_s ctrl;
 ulong_t port;
 port = pPSDPLMA->controlport;
 ctrl.b_all = InByte(port);

 if (ctrl.b_387err)
 {
 OutByte (0xf0, 0); // The busy latch for NPX must be cleared.
 // When we call the interrupt handler
 // (w/ Call16bitDD int.asm), ints. are 1st enabled.
 // If the busy latch is not cleared, then we
 // will take this interrupt in again and will
 // eventually nest until the interrupt stack is
 // overrun.
 rc = -1;
 }

 return (rc);
}
/*** Install - Install PSD
*
* This function checks to see if this PSD is installable on the
* current platform.
*
* ENTRY pinstall - pointer to an INSTALL structure
*
* EXIT NO_ERROR - PSD Installed
* -1 - PSD not valid for this platform
*
*/
ulong_t Install(INSTALL *pinstall)
{
 VMALLOC vmac;
 int i;
 char *p;
 ulong_t rc = 0;
 char ALR_String[] = "PROVEISA";

642

 // _asm int 3;

 /* Setup Global variables */

 router = pinstall->pPSDHlpRouter;
 pParmString = pinstall->pParmString;
 pPSDPLMA = (void *)pinstall->pPSDPLMA;
 sizePLMA = pinstall->sizePLMA;
 vmac.addr = BIOS_SEG << 4;
 vmac.cbsize = _64K;
 vmac.flags = VMALLOC_PHYS;

 /* Map BIOS area */

 if ((rc = PSDHelp(router, PSDHLP_VMALLOC, &vmac)) == NO_ERROR)
 { /* Check for ALR string */
 p = (char *)vmac.addr + ALR_STRING_OFFSET;
 for (i = 0; ALR_String[i] != '\0'; i++)
 if (p[i] != ALR_String[i])
 {
 rc = -1;
 break;
 }

 /* Free BIOS mapping */

 PSDHelp(router, PSDHLP_VMFREE, vmac.addr);
 }
 return (rc);
}
/*** DeInstall - DeInstall PSD
*
* This function deinstalls the PSD.
*
* ENTRY None
*
* EXIT NO_ERROR
*
*/
ulong_t DeInstall(void)
{
 return (NO_ERROR);
}
/*** Init - Initialize the PSD
*
* This function initializes the PSD.
*
* ENTRY None
*
* EXIT NO_ERROR - PSD initialized
* -1 - PSD not initialized
*
*/
ulong_t Init(INIT *pinit)
{
 struct control_s ctrl;
 SET_IRQ set_irq;

 /* Initialize P1 control port */

643

 ctrl.b_all = 0;
 ctrl.b_cacheon = 1;
 OutByte(P1_PROCESSOR_CONTROL_PORT, ctrl.b_all);

 /* Setup P2 interrupt vector */

 OutByte(P2_INTERRUPT_VECTOR_CONTROL_PORT, IPI_VECTOR); /* Setup IPI info */
 set_irq.irq = 13;
 set_irq.flags = IRQf_IPI;
 set_irq.vector = 0;
 set_irq.handler = (P_F_2)IPIPresent;
 PSDHelp(router, PSDHLP_SET_IRQ, &set_irq);

 /* Fill init structure */

 pinit->flags = INIT_EOI_IRQ13_ON_CPU0; //76422
 pinit->version = VERSION;
 return (NO_ERROR);
}
/*** ProcInit - Processor initialization
*
* This function initializes per processor items.
*
* NOTE: This function is called once on each processor
* in the system.
*
* ENTRY None
*
* EXIT NO_ERROR - Processor initialized
* -1 - Processor not initialized
*
*/
ulong_t ProcInit(void)
{
 if (WHO_AM_I() == P1)
 {
 pPSDPLMA->procnum = 0;
 pPSDPLMA->controlport = P1_PROCESSOR_CONTROL_PORT;
 }
 else
 {
 pPSDPLMA->procnum = 1;
 pPSDPLMA->controlport = P2_PROCESSOR_CONTROL_PORT;
 }

 return (NO_ERROR);
}
/*** StartProcessor - Start a processor
*
* This function starts a processor.
*
* ENTRY procnum - processor number to start (0-based)
*
* EXIT Return Code
*
*/
ulong_t StartProcessor(ulong_t procnum)
{

644

 CALL_REAL_MODE rm;
 struct control_s ctrl;
 ulong_t rc = -1;

 if (procnum == 1)
 {
 rm.function = (ulong_t)&RMP2Available;
 rm.pdata = 0;
 rc = PSDHelp(router, PSDHLP_CALL_REAL_MODE, &rm);
 if (rc & P2_AVAILABLE)
 {

 /* Dispatch P2 */

 ctrl.b_all = 0;
 ctrl.b_cacheon = 1;
 OutByte(P2_PROCESSOR_CONTROL_PORT, ctrl.b_all);
 rc = NO_ERROR;
 }
 else
 rc = -1;
 }

 return (rc);
}
/*** GetNumOfProcs - Get number of processors
*
* This function gets the number of processors which exist on this
* platform.
*
* ENTRY None
*
* EXIT Number of processors
*
*/
ulong_t GetNumOfProcs(void)
{
 ulong_t cprocs = 2;
 return (cprocs);
}
/*** GenIPI - Generate an inter-processor interrupt
*
* This function generates an IPI.
*
* ENTRY procnum - processor number to interrupt (0-based)
*
* EXIT NO_ERROR
*
*/
ulong_t GenIPI(ulong_t procnum)
{
 struct control_s ctrl;
 ulong_t port;

 if (procnum == 0)
 port = P1_PROCESSOR_CONTROL_PORT;
 else
 port = P2_PROCESSOR_CONTROL_PORT;

645

 ctrl.b_all = InByte(port);
 ctrl.b_pint = 1;
 OutByte(port, ctrl.b_all);
 return (NO_ERROR);
}
/*** EndIPI - End an inter-processor interrupt
*
* This function ends an IPI.
*
* ENTRY procnum - processor number to end interrupt on (0-based)
*
* EXIT NO_ERROR
*
*/
ulong_t EndIPI(ulong_t procnum)
{
 struct control_s ctrl;
 ulong_t port;

 if (procnum == 0)
 port = P1_PROCESSOR_CONTROL_PORT;
 else
 port = P2_PROCESSOR_CONTROL_PORT;

 ctrl.b_all = InByte(port);
 ctrl.b_pint = 0;
 OutByte(port, ctrl.b_all);

 if (procnum == 0)
 SendEOI(IPI_IRQ);

 return (NO_ERROR);
}

 .386
_TEXT SEGMENT
 ASSUME CS:_TEXT,DS:NOTHING
 PUBLIC _RMP2Available

_RMP2Available PROC

 mov ah,0E2h
 mov al,0
 int 15h
 movzx eax,ax
 retf

_RMP2Available ENDP
_TEXT ENDS
 END

PSD.H

// XLATOFF

#ifndef ulong_t
typedef unsigned long ulong_t;

646

typedef unsigned short ushort_t;
typedef unsigned char uchar_t;
#endif

typedef int (*P_F_1)(ulong_t arg);
typedef int (*P_F_2)(ulong_t arg1, ulong_t arg2);

#define PSDHelp(router, function, arg) ((*router)((function), (ulong_t)(arg)))

// XLATON
/* ASM

P_F_1 struc
 dd ?
P_F_1 ends

P_F_2 struc
 dd ?
P_F_2 ends

*/

#define WARM_REBOOT_VECTOR_SEG 0x40
#define WARM_REBOOT_VECTOR_OFF 0x67

/* PSD Info structure */

typedef struct info_s
{
 ulong_t flags; /* PSD flags */
 ulong_t version; /* PSD version */
 ulong_t hmte; /* MTE handle of PSD */
 uchar_t *pParmString; /* Pointer to ASCIIZ PSD parameter */
 ulong_t IRQ_IPI; /* IRQ for IPI */
 ulong_t IRQ_LSI; /* IRQ for LSI */
 ulong_t IRQ_SPI; /* IRQ for SPI */
} PSDINFO;

/* PSD flags definition */

#define PSD_ADV_INT_MODE 0x20000000 /* PSD is in adv int mode #81531 */
#define PSD_INSTALLED 0x40000000 /* PSD has been installed */
#define PSD_INITIALIZED 0x80000000 /* PSD has been initialized */
 /* PSD function numbers-structures */
#define PSD_INSTALL 0x00000000 /* Install PSD */

typedef struct install_s
{
 P_F_2 pPSDHlpRouter; /* Address of PSDHlpRouter */
 char *pParmString; /* Pointer to parameter string */
 void *pPSDPLMA; /* Pointer to PSD's PLMA */
 ulong_t sizePLMA; /* Size of PLMA in bytes */
} INSTALL;

#define PSD_DEINSTALL 0x00000001 /* DeInstall PSD */
#define PSD_INIT 0x00000002 /* Initialize PSD */

typedef struct init_s
{

647

 ulong_t flags; /* Init flags */
 ulong_t version; /* PSD Version number */
} INIT;

#define INIT_GLOBAL_IRQ_ACCESS 0x00000001 /* Platform has global IRQ access */
#define INIT_USE_FPERR_TRAP 0x00000002 /* Use Trap 16 to report FP err's */
#define INIT_EOI_IRQ13_ON_CPU0 0x00000004 /* eoi IRQ 13 only if on cpu 0 */
#define INIT_TIMER_CPU0 0x00000008 /* system timer is on CPU 0 */
#define PSD_PROC_INIT 0x00000003 /* Initialize processor */
#define PSD_START_PROC 0x00000004 /* Start processor */
#define PSD_GET_NUM_OF_PROCS 0x00000005 /* Get number of processors */
#define PSD_GEN_IPI 0x00000006 /* Generate an IPI */
#define PSD_END_IPI 0x00000007 /* End an IPI */
#define PSD_PORT_IO 0x00000008 /* Port I/O */

typedef struct port_io_s
{
 ulong_t port; /* Port number to access */
 ulong_t data; /* Data read, or data to write */
 ulong_t flags; /* IO Flags */
} PORT_IO;

#define IO_READ_BYTE 0x0000 /* Read a byte from the port */
#define IO_READ_WORD 0x0001 /* Read a word from the port */
#define IO_READ_DWORD 0x0002 /* Read a dword from the port */
#define IO_WRITE_BYTE 0x0003 /* Write a byte to the port */
#define IO_WRITE_WORD 0x0004 /* Write a word to the port */
#define IO_WRITE_DWORD 0x0005 /* Write a dword to the port */
#define IO_FLAGMASK 0x0007 /* Flag mask */
#define PSD_IRQ_MASK 0x0009 /* Mask/Unmask IRQ levels */

typedef struct psd_irq_s
{
 ulong_t flags; /* IRQ flags */
 ulong_t data; /* IRQ data */
 /* depending on type of irq */
 /* operation, the data field */
 /* can contain any of the */
 /* following info: */
 /* 1) Mask or UNMasking data */
 /* 2) IRR or ISR reg values */
 /* 3) IRQ # for EOI operations */
 ulong_t procnum; /* Processor number */
} PSD_IRQ;

#define PSD_IRQ_REG 0x0000000A /* Access IRQ related regs */
#define PSD_IRQ_EOI 0x0000000B /* Issue an EOI */
#define IRQ_MASK 0x00000001 /* Turn on IRQ mask bits */
#define IRQ_UNMASK 0x00000002 /* Turn off IRQ mask bits */
#define IRQ_GETMASK 0x00000004 /* Get IRQ mask bits */
#define IRQ_NEWMASK 0x00000010 /* Set and/or Reset all masks */
#define IRQ_READ_IRR 0x00000100 /* Read the IRR reg */
#define IRQ_READ_ISR 0x00000200 /* Read the ISR reg */
#define PSD_APP_COMM 0x0000000C /* PSD/APP Communication */
#define PSD_SET_ADV_INT_MODE 0x0000000D /* Set advanced int mode */
#define PSD_SET_PROC_STATE 0x0000000E /* Set proc state; idle, or busy */
#define PROC_STATE_IDLE 0x00000000 /* Processor is idle */
#define PROC_STATE_BUSY 0x00000001 /* Processor is busy */
#define PSD_QUERY_SYSTEM_TIMER 0x0000000F /* Query Value of System Timer 0 */

648

typedef struct psd_qrytmr_s
{
 ulong_t qw_ulLo_psd; /* Timer count */
 ulong_t qw_ulHi_psd; /* Timer count */
 ulong_t pqwTmr; /* 16:16 ptr to qwTmr */
} PSD_QRYTMR;

#define PSD_SET_SYSTEM_TIMER 0x00000010 /* Set System Timer 0 counter */
typedef struct psd_settmr_s
{
 ulong_t NewRollOver; /* NewRollover */
 ulong_t pqwTmrRollover; /* 16:16 ptr to qwTmrRollover */
} PSD_SETTMR;

/* PSD helper function numbers-structures */

#define PSDHLP_VMALLOC 0x00000000 /* Allocate memory */
typedef struct vmalloc_s { /* vmalloc */
 ulong_t addr; /* Physical address to map */
 /* if VMALLOC_PHYS */
 /* Lin addr to alloc at */
 /* if VMALLOC_LOCSPECIFIC */
 /* on return, addr of allocation */
 ulong_t cbsize; /* Size of mapping in bytes */
 ulong_t flags; /* Allocation flags */
} VMALLOC;
#define VMALLOC_FIXED 0x00000001 /* Allocate resident memory */
#define VMALLOC_CONTIG 0x00000002 /* Allocate contiguous memory */
#define VMALLOC_LOCSPECIFIC 0x00000004 /* Alloc at a specific lin address*/
#define VMALLOC_PHYS 0x00000008 /* Map physical address */
#define VMALLOC_1M 0x00000010 /* Allocate below 1M */
#define VMALLOC_FLAGMASK 0x0000001f /* Valid flag mask */
#define PSDHLP_VMFREE 0x00000001 /* Free memory */
#define PSDHLP_SET_IRQ 0x00000002 /* Set up an IRQ */
typedef struct set_irq_s { /* set_irq */
 ushort_t irq; /* IRQ level */
 ushort_t flags; /* Set IRQ flags */
 ulong_t vector; /* IRQ interrupt vector */
 P_F_2 handler; /* IRQ handler */
} SET_IRQ;
#define IRQf_IPI 0x0020 /* IRQ for IPI */
#define IRQf_LSI 0x0040 /* IRQ for LSI */
#define IRQf_SPI 0x0080 /* IRQ for SPI */
#define PSDHLP_CALL_REAL_MODE 0x00000003 /* Call a function in real mode */
typedef struct call_real_mode_s { /* call_real_mode */
 ulong_t function; /* Function address */
 ulong_t pdata; /* Pointer to data area */
} CALL_REAL_MODE;
#define PSDHLP_VMLINTOPHYS 0x00000004 /* Convert linear addr to phys */
#define PSDHLP_ADJ_PG_RANGES 0x00000005 /* Adjust page ranges */
typedef struct _pagerange_s { /* pagerange */
 ulong_t lastframe; /* Last valid page in range */
 ulong_t firstframe; /* First valid page in range */
};
typedef struct adj_pg_ranges_s{ /* adj_pg_ranges */
 struct _pagerange_s *pprt; /* Pointer to page range table */
 ulong_t nranges; /* Num of ranges in range table */
} ADJ_PG_RANGES;

649

/* PSD function prototypes */

extern void PSDEnter (ulong_t function, ulong_t arg, P_F_2 altEntry);

/*
* Miscellaneous
*/

#define VERSION 0x00000010
#define _64K (64 * 1024)
#define BIOS_SEG 0xF000
#define ALR_STRING_OFFSET 0xEC47
#define P2_AVAILABLE 0x00008000

/*
* PLMA structure
*/

typedef struct plma_s
{
 ulong_t procnum; /* Current processor number (0-based)
*/
 ulong_t controlport; /* Control port for current processor
*/
} PLMA;

/*
* Generate delay between I/O instructions
*/

#define IODelay {int i; for(i = 0; i < IODelayCount; i++); }
/*
* IPI info
*/

#define IPI_IRQ 0x0d /* IRQ level for IPI */
#define IPI_VECTOR 0x75 /* Vector number for IPI */

/*
* PIC Info
*/

#define NUM_IRQ_PER_PIC 0x08
#define OCW2_NON_SPECIFIC_EOI 0x20
#define PIC1_PORT0 0x20
#define PIC1_PORT1 0x21
#define PIC2_PORT0 0xA0
#define PIC2_PORT1 0xA1

/*
* The contents of the WHO_AM_I port (read-only) can be used
* by code to determine which processor we are currently on
*/

#define WHO_AM_I_PORT 0xC70
#define P1 0x00
#define P2 0xF0

/*

650

* The processor control port contains the bits used to control
* various functions of the associated processor
*/

#define P1_PROCESSOR_CONTROL_PORT 0x0C6A
#define P2_PROCESSOR_CONTROL_PORT 0xFC6A

struct _b_control_s
{
 ulong_t _reset:1, /* RESET-(Not implemented for P1)
*/
 /* 1 = Resets processor
*/
 _387pres:1, /* 387PRES - (Read only)
*/
 /* 0 = 80387 is not installed
*/
 /* 1 = 80387 is installed
*/
 _cacheon:1, /* CACHEON-(Not implemented for P1

*/
 /* 0 = Disables cache

*/
 /* 1 = Enables cache
*/
 _mbusaccess:1, /* M Bus Access (Not implemented for P1)

*/
 /* 0 = Allows the processor to gain

*/
 /* control of the memory bus
*/
 /* 1 = Prohibits the processor from
gaining */
 /* access to the memory bus. The
*/
 /* processor can execute instructions
*/
 /* from its cache; however, cache read
*/
 /* misses, I/O, and writes cause the
*/
 /* processor to cease executing
*/
 /* instructions until the bit becomes
*/
 /* a "0"
*/
 _flush:1, /* FLUSH
*/
 /* Writing a "1" to this bit followed by
a "0"*/
 /* causes invalidation of all cache
address */
 /* information
*/
 _387err:1, /* 387ERR
*/
 /* 0 = No 80387 error
*/

651

 /* 0 = An 80387 error has occurred. This
bit */
 /* must be cleared by software
*/
 _pint:1, /* PINT
*/
 /* A low-to-high transition of this bit
cause */
 /* an interrupt. This bit must be cleared
by */
 /* software, preferably by the int
service */
 /* routine. On P2, the value stored in
FC68h */
 /* contains the interrupt number. P1 is
alway */
 /* interrupted with IRQ13
*/
 _intdis:1, /* INTDIS
*/

 /* When set to "1", this bit disables int
*/
 /* sent to the proc by way of the PINT
bit. */
 /* The PINT bit can still be changed when
*/
 /* interrupts are disabled; however, the
*/
 /* low-to-high transition is not seen by
the */
 /* proc.until the INTDIS bit is made
inactive */
 _pad:24;
};
struct _l_control_s { /* to treat control as an unsigned long
*/
 unsigned long _long;
};

union _control_u
{
 struct _b_control_s b_control_s;
 struct _l_control_s l_control_s;
};

struct control_s
{
 union _control_u control_u;
};

#define b_reset control_u.b_control_s._reset
#define b_387pres control_u.b_control_s._387pres
#define b_cacheon control_u.b_control_s._cacheon
#define b_mbusaccess control_u.b_control_s._mbusaccess
#define b_flush control_u.b_control_s._flush
#define b_387err control_u.b_control_s._387err
#define b_pint control_u.b_control_s._pint
#define b_intdis control_u.b_control_s._intdis

652

#define b_all control_u.l_control_s._long

/*
* The interrupt vector control port contains the 8-bit interrupt
* number that is executed when the PINT bit transitions from "0"
* to "1". This vector is only used for P2. P1 is always interrupted
* with IRQ 13.
*/

#define P2_INTERRUPT_VECTOR_CONTROL_PORT 0xFC68

/*
* The following ports contain the EISA identification of the
* system processor boards
*/

#define COMPAQ_ID1 0x0000000E
#define COMPAQ_ID2 0x00000011
#define P1_EISA_PRODUCT_ID_PORT1 0x0C80 /* Compressed COMPAQ ID - OEh
*/
#define P1_EISA_PRODUCT_ID_PORT2 0x0C81 /* 11h
*/
#define P1_EISA_PRODUCT_ID_PORT3 0x0C82 /* Product code for the proc board
*/
#define P1_EISA_PRODUCT_ID_PORT4 0x0C83 /* Revision number
*/
#define P2_EISA_PRODUCT_ID_PORT1 0xFC80 /* Compressed COMPAQ ID - OEh
*/
#define P2_EISA_PRODUCT_ID_PORT2 0xFC81 /* 11h
*/
#define P2_EISA_PRODUCT_ID_PORT3 0xFC82 /* Product code for the proc board
*/
#define P2_EISA_PRODUCT_ID_PORT4 0xFC83 /* Revision number
*/

/*
* Any write to The RAM Relocation Register (memory mapped)
* will flush the caches of both P1 and P2
*/

#define RAM_RELOCATION_REGISTER 0x80C00000

/*
* The P1 Cache Control Register (memory mapped)
*/

#define P1_CACHE_CONTROL_REGISTER 0x80C00002

struct p1cache_s
{
 ulong_t _reserved1:6,
 _p1cc:1, /* P1 Cache Control */
 /* 0 = Disables P1 cache */
 /* 1 = Enables P1 cache */
 _reserved2:9;
};

/*
* Expanision board control ports

653

*/

#define P1_EISA_EXPANSION_BOARD_CONTROL 0x0C84
#define P2_EISA_EXPANSION_BOARD_CONTROL 0xFC84

#/***/
#/* */
#/* PSD Name: ALR.PSD - ALR PSD */
#/* ----------------------------------- */
#/* */
#/* Source File Name: MAKEFILE */
#/* */
#/* Descriptive Name: MAKEFILE for the ALR PSD */
#/* */
#/* Function: */
#/* */
#/* */
#/*---*/
#/* */
#/* Copyright (C) 1992 IBM Corporation */
#/* */
#/* DISCLAIMER OF WARRANTIES. The following [enclosed] code is */
#/* provided to you solely for the purpose of assisting you in */
#/* the development of your applications. The code is provided */
#/* "AS IS", without warranty of any kind. IBM shall not be liable */
#/* for any damages arising out of your use of this code, even if */
#/* they have been advised of the possibility of such damages. */
#/* */
#/*---*/
#/* */
#/* Change Log */
#/* */
#/* Mark Date Programmer Comment */
#/* ---- ---- ---------- ------- */
#/* @nnnn mm/dd/yy NNN */
#/* */
#/* */
#/***/
****** NOTE ******
#
If you are using a SED command with TAB characters, many editors
will expand tabs causing unpredictable results in other programs.
#
Documentation:
#
Using SED command with TABS. Besure to invoke set tab save option
on your editor. If you don't, the program 'xyz' will not work
correctly.
#
#**
Dot directive definition area (usually just suffixes)
#**
.SUFFIXES:
.SUFFIXES: .com .sys .exe .obj .mbj .asm .inc .def .lnk .lrf .crf .ref
.SUFFIXES: .lst .sym .map .c .h .lib
#**

654

Environment Setup for the component(s).
#**
#
Conditional Setup Area and User Defined Macros
#

#
Compiler Location w/ includes, libs and tools
#
INC = ..\..\..\inc
H = ..\..\..\h
LIB = ..\..\..\lib386;..\..\..\lib
TOOLSPATH = ..\..\..\tools
#
Because the compiler/linker and other tools use environment
variables (INCLUDE, LIB, etc) in order to get the location of files,
the following line will check the environment for the LIFE of the
makefile and will be specific to this set of instructions. All MAKEFILES
are requested to use this format to insure that they are using the correct
level of files and tools.
#
!if [set INCLUDE=$(INC)] || \
 [set LIB=$(LIB)] || [set PATH=$(TOOLSPATH);$(DK_TOOLS)]
!endif
#
Compiler/tools Macros
#
AS=masm
CC=cl386
IMPLIB=implib
IPF=ipfc
LIBUTIL=lib
LINK=link386
MAPSYM=mapsym
RC=rc
#
Compiler and Linker Options
#
AFLAGS = -MX -T -Z $(ENV)
AINC = -I. -I$(INC)
CINC = -I$(H) -I$(MAKEDIR)
CFLAGS = /c /Zp /Gs /AS $(ENV)
LFLAGS = /map /nod /exepack
LIBS = os2386.lib
DEF = ALR.def
#**
Set up Macros that will contain all the different dependencies for the
executables and dlls etc. that are generated.
#**
#
#
#
OBJ1 = entry.obj main.obj
#
LIST Files
#
LIST =
OBJS = $(OBJ1)

655

#**
Setup the inference rules for compiling and assembling source code to
object code.
#**
.asm.obj:
 $(AS) $(AFLAGS) $(AINC) $*.asm;
.asm.mbj:
$(AS) $(AFLAGS) -DMMIOPH $(AINC) $*.asm $*.mbj;
.asm.lst:
 $(AS) -l -n $(AFLAGS) $(AINC) $*.asm;
.c.obj:
 $(CC) $(CFLAGS) $(CINC) $*.c
.c.lst:
 $(CC) $(CFLAGS) /Fc $(CINC) $*.c
 copy $*.cod $*.lst
 del $*.cod
#**
Target Information
#**
#
This is a very important step. The following small amount of code MUST
NOT be removed from the program. The following directive will do
dependency checking every time this component is built UNLESS the
following is performed:
A specific tag is used -- ie. all
#
This allows the developer as well as the B & I group to perform incremental
build with a degree of accuracy that has not been used before.
There are some instances where certain types of INCLUDE files must be
created first. This type of format will allow the developer to require
that file to be created first. In order to achieve that, all that has to
be done is to make the DEPEND.MAK tag have your required target. Below is
an example:
#
depend.mak: { your file(s) } dephold
#
Please DON'T remove the following line
#
!include "$(H)\common.mak"
!include "$(H)\version.mak"
#
Should be the default tag for all general processing
#
all: ALR.psd
list: $(LIST)
clean:
 if exist *.lnk del *.lnk
 if exist *.obj del *.obj
 if exist *.mbj del *.mbj
 if exist *.map del *.map
 if exist *.old del *.old
 if exist *.lst del *.lst
 if exist *.lsd del *.lsd
 if exist *.sym del *.sym
if exist *.sys del *.sys
#***
Specific Description Block Information
#***
This section would only be for specific direction as to how to create

656

unique elements that are necessary to the build process. This could
be compiling or assembling, creation of DEF files and other unique
files.
If all compiler and assembly rules are the same, use an inference rule to
perform the compilation.
#
alr.psd: $(OBJS) makefile
 Rem Create DEF file <<$(DEF)
LIBRARY ALR
EXPORTS
 PSD_INSTALL = _Install
 PSD_DEINSTALL = _DeInstall
 PSD_INIT = _Init
 PSD_PROC_INIT = _ProcInit
 PSD_START_PROC = _StartProcessor
PSD_GET_NUM_OF_PROCS = _GetNumOfProcs PSD_GEN_IPI = _GenIPI
 PSD_END_IPI = _EndIPI
<<keep
 $(LINK) $(LFLAGS) @<<$(@B).lnk $(OBJ1)
$*.psd
$*.map
$(LIBS)
$(DEF)
<<keep
 $(MAPSYM) $*.map
#**
Dependency generation and Checking
#**
depend.mak: dephold
 touch depchk
includes -e -sobj -llst -I. -I$(H) -I$(DISKH) -I$(INC) -P$$(H)=$(H) *.c *.asm
>$@ -del depchk
dephold:
 touch $@
!include depend.mak

657

Appendix D - OEMHLP AND TESTCFG

The OEMHLP interface was originally designed to assist Original Equipment
Manufacturers (OEM's) in adapting the OS/2 operating system to their
hardware. Prior to OS/2 2.0, OS/2 1.x was built specifically for a particular
OEM machine. If an OEM wanted the OS/2 operating system to run on their
machine, they would have to build a modified version of the OS/2 operating
system to sell under their logo. Having a pre-existing interface helped speed the
adaptation of OS/2 to their hardware. However, IBM realized that in order to
sell OS/2 2.0 to the largest possible number of users, that OS/2 2.0 had to work
on the majority of OEM hardware without any modifications. OS/2 2.0 was
designed to meet this goal, and IBM currently tests the OS/2 operating system
on a wide variety of OEM hardware and configurations to insure continued
compatibility.

The OEMHLP interface began as a simple interface for obtaining information in
real mode and passing it on to protect-mode applications and PDDs, and
evolved into a dedicated PDD. Protect-mode applications and PDDs cannot
access BIOS through the INT interface, yet they sometimes need information
from the BIOS. The OEMHLP interface was extended to allow access to
necessary BIOS information. The OEMHLP device support supports several
IOCtls for aiding device driver writers. These IOCtls can be found in Table D-
1.

Using the OEMHLP device driver, a device driver can use INT 15h calls from
the initialization code to determine if a particular EISA adapter is present and to
set up that particular adapter. The following example code in Figure D-1
illustrates how you would use the OEMHLP device driver to determine if a
particular EISA adapter is present.

658

USHORT FindMyEISACard(void)
{
 HFILE filehandle;
 USHORT action;
 EISAFunctionInfo.efi_SubFunc = OEM_GET_SLOT_INFO; /* Get Slot */
 EISAFunctionInfo.efi_Slot = 0; /* Slot 0 */
 if (rc = DosOpen("OEMHLP$",
 &filehandle,
 &action,
 0L,
 0,
 1,
 0x40,
 0L))
 return 1;

 for(index=1;index<CFG_MAX_EISA_SLOTS;index++) // For each slot
 {
 EISAFunctionInfo.efi_Slot = (UCHAR) index; // Slot Number
 EISASlotInfo.esi_CardID = 0; // Reset Card ID
 if (rc = DosDevIOCtl((PVOID)&EISASlotInfo, // Data Packet
 (PVOID)&EISAFunctionInfo,// Parm Packet
 (USHORT)OEMHLP_QUERYEISACONFIG,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 return 1;
 /*
 If IOCtl successful and slot has adapter, then store away
 the adapter ID, otherwise mark as empty with a zero.
 */
 if(EISASlotInfo.esi_Error==0)
 {
 if (EISASlotInfo.esi_CardID == MYCARDID)
 DosClose(filehandle);
 return 0;
 }
 }
 DosClose(filehandle);
 return(NOTFOUND);
}

Figure D-1. Locating An EISA Bus Adapter Using OEMHLP

659

Table D-1. OEMHLP$ Supported IOCtl Calls

Function Description
00h Query OEM Adaptation Information
01h Query Machine Information
02h Query Display Combination Code
03h Return Video Fonts
04h Query EISA Configuration Information
05h Query ROM BIOS Information
06h Query Miscellaneous Video Information
07h Query Video Adapter
08h Query SVGA Information
09h Query Memory Information
0ah Query DMQS Information
0bh Query PCI BIOS

660

FUNCTION 00h - Query OEM Adaptation Information

This function returns information about a specific OEM adaptation of the OS/2
operating system .

DATA PACKET FORMAT

typedef struct _DataPacket
{
 UCHAR OEMName[20];
 UCHAR OS2Revision[10];
} DataPacket;

OEMName - If this is a non-IBM-logo'ed version of the OS/2 operating
system and additional OEMHLP functions have been added,
the OEM Name field contains the ASCIIZ name of the
OEM.

OS2Revision - The OS/2 version number, stored as an ASCIIZ string.

COMMENTS

OEM's may add nonstandard OEMHLP IOCtls to the OS/2 operating system if
they sell the OS/2 operating system under their logo. Programs that use these
IOCtls will only work with that OEM's adaptation of the OS/2 operating system
and, as such, should issue the Query OEM Adaptation Information IOCtl
routine and verify the OEM Name.

661

FUNCTION 01h - Query OEM Machine Information

DATA PACKET FORMAT

typedef struct _DataPacket
{
 UCHAR Manufacturer[20];
 UCHAR ModelNumber[10];
 UCHAR RomRevisionNumber[10];
} DataPacket;

Manufacturer - ASCIIZ name of manufacturer

ModelNumber - ASCIIZ machine model number from ROM (if
available)

RomRevisionNumber - ASCIIZ ROM revision number

COMMENTS

This function will attempt to find the name of the manufacturer, the machine
model number, and the ROM revision number. If the machine cannot be
identified, the fields returned in the Data Packet are set to NULLs.

FUNCTION 02h - Query Display Combination Code

DATA PACKET FORMAT

typedef struct _DataPacket
{
 BYTE DisplayCode;
} DataPacket;

This function returns the display combination code.

DisplayCode - binary display combination code returned from INT 10h (AH
= 1Ah)

662

COMMENTS

This function returns the display combination code, as returned from INT 10h
(AH=1Ah). If this INT 10h function is not supported by the BIOS, then 0 will
be returned.

Pointers returned by this IOCtl are real-mode addresses and must be converted
to protect-mode addresses before being used by protect-mode applications and
device drivers.

See the IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference or the technical reference manual for your personal
computer for more information on the display combination codes returned from
INT 10h
(AH=1Ah).

FUNCTION 03h - Return Pointers To Video Fonts

DATA PACKET FORMAT

typedef struct _DataPacket
{
 FARPOINTER P8X14;
 FARPOINTER P8X8;
 FARPOINTER PT8X8;
 FARPOINTER P9X14;
 FARPOINTER P8X16;
 FARPOINTER P9X16;
} DataPacket;

This function returns an array of 16:16 pointers to the ROM video fonts, as
returned by the INT 10h, AX=1130h.

P8X14 - 16:16 pointer to 8 x 14 ROM font
P8X8 - 16:16 pointer to 8 x 8 ROM font
PT8X8 - 16:16 pointer to 8 x 8 ROM font (top)

663

P9X14 - 16:16 pointer to 9 x 14 ROM font
P8X16 - 16:16 pointer to 8 x 16 ROM font
P9X16 - 16:16 pointer to 9 x 16 ROM font

COMMENTS

See the IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference or the technical reference manual for your personal
computer for more information on the video font pointers returned from INT
10h (AX=1130h).

664

FUNCTION 04h - Query EISA Configuration Information

DATA PACKET FORMAT (subfunction 0)

typedef struct _DataPacket
{
 BYTE ReturnByte;
 BYTE Flags;
 BYTE MajorRevision;
 BYTE MinorRevision;
 USHORT Checksum;
 BYTE DeviceFunc;
 BYTE FuncInfo;
 ULONG CardID;
} DataPacket;

ReturnByte - Return code from BIOS

Flags - binary value returned from BIOS

MajorRevision - binary value returned from BIOS

MinorRevision - binary value returned from BIOS

Checksum - binary value returned from BIOS

DevFunc - binary value returned from BIOS

FuncInfo - binary value returned from BIOS

CardID - binary EISA card ID returned from BIOS

DATA PACKET FORMAT (subfunction 1)

typedef struct _DataPacket
{
 BYTE ReturnByte;
 UCHAR ConfigDataBlock[320];
 } DataPacket;

665

ConfigDataBlock - EISA Configuration Data Block

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 BYTE SubFuncNum;
 BYTE SlotNum;
 BYTE FuncNum;
} ParmPacket;

SubFuncNum - the EISA subfunction to perform (0=Query EISA slot
information, 1=Query EISA function information).

SlotNum - binary EISA slot number (planar = 0)

FuncNum - binary EISA function to issue

This function routes selected EISA function calls to the EISA BIOS.

COMMENTS

See the technical reference manual for your personal computer for more
information on EISA functions and returned values.

666

FUNCTION 05h - Query ROM BIOS Information

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 USHORT Model;
 USHORT Submodel;
 USHORT BIOSRevLevel;
 USHORT Flags;
} ParmPacket;

Return ROM BIOS Information.

Model - binary machine model byte zero extended

Submodel - binary machine submodel byte zero extended

BIOSRevisionLevel - binary machine submodel byte zero extended

Flags - binary value, ABIOS present (bit 0 = 1), all other bits
reserved

COMMENTS

Version 2.0 of the OS/2 operating system does not support RAM-loaded
ABIOS machines. Version 2.0 of the OS/2 operating system returns BIT 0 set
to zero on machines with RAM-loaded ABIOS.

Version 3.0 of the OS/2 operating system supports RAM-loaded ABIOS
machines. Version 3.0 of the OS/2 operating system returns BIT 0 set to one
on machines with RAM-loaded ABIOS.

667

FUNCTION 06h - Query Miscellaneous Video Information

DATA PACKET FORMAT

typedef struct _DataPacket
{
 BYTE VideoStateInfo;
} DataPacket;

Return miscellaneous video state information.

Bit 7 - reserved
Bit 6 - P70 video adapter active
Bit 5 - video attribute bit (0=background intensity, 2=blinking)
Bit 4 - cursor emulation active
Bit 3 - mode set default palette loading disabled
Bit 2 - monochrome display attached
Bit 1 - summing active
Bit 0 - all modes on all displays active

COMMENTS

Bit 0 and bit 4 are always 0 for the IBM PS/2 Model 8530.

See the IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference or the technical reference manual for your personal
computer for more information on the miscellaneous video state information
returned from
INT 10h (AX=1B00h).

668

FUNCTION 07h - Query Video Adapter

DATA PACKET FORMAT

typedef struct _DataPacket
{
 BYTE AdapterType;
} DataPacket;

Returns the video adapter type.

Bit 0 - MPA
Bit 1 - CGA
Bit 2 - EGA
Bit 3 - VGA
Bits 4-7 - reserved

FUNCTION 08h - Query SVGA Information

DATA PACKET FORMAT

typedef struct _DataPacket
{
 USHORT AdapterType;
 USHORT ChipType;
 ULONG VideoMemory;
} DataPacket;

Returns SVGA video information.

AdapterType - binary video adapter type (see Table D-2)

ChipType - binary value of video chipset (see Table D-2)

VideoMemory - number of bytes of video RAM

669

Table D-2. Video Chip Set Information

Manufacturer Chip Set AdapterType Chip Type

Indeterminate 0 0
Headland HT205 1 1

HT206 1 2
HT209 1 3

Trident 8800 2 1
8900 2 2

Tseng ET3000 3 1
ET4000 3 2

Western Digital PVGA1A 4 1
WD90C00 4 2
WD90C11 4 3
WD90C30 4 4

ATI 18800 5 1
28800 5 2

IBM VGA256C 6 1
Cirrus Logic GD5422 7 1

GD5424 7 2
GD5426 7 3

670

FUNCTION 09h - Query Memory Information

DATA PACKET FORMAT

typedef struct _DataPacket
{
 USHORT LowMemorySize;
 USHORT HighMemorySize;
} DataPacket;

LowMemorySize - the amount of RAM available below the 1MB region.

HighMemorySize - the amount of RAM available above the 1MB region.

This function returns the amount of RAM available on the machine.

COMMENTS

The number of kilobytes in high memory is a DWORD field for Version 3.0 of
the OS/2 operating system. Previous versions of the OS/2 operating system
used a WORD field. Applications should query the version of the OS/2
operating system to determine the size of the data packet required. This can be
done by issuing an OEMHELP category 80 IOCtl function 00H, or issuing a
GetDosVar devhlp with index=1 and looking at the MajorVersion and
MinorVersion.

671

FUNCTION 0ah - Query/Set XGA DMQS Information

DATA PACKET FORMAT

typedef struct _DataPacket
{
 PVOID pDqmsInfo;
} DataPacket;

pDqmsInfo - a 16:16 pointer to the XGA DQMS information

This function returns a pointer to the XGA DQMS video information block.

COMMENTS

The pointer returned is a protect-mode address. Protect-mode applications and
device drivers do not need to convert this address before using it.

The XGA DMQS information is available only for IBM XGA/2 adapters and
compatibles.

Information on XGA Display Mode Query and Set (DMQS) can be found in the
IBM Personal System/2 Hardware Interface Technical Reference -- Video
Subsystem.

The following program, which was supplied by IBM, demonstrates how you
would call the OEMHELP$ device driver to obtain the necessary configuration
information.

672

FUNCTION 0bh - Query PCI BIOS

DATA PACKET FORMAT

typedef struct _DataPacket
{
 UCHAR bReturn;
 union
 {
 struct
 {
 UCHAR HWMech;
 UCHAR MajorVer;
 UCHAR MinorVer;
 UCHAR LastBus;
 } Data_Bios_Info;
 struct
 {
 UCHAR BusNum;
 UCHAR DevFunc;
 } Data_Find_Dev;
 struct
 {
 ULONG Data;
 } Data_Read_Config;
 };
} DataPacket;

673

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 UCHAR PCISubFunc;
 union
 {
 struct
 {
 USHORT DeviceID;
 USHORT VendorID;
 UCHAR Index;
 } Parm_Find_Dev;
 struct
 {
 ULONG ClassCode;
 UCHAR Index;
 } Parm_Find_ClassCode;
 struct
 {
 UCHAR BusNum;
 UCHAR DevFunc;
 UCHAR ConfigReg;
 UCHAR Size;
 } Parm_Read_Config;
 struct
 {
 UCHAR BusNum;
 UCHAR DevFunc;
 UCHAR ConfigReg;
 UCHAR Size;
 ULONG Data;
 } Parm_Write_Config;
 };
 } ParmPacket;

COMMENTS

This function is callable from ring 3 via an IOCtl or from ring 0 by calling
DevHlp AttachDD, then calling the OEMHLP$ device driver’s IDC entry point.

674

The parameter packet is loaded with the subcommand before the OEMHLP$
driver is called, and the returned data is placed in the data buffer area. The
subfunctions are listed in Table D-3.

Table D-3. PCI Subfunctions

Subfunction Description
0x00 Query PCI BIOS Information - returns

information specific to the PCI BIOS
installed on a machine, such as revision
number and levels of support.

0x01 Find PCI Device - returns information on a
device specified by vendor and device ID
numbers.

0x02 Find PCI Class Code - returns information
on a device specified by Class Code.

0x03 Read PCI Configuration Space - allows
reading of a PCI Configuration register on
a specified device.

0x04 Write PCI Configuration Space - allows
writing of a PCI Configuration register on
a specified device.

Table D-4. Error Return Codes

Code Meaning
0x00 No Error
0x81 Function Not Supported
0x83 Bad Vendor ID
0x86 Device Not Found
0x87 Bad Register Number

675

To find identical PCI devices, successive calls must be made while incrementing
the Index until a return code of 86h - Device Not Found is returned.

Unused upper bytes of Data field will be zero-filled. Refer to the PCI
Specification for more information on configuration registers.

Unused upper bytes of the Data file will be ignored. Refer to the PCI
Specification for more information on configuration registers.

The following code allows both apps and DDs to make PCI BIOS calls
(provided you have a os2ldr with this support). The important pieces are doing
an DevHlp_AttachDD to get the IDC entry point, dummy up a request packet,
and then calling the entry point with es:bx pointing to the request packet.

 /*---*/
 /*- How to call OEMHLP for PCI IOCtls from DD -*/
 /*- -*/
 /*---*/

 #define INCL_NOBASEAPI
 #define INCL_NOPMAPI
 #define INCL_ERROR_H

 #include "os2.h"

 #include <dhcalls.h> /* DevHelp calls */
 #include <strat2.h> /* Requst Packets */
 #include <reqpkt.h> /* Requst Packets */

 BOOL FindDevice(USHORT, USHORT, USHORT);

 #define PCI_FUNC 0x0b
 #define PCI_GET_BIOS_INFO 0
 #define PCI_FIND_DEVICE 1
 #define PCI_FIND_CLASS_CODE 2
 #define PCI_READ_CONFIG 3
 #define PCI_WRITE_CONFIG 4

 #define MY_DEVICE_ID 0x1010
 #define MY_VENDOR_ID 0x8086

 #define PCI_SUCCESSFUL 0x00

676

 typedef struct _PCI_PARM {
 UCHAR PCISubFunc;
 union {
 struct {
 USHORT DeviceID;
 USHORT VendorID;
 UCHAR Index;
 }Parm_Find_Dev;
 struct {
 ULONG ClassCode;
 UCHAR Index;
 }Parm_Find_ClassCode;
 struct {
 UCHAR BusNum;
 UCHAR DevFunc;
 UCHAR ConfigReg;
 UCHAR Size;
 }Parm_Read_Config;
 struct {
 UCHAR BusNum;
 UCHAR DevFunc;
 UCHAR ConfigReg;
 UCHAR Size;
 ULONG Data;
 }Parm_Write_Config;
 };
 } PCI_PARM;

 typedef struct _PCI_DATA {
 UCHAR bReturn;
 union {
 struct {
 UCHAR HWMech;
 UCHAR MajorVer;
 UCHAR MinorVer;
 UCHAR LastBus;
 } Data_Bios_Info;
 struct {
 UCHAR BusNum;
 UCHAR DevFunc;
 }Data_Find_Dev;
 struct {
 ULONG Data;
 }Data_Read_Config;
 };
 } PCI_DATA;

677

 /*-------------- Now in reqpkt.h -----------------------*/

 // typedef struct _IDCTABLE {
 // USHORT Reserved[3];
 // VOID (FAR *ProtIDCEntry)(VOID);
 // USHORT ProtIDC_DS;
 // } IDCTABLE;

 // typedef IDCTABLE NEAR *NPIDCTABLE;
 /*---*/

 IDCTABLE DDTable; /* Global */
 VOID (FAR *pOEMHLPEntry)(VOID); /* Global */
 USHORT OemhlpDS; /* Global */

 /*--*/
 /*- Function: NumOfMyPCIDevices -*/
 /*- AttachDD to OEMHLP and make PCI IOCtls to -*/
 /*- find my device -*/
 /*--*/

 USHORT NumOfMyPCIDevices(USHORT DeviceID, USHORT VendorID){

 USHORT DeviceCount=0;

 if (DevHelp_AttachDD("OEMHLP$", (NPBYTE)&DDTable))
 return(0); /* Couldn't find OEMHLP's IDC */

 if ((DDTable.ProtIDCEntry == NULL) || (DDTable.ProtIDC_DS
== 0))
 return(0); /* Bad Entry Point or Data Segment */

 pOEMHLPEntry = DDTable.ProtIDCEntry;
 OemhlpDS = DDTable.ProtIDC_DS;

 /* Index through till device not found */
 while(FindDevice(DeviceID,VendorID,DeviceCount) == TRUE)
 DeviceCount++;

 return(DeviceCount);
 }

 BOOL FindDevice(USHORT DeviceID, USHORT VendorID, USHORT
Index){

 PCI_PARM PCIParmPkt;
 PCI_DATA PCIDataPkt;
 RP_GENIOCTL IOCtlRP; /* From reqpkt.h */

678

 PRPH pRPH = (PRPH)&IOCtlRP;

 /* Setup Parm Packet */
 PCIParmPkt.PCISubFunc = PCI_FIND_DEVICE;
 PCIParmPkt.Parm_Find_Dev.DeviceID = MY_DEVICE_ID;
 PCIParmPkt.Parm_Find_Dev.VendorID = MY_VENDOR_ID;
 PCIParmPkt.Parm_Find_Dev.Index = Index;

 /* Setup IOCTL Request Packet */
 IOCtlRP.Category = 0x00;
 IOCtlRP.Function = PCI_FUNC; /* 0x0b */
 IOCtlRP.ParmPacket = (PUCHAR)&PCIParmPkt;
 IOCtlRP.DataPacket = (PUCHAR)&PCIDataPkt;
 IOCtlRP.rph.Len = sizeof(IOCtlRP);
 IOCtlRP.rph.Unit = 0;
 IOCtlRP.rph.Cmd = 0x10; /* Generic IOCtl */
 IOCtlRP.rph.Status = 0;

 _asm {push es
 push bx
 push ds
 mov bx, word ptr pRPH[0]
 mov es, word ptr pRPH[2]
 mov ds, OemhlpDS
 }

 (*pOEMHLPEntry)();

 _asm {pop ds
 pop bx
 pop es
 }

 if (IOCtlRP.rph.Status & STERR)
 return(FALSE);

 if (PCIDataPkt.bReturn != PCI_SUCCESSFUL)
 return(FALSE);

 /* PCIDataPacket.Data_Find_Dev.BusNum */
 /* and PCIDataPacket.Data_Find_Dev.DevFunc contain the PCI
Bus location */

 return(TRUE);

 }

679

The following program demonstrates how you would call the OEMHELP$
device driver to obtain the system configuration information.

/* OEMHLP category */

#define OEMHLP_CATEGORY 0x80

/* OEMHLP functions */

#define OEMHLP_QUERYOEMADAPTATIONINFO 0x00
#define OEMHLP_QUERYMACHINEINFORMATION 0x01
#define OEMHLP_QUERYDISPLAYCOMBINIATION 0x02
#define OEMHLP_GETVIDEOFONTS 0x03
#define OEMHLP_QUERYEISACONFIG 0x04
#define OEMHLP_QUERYBIOSINFO 0x05
#define OEMHLP_QUERYMISCVIDEOINFO 0x06
#define OEMHLP_QUERYVIDEOADAPTER 0x07
#define OEMHLP_QUERYSVGAINFO 0x08
#define OEMHLP_QUERYMEMORYINFO 0x09
#define OEMHLP_QUERYDMQSINFO 0x0A

typedef struct _OEMADAPTATIONINFO{
 CHAR oai_OEMName[20];
 CHAR oai_InternalRevision[10];
} OEMADAPTATIONINFO;

typedef OEMADAPTATIONINFO far * POEMADAPTATIONINFO;

typedef struct _MACHINEINFO{
 CHAR mi_Manufacturer[20];
 CHAR mi_ModelNumber[10];
 CHAR mi_ROMRevision[10];
} MACHINEINFO;

typedef MACHINEINFO far * PMACHINEINFO;

typedef BYTE DISPLAYCOMBINATIONCODE;

typedef struct _VIDEOFONTS{
 ULONG vf_8X14Font;
 ULONG vf_8X8Font;
 ULONG vf_8X8TFont;
 ULONG vf_9X14Font;
 ULONG vf_8X16Font;
 ULONG vf_9X16Font;
} VIDEOFONTS;

typedef VIDEOFONTS far * PVIDEOFONTS;

680

/* OEM EISA Subfunctions */

#define OEM_GET_SLOT_INFO 0
#define OEM_GET_FUNCTION_INFO 1

/* Adapter Slot */

#define CFG_MAX_EISA_SLOTS 16

/* OEM HELP typedefs */

typedef struct _EISASLOTINFO {
 UCHAR esi_Error;
 UCHAR esi_Flags;
 UCHAR esi_MajorVer;
 UCHAR esi_MinorVer;
 USHORT esi_CheckSum;
 UCHAR esi_DevFunc;
 UCHAR esi_FuncInfo;
 ULONG esi_CardID;
} EISASLOTINFO;

typedef EISASLOTINFO far * PEISASLOTINFO;

typedef struct _EISAFUNCTIONINFO {
 UCHAR efi_SubFunc;
 UCHAR efi_Slot;
 UCHAR efi_Func;
} EISAFUNCTIONINFO;

typedef EISAFUNCTIONINFO far * PEISAFUNCTIONINFO;

typedef struct _BIOSINFO {
 USHORT bi_Model;
 USHORT bi_SubModel;
 USHORT bi_RevisionLevel;
 USHORT bi_ABIOS_Present;
} BIOSINFO;

typedef BIOSINFO far *PBIOSINFO;

typedef BYTE MISCVIDEOINFO;

typedef BYTE VIDEOADAPTER;

typedef struct _SVGAINFO {
 USHORT si_AdapterType;
 USHORT si_ChipType;
 ULONG si_VideoMemory;
} SVGAINFO;

typedef SVGAINFO far *PSVGAINFO;

681

typedef struct _OLDMEMORYINFO {
 USHORT omi_LowMemory;
 USHORT omi_HighMemory;
} OLDMEMORYINFO;

typedef OLDMEMORYINFO far *POLDMEMORYINFO;

typedef struct _NEWMEMORYINFO {
 USHORT nmi_LowMemory;
 ULONG nmi_HighMemory;
} NEWMEMORYINFO;

typedef NEWMEMORYINFO far *PNEWMEMORYINFO;

typedef PVOID DMQSINFO;

/* mainline oemhelp.c */

#define INCL_DOSDEVICES
#define INCL_DOSDEVIOCTL
#define INCL_DOSERRORS
#define INCL_DOS
#define INCL_TYPES

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include "OEMHELP.H"

const PSZ OEMHLPDD = "OEMHLP$";

/***/
/* Data/Parameter Packets */
/***/

OEMADAPTATIONINFO OEMAdaptationInfo = {0};
MACHINEINFO MachineInfo = {0};
DISPLAYCOMBINATIONCODE DisplayCombiniationCode = 0;
VIDEOFONTS VideoFonts = {0};
EISASLOTINFO EISASlotInfo = {0};
EISAFUNCTIONINFO EISAFunctionInfo = {0};
BIOSINFO BIOSInfo = {0};
MISCVIDEOINFO MiscVideoInfo = 0;
VIDEOADAPTER VideoAdapter = 0;
SVGAINFO SVGAInfo = {0};
OLDMEMORYINFO OldMemoryInfo = {0};
NEWMEMORYINFO NewMemoryInfo = {0};
DMQSINFO DMQSInfo = 0;

/***/
/* Procedure Prototypes */

682

/***/

USHORT main(USHORT argc,char *argv[]);

/***/
/* MAIN Procedure */
/***/

USHORT main(USHORT argc, char * argv[])

{
 USHORT usAction,index;
 USHORT rc = 0;
 HFILE filehandle;
 long templow,temphigh,tempall;

 if (0 != (rc = DosOpen(OEMHLPDD,
 &filehandle,
 &usAction,
 0L,
 0,
 1,
 0xC2,
 0L)))
 {
 printf("\n Error opening OEMHLP device driver.\n");
 return(rc);
 }

 /***/
 /* OEMHLP_QUERYOEMADAPTATIONINFO 0x00 */
 /***/

 if (rc = DosDevIOCtl((PVOID)&OEMAdaptationInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYOEMADAPTATIONINFO,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYOEMADAPTATIONINFO,
 RC=%xH.\n",rc);
 }
 else
 {
 printf("\n OEMName = %s",OEMAdaptationInfo.oai_OEMName);
 printf("\n InternalRevision = %s",
 OEMAdaptationInfo.oai_InternalRevision);
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYMACHINEINFORMATION 0x01 */

683

 /**/

 if (rc = DosDevIOCtl((PVOID)&MachineInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYMACHINEINFORMATION,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYMACHINEINFORMATION,
 RC=%xH.\n",rc);
 }
 else
 {
 printf("\n Manufacturer = %s",MachineInfo.mi_Manufacturer);
 printf("\n Model = %s",MachineInfo.mi_ModelNumber);
 printf("\n ROM Revision = %s",MachineInfo.mi_ROMRevision);
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYDISPLAYCOMBINIATION 0x02 */
 /**/

 if (rc = DosDevIOCtl((PVOID)&DisplayCombiniationCode,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYDISPLAYCOMBINIATION,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYDISPLAYCOMBINIATION,
 RC=%xH.\n",rc);
 }
 else
 {
 printf("\n Display Combination code = %xH",DisplayCombiniationCode);
 printf("\n");
 }

 /**/
 /* OEMHLP_GETVIDEOFONTS 0x03 */
 /**/

 if (rc = DosDevIOCtl((PVOID)&VideoFonts,
 (PVOID)NULL,
 (USHORT)OEMHLP_GETVIDEOFONTS,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_GETVIDEOFONTS, RC=%xH.\n",rc);
 }
 else
 {

684

 printf("\n 8X14Font = %p",VideoFonts.vf_8X14Font);
 printf("\n 8X8Font = %p",VideoFonts.vf_8X8Font);
 printf("\n 8X8TFont = %p",VideoFonts.vf_8X8TFont);
 printf("\n 9X14Font = %p",VideoFonts.vf_9X14Font);
 printf("\n 8X16Font = %p",VideoFonts.vf_8X16Font);
 printf("\n 9X16Font = %p",VideoFonts.vf_9X16Font);
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYEISACONFIG 0x04 */
 /**/

 /* initialize EISA parameters */

 EISAFunctionInfo.efi_SubFunc = OEM_GET_SLOT_INFO;/* EISA Get Slot */
 EISAFunctionInfo.efi_Slot = 0; /* Slot 0 */

 if (rc = DosDevIOCtl((PVOID)&EISASlotInfo,
 (PVOID)&EISAFunctionInfo,
 (USHORT)OEMHLP_QUERYEISACONFIG,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error issuing QueryEISAConfig assuming non-EISA,
 RC=%u.\n",rc);
 }
 else
 {
 printf("\n Slot 0 (planar) ID = %lxH ",EISASlotInfo.esi_CardID);
 printf("\n Error = %xH ",(SHORT)EISASlotInfo.esi_Error);
 printf("\n Flags = %xH ",(SHORT)EISASlotInfo.esi_Flags);
 printf("\n MajorVer = %xH ",
 (SHORT)EISASlotInfo.esi_MajorVer);
 printf("\n MinorVer = %xH ",
 (SHORT)EISASlotInfo.esi_MinorVer);
 printf("\n CheckSum = %xH ",
 (SHORT)EISASlotInfo.esi_CheckSum);
 printf("\n DevFunc = %xH ",
 (SHORT)EISASlotInfo.esi_DevFunc);
 printf("\n FuncInfo = %xH ",
 (SHORT)EISASlotInfo.esi_FuncInfo);
 for(index=1;index<CFG_MAX_EISA_SLOTS;index++) /* For each slot */
 {
 EISAFunctionInfo.efi_Slot = (UCHAR) index; /* Slot Number */
 EISASlotInfo.esi_CardID = 0; /* Reset Adapter ID */
 rc = DosDevIOCtl((PVOID)&EISASlotInfo, /* Data Packet */
 (PVOID)&EISAFunctionInfo, /* Parm Packet */
 (USHORT)OEMHLP_QUERYEISACONFIG,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle);

685

 /* If IOCTL successful and EISA has adapter, then store away
 the adapter ID, otherwise mark as empty with a zero.
 */

 if((rc==0)&&(EISASlotInfo.esi_Error==0))
 {
 printf("\n Slot %d ID = %lxH ",index,EISASlotInfo.esi_CardID);
 printf("\n Error = %xH ",(SHORT)EISASlotInfo.esi_Error);
 printf("\n Flags = %xH ",(SHORT)EISASlotInfo.esi_Flags);
 printf("\n MajorVer = %xH ",(SHORT)EISASlotInfo.esi_MajorVer);
 printf("\n MinorVer = %xH ",(SHORT)EISASlotInfo.esi_MinorVer);
 printf("\n CheckSum = %xH ",(SHORT)EISASlotInfo.esi_CheckSum);
 printf("\n DevFunc = %xH ",(SHORT)EISASlotInfo.esi_DevFunc);
 printf("\n FuncInfo = %xH ",(SHORT)EISASlotInfo.esi_FuncInfo);
 }
 else
 {
 printf("\n Error reading Slot %d ID, RC=%u, EISA Error=%u ",
 index,rc,(SHORT)EISASlotInfo.esi_Error);
 }
 }/* for */
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYBIOSINFO 0x05 */
 /**/

 if (rc = DosDevIOCtl((PVOID)&BIOSInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYBIOSINFO,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYBIOSINFO, RC=%xH.\n",rc);
 }
 else
 {
 printf("\n Model byte = %xH ",BIOSInfo.bi_Model);
 printf("\n Submodel byte = %xH ",BIOSInfo.bi_SubModel);
 printf("\n Revision level = %xH ",BIOSInfo.bi_RevisionLevel);
 printf("\n ABIOS Present = %xH ",BIOSInfo.bi_ABIOS_Present);
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYMISCVIDEOINFO 0x06 */
 /**/

 if (rc = DosDevIOCtl((PVOID)&MiscVideoInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYMISCVIDEOINFO,

686

 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYMISCVIDEOINFO,
 RC=%xH.\n",rc);
 }
 else
 {
 printf("\n Misc Video Info = %xH ",MiscVideoInfo);
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYVIDEOADAPTER 0x07 */
 /**/

 if (rc = DosDevIOCtl((PVOID)&VideoAdapter,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYVIDEOADAPTER,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYVIDEOADAPTER,
 RC=%xH.\n",rc);
 }
 else
 {
 printf("\n Video Adapter = %xH ",VideoAdapter);
 printf("\n");
 }

 /**/
 /* OEMHLP_QUERYSVGAINFO 0x08 */
 /**/

 if (rc = DosDevIOCtl((PVOID)&SVGAInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYSVGAINFO,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYSVGAINFO, RC=%xH.\n",rc);
 }
 else
 {
 printf("\n Adapter Type = %xH " ,SVGAInfo.si_AdapterType);
 printf("\n Chip Type = %xH " ,SVGAInfo.si_ChipType);
 printf("\n Video memory = %lxH ",SVGAInfo.si_VideoMemory);
 printf("\n");
 }

 /***/

687

 /* OEMHLP_QUERYMEMORYINFO 0x09 */
 /***/

 if (strncmp(OEMAdaptationInfo.oai_InternalRevision,"20.",3))
 {

 /* String is different, use old memoryinfo */

 if (rc = DosDevIOCtl((PVOID)&OldMemoryInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYMEMORYINFO,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYMEMORYINFO,
 RC=%xH.\n",rc);
 }
 else
 {
 templow=OldMemoryInfo.omi_LowMemory;
 temphigh=OldMemoryInfo.omi_HighMemory;
 tempall=templow+temphigh;
 printf("\n Low Memory = %d " ,OldMemoryInfo.omi_LowMemory);
 printf("\n High Memory = %d " ,OldMemoryInfo.omi_HighMemory);
 printf("\n Total Memory = %ld ",tempall);
 printf("\n");
 }
 }
 else
 {

 /* String is same use new memoryinfo */

 if (rc = DosDevIOCtl((PVOID)&NewMemoryInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYMEMORYINFO,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYMEMORYINFO,
 RC=%xH.\n",rc);
 }
 else
 {
 templow=NewMemoryInfo.nmi_LowMemory;
 temphigh=NewMemoryInfo.nmi_HighMemory;
 tempall=templow+temphigh;
 printf("\n Low Memory = %d " ,NewMemoryInfo.nmi_LowMemory);
 printf("\n High Memory = %ld " ,NewMemoryInfo.nmi_HighMemory);
 printf("\n Total Memory = %ld ",tempall);
 printf("\n");
 }

688

 }

 /***/
 /* OEMHLP_QUERYDMQSINFO 0x0A */
 /***/

 if (rc = DosDevIOCtl((PVOID)&DMQSInfo,
 (PVOID)NULL,
 (USHORT)OEMHLP_QUERYDMQSINFO,
 (USHORT)OEMHLP_CATEGORY,
 (HFILE)filehandle))
 {
 printf("\n Error from function OEMHLP_QUERYDMQSINFO, RC=%xH.\n",rc);
 }
 else
 {
 printf("\n DMQS Pointer = %p",DMQSInfo);
 printf("\n");
 }

 if (rc=DosClose(filehandle))
 {
 printf("\n Error closing OEMHLP device driver, RC=%xH.\n",rc);
 }

 return(rc);
}

689

TESTCFG

The TESTCFG device driver offers some additonal functionality to aid in
determining the machine bus type and hardware configuration. It consists of 6
IOCtls in category 0x80. The IOCtls are described in Table D-5.

Table D-5. TESTCFG IOCtls, Category 0x80.

Function Description

0x40 Get copy of non-system memory
0x41 "IN" instruction
0x42 "OUT" instruction
0x60 Get bus type
0x61 Get POS registers
0x62 Get EISA IDs

690

FUNCTION 40h - Get Copy Of Non-system Memory

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 ULONG command; // must be set to 0
 ULONG physaddr; // physical address 0xc0000 to 0xfffff
 USHORT numbytes // number of bytes to get
} DataPacket;

DATA PACKET FORMAT

typedef struct _DataPacket
{
 BYTE bytes[numbytes];
} DataPacket;

COMMENTS

This IOCtl returns copies the contents of physical memory below the 1MB
region to a local buffer.

691

FUNCTION 41h - Perform an "IN" Instruction

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 USHORT portaddress; // I/O port
 USHORT width; // # bytes, 1=byte, 2=word, 3=dword
} DataPacket;

DATA PACKET FORMAT

typedef struct _DataPacket
{
 ULONG data; // data read
} DataPacket;

COMMENTS

Ports below 0x100 are not accessible.

FUNCTION 42h - Issue An "OUT" Instruction

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 USHORT portaddress; // I/O port
 USHORT width; // # bytes, 1=byte, 2=word, 4=dword
} DataPacket;

DATA PACKET FORMAT

None.

COMMENTS

Ports below 0x100 are not accessible.

692

FUNCTION 60h - Query Bus Architecture

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 ULONG command; // must be set to 0
} DataPacket;

DATA PACKET FORMAT

typedef struct _DataPacket
{
 ULONG BusType; // 0 = ISA, 1= Micro Channel, 2=EISA
} DataPacket;

COMMENTS

This IOCtl returns the current bus type.

FUNCTION 61h - Get All Micro Channel Adapter IDs

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 ULONG command; // must be set to 0
} DataPacket;

DATA PACKET FORMAT

typedef struct _DataPacket
{
 USHORT AdapterID[16]; // receives IDs
} DataPacket;

COMMENTS

This function returns AdapterID[n] = 0 for ISA or EISA adapters.

693

FUNCTION 62h - Get EISA Adapter IDs

PARAMETER PACKET FORMAT

typedef struct _ParmPacket
{
 ULONG command; // must be set to 0
} DataPacket;

DATA PACKET FORMAT

typedef struct _DataPacket
{
 UCHAR EISAtype[16][4]; // EISA adapter IDs returned
} DataPacket;

COMMENTS

This function returns EISAType[n][n] = 0 for ISA or Micro Channel adapters.

695

Appendix E - The OS/2 Resource Manager

The Resource Manager, or RM, was added starting with OS/2 Version 3 to
help solve some of the most common configuration conflicts found on ISA bus
systems. The most common conflicts are more than one adapter jumpered for
the same IRQ, more than one adapter mapped to the same address space, and
more than one adapter configured with the same port address.

RM is implemented as a PDD, RESOURCE.SYS, that loads first before any
other device drivers. The OS/2 kernel loads this driver first, so you won’t see it
listed in the CONFIG.SYS file. The RESOURCE.SYS driver allocates a block
of memory to be used to store the temporary database of claimed adapter
resources. In the initialization section of a device driver, the device driver
allocates space for its potential resources, then asks the RM if it can indeed
claim those resources. If no other driver had previously claimed those particular
resources, RM grants the driver’s request and returns a successful completion
status. If, however, another driver had already claimed one of the resources,
RM returns an error to the driver. This allows the driver to fail loading, or
perhaps try an alternate resource. The systems resources, such as the DMA
controller, the processor, and the interrupt controller (PIC) are claimed early by
the kernel.

A driver calls the RESOURCE.SYS device driver via a set of function calls
which reside in the RMCALLS.LIB library. The functions are declared cdedl,
and may be called at ring 3 or ring 0. The RM.SYS driver continues to build the
resource database throughout install until the system has finished booting. If a
driver deinstalls, it should call the RM driver to deallocate its resources from
the resource database. Refer to Table E-1.

696

Table E-1. RM Function Calls

Function Description

RMCreateDriver Allocates space for a driver entry
RMCreateAdapter Create the next level down from

CreateDriver (subclass
RMCreateDriver)

RMCreateDevice Create a device within an adapter
(Subclass RMCreateAdapter)

RMAllocResource Allocate ports, IRQ, DMA
channels from the RM

RMDestroyDriver Deallocate a previously allocated
driver entry

RMDestroyAdapter Deallocate a previously allocated
adapter entry

RMDestroyDevice Deallocate a previously allocated
device entry

RMDeallocResource Release a previously allocated
resource (IRQ, DMA channel,
port)

RMClaimResources Claim resources by registering
them with RM

RMReleaseResources Release previously claimed
resources

RMModifyResources Modify existing resources
RMKeyToHandleList Search for node matching a

particular key
RMResToHandleList Search for a node matching a

particular resource
RMAdjToHandlelist Search for a node matching the

adjunct data
RMHDevToHLDev Return the LDEV associated with

a physical device node
RMHandleToType Get the type of node the handle is

697

associated with
RMHandleToParent Get the handle of the node’s parent
RMGetNodeInfo get the contents of the node using

the handle
RMCreateLDev Create a logical device node
RMDestroyLDev Destroy a logical device node
RMCreateSysName Create a System Name node
DMDestroySysName Destroy a System Name node
RMCreateLinkDevice Create a psuedo device consisting

of more than one physical device
RMUpdateAdjunct Update an existing adjunct

structure
RMParseSCSIInquiry Convert SCSI inquiry data for a

device to the device key and
description for that device

 When the driver calls RMCreateDriver, it receives a handle which is used for
subsequent calls to RM. For example, one of the parameters for the
RMCreateAdapter call is the handle returned by RMCreateDriver.

The client driver first calls RMCreateDriver to create an entry for the particular
device driver. The client driver then calls RMCreateAdapter to associate an
adapter with the driver. One of the parameters for RMCreateAdapter is an
ASCII representation of the unique adapter type. This ASCII name or key
should be meaningful, such as DISK_0 or COMM_1.

The client driver then calls RMCreateAdapter with the adapter key and several
structures that describe the adapter in more detail. The client driver then calls
RMCreateDevice to register the device, then AllocResource to allocate the
resources it needs. The client may also call RMCreateLDev to creat a logical
device associated with the adapter.

698

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

699

Function

RMDestroyDriver

Calling Sequence

if (RMDestroyDriver((HDRIVER) hDriver)
 error;

Parameters

hDriver - 32-bit driver handle returned from RMCreateDriver

Comments

This call destroys a previously allocated driver entry in the RM database.

700

Function

RMCreateAdapter

Calling Sequence

if (RMCreateAdapter((HDRIVER) hDriver, (PHADAPTER) &hAdapter,
 (PADAPTERSTRUCT)&AdapterStruct, (HDEVICE) hDevice,
 (PAHRESOURCE) &ResList)
 error;

Parameters

hDriver - 32-bit driver handle returned from RMCreateDriver
&hAdapter - address of returned adapter handle
&AdapterStruct - address of ADAPTERSTRUCT
hParentDevice - handle of bus type
&ResList - address of resource list

typedef struct _ADAPTERSTRUCT
{

FPSTRING AdapterDescName; // ptr to adapter key and desc
USHORT AdaptFlags; // attribute flags
USHORT BaseType; // com, block, system
USHORT SubType; // SCSI, IDE, serial, parallel
USHORT InterfaceType; // ECP/EPP, parallel
USHORT HostBusType; // ISA, PCI, EISA, MCA
USHORT HostBusWidth; // 16, 32, 64
FARPOINTER AdjList; // 0-based list of adapter number
ULONG Reserved;

} ADAPTERSTRUCT;

Comments

701

Function

RMDestroyAdapter

Calling Sequence

if (RMDestroyAdapter((HDRIVER) hDriver, (HADAPTER) hAdapter)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer

702

USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

703

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day

704

USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

705

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

706

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

707

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

708

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

709

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

710

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT

711

&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer

712

USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

713

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day

714

USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

715

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

716

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

717

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

718

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

719

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Function

RMCreateDriver

Calling Sequence

if (RMCreateDriver((PDRIVERSTRUCT) &DriverStruct, (PHDRIVER) &hDriver)
 error;

720

Parameters

&DriverStruct - Pointer to DRIVERSTRUCT
&hDriver - address of 32-bit driver handle returned

typedef struct _DATTIM
{

USHORT year; // 16-bit integer
USHORT Month; // 1-12
USHORT Day; // 1-31

} DATTIM;

typedef struct _DRIVERSTRUCT
{

FPSTRING DriverName; // ptr to ascii driver name
FPSTRING DriverDesc; // ptr to description
FPSTRING VendorName; // ptr to vendor name
UCHAR Major; // major version of RM
UCHAR Minor; // minor version of RM
DATTIM DateTime; // year, month, day
USHORT DriverFlags; // static/dynamic loadable
USHORT DriverType; // type ADD, PCMCIA, etc.
USHORT DriverSubType; // subtype of DriverType
FARPOINTER DriverCallBack; // 16:16 callback address

} DRIVERSTRUCT;

Comments

This is the first call the client driver must make to create an entry in the RM
database. The handle returned is used for all subsequent calls to RM by the
client driver. If the call fails, the handle is returned -1L.

Making Your Device Driver Resource Manager Aware

The following code is an example of how you can enable your OS/2 device
driver RM aware. The example contains code fragments from the OS/2 Plug
and Play Device Driver.

// RM additions to driver’s data segment

ULONG RMFlags=0; // for resource manager
FPFUNCTION RM_Help0=0; //
FPFUNCTION RM_Help3=0; //
FPFUNCTION Device_Help=0; // enable RM to use this

721

char DriverName[]="PNP.SYS";
char DriverDesc[]="PnP Device Driver";
char SysName[]="IBM OS/2 Warp";
char AdapterName[]="PnP Isolation/Detection Driver";
char DeviceName[]="PnP_0";

// driver description for RM

DRIVERSTRUCT DriverStruct =
{
 DriverName, // driver name
 DriverDesc, // driver description
 SysName, // vendor name
 CMVERSION_MAJOR, // major version
 CMVERSION_MINOR, // minor version
 1994,11,9, // date
 0, // driver flags
 DRT_SERVICE, // driver type
 0, // driver sub type
 0 // 16:16 callback address
};

// adapter description for driver

ADAPTERSTRUCT AdapterStruct =
{
 AdapterName, // adapter name
 0, // adapter flags
 AS_BASE_COMM, // base type
 AS_SUB_OTHER, // sub type
 AS_INTF_GENERIC, // interface type
 AS_HOSTBUS_ISA, // host bus type
 AS_BUSWIDTH_16BIT, // host bus width
 0, // ptr to any adjunct
structs
 0 // reserved
};

// device description

DEVICESTRUCT DevStruct =
{
 DeviceName, // device descriptive name
 0, // device flags
 0 // device flags
};

722

HDRIVER hDriver=0; // handle to device driver
HADAPTER hAdapter=0; // handle to adapter
HDEVICE hDevice=0; // handle to device
UCHAR
ResourceBuf[sizeof(AHRESOURCE)+sizeof(HRESOURCE)*2]={0};
PAHRESOURCE pResourceList = (PAHRESOURCE) &ResourceBuf;

// code additions for Init section

 // store DevHlp entry point

 Device_Help = rp->s.Init.DevHlp; // save DevHlp entry point
for RM

 RMCreateDriver(&DriverStruct,&hDriver);

 Resource.ResourceType = RS_TYPE_IO;
 Resource.IOResource.BaseIOPort = 0x20b;
 Resource.IOResource.NumIOPorts = 3;
 Resource.IOResource.IOFlags = RS_IO_SHARED;
 Resource.IOResource.IOAddressLines = 16;

 pResourceList->NumResource = 1;
 pResourceList->hResource[0] = 0L;
 pResourceList->hResource[1] = 0L;
 RMAllocResource(hDriver, &pResourceList->hResource[0],
&Resource);
 Resource.IOResource.BaseIOPort = 0x279;
 Resource.IOResource.NumIOPorts = 1;
 RMAllocResource(hDriver, &pResourceList->hResource[0],
&Resource);
 Resource.IOResource.BaseIOPort = 0xa79;
 Resource.IOResource.NumIOPorts = 1;
 RMAllocResource(hDriver, &pResourceList->hResource[0],
&Resource);
 RMCreateAdapter(hDriver, &hAdapter, &AdapterStruct, 0,
(PAHRESOURCE)pResourceList);
 RMCreateDevice(hDriver, &hDevice, &DevStruct, hAdapter, 0);

The RMVIEW Utility

723

The RMVIEW command enables you to display hardware resources in use on
your system. This information is useful when resolving a resource conflict or
when installing a new piece of hardware on your system.

Syntax:

RMVIEW
[/P][/P1]{[/D][/R]}[/D1][/L][/IRQ][/IO]{[/IOA][/SO]}[
/DMA][/MEM][/HW][/?]

724

Table E-2. RMVIEW Parameters

Parameter Description
/P Display the physical view. This is the

default parameter if no other parameters
are entered.

/P1 Display the physical view with
motherboard chipset devices.

/D Display the device drivers which have
registered with the resource manager
along with the physical resources and
logical devices which they have claimed.

/D1 Display the device drivers with
motherboard chipset devices.

/L Display the logical view of the system
resources.

/R Display raw data. When this switch is
used with /P,/P1, /D, /D1 or /L, the
resource manager data is displayed in a
lower level format.

/IRQ Display the claimed interrupt levels (IRQ)
sorted by value.

/IO Display the claimed I/O ports above 0x100
sorted by value.

/IOA Display all claimed I/O ports sorted by
value.

/DMA Display the claimed DMA channels sorted
by value.

/MEM Display the claimed memory regions
sorted by value.

/SO Display /IO, /IOA, /IRQ, /DMA, /MEM
sorted by owner.

/HW Display the hardware tree. The hardware
topology of the system is displayed.

/? Display the help information.

725

RESERVE.SYS

RESERVE.SYS is a device driver loaded at system boot time that allows you
to reserve resources such as DMA channels, I/O ports, memory regions and
interrupt levels for driversa which are not RM aware. For instance, if you had
device driver for a network card that was not RM-aware, and needed port
0x300, you could reserve that port by including the parameter /p:300 on the
RESERVE.SYS line in CONFIG.SYS. Since this device driver is loaded before
any other device drivers, you can reserve the resource(s) before any other
drivers gets a chance to request them. A list of valid parameters and their
formats are described below in Table E-3.

Table E-3. RESERVE.SYS Parameters

Parameter Usage Comments
/DMA /DMA:n Reserve DMA

channel n
/DW /DW:n Port address

width, n=10 or 16,
only valid with /IO

/EXC /EXC The resource is
exclusive

/IO or /P /IO:h1,n1 Reserve I/O port
address h1 for a
length of n1
decimal

/IRQ /IRQ:n Reserve IRQ n
/MEM /MEM:ha,dl Reserve hex

address ha for a
decimal length of
dl

/MUL /MUL Multiplexed

726

resource
/SHA /SHA Shared resource

727

Index
Error! No index entries found.

729

Library Order Form

A C callable DevHlp library is available for $149.00 with complete source,
supplied on 3.5" 1.4 MB floppy disk. MasterCard, Visa, or American Express
cards welcome. U.S. Company P.O.s accepted by mail or Fax. Checks should
be made payable to Personal Systems Software, Inc. International orders must
be paid by credit card. Use the order blank below to order the DevHlp library,
or order online at http://www.persys.com. .

Qty _____ C Callable DevHlp Library with source @ $149.00

Mail total plus $5.00 shipping to: Personal Systems Software, Inc.
15 Great Oak Lane
Unionville, CT 06085
Fax (860) 693-9042

Ship to: _____________________________
